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Abstract: Activity landscape (AL) models are used for visualizing and interpreting structure–activity
relationships (SARs) in compound datasets. Therefore, ALs are designed to present chemical similarity
and compound potency information in context. Different two- or three-dimensional (2D or 3D) AL
representations have been introduced. For SAR analysis, 3D AL models are particularly intuitive.
In these models, an interpolated potency surface is added as a third dimension to a 2D projection of
chemical space. Accordingly, AL topology can be associated with characteristic SAR features. Going
beyond visualization and a qualitative assessment of SARs, it would be very helpful to compare
3D ALs of different datasets in more quantitative terms. However, quantitative AL analysis is still
in its infancy. Recently, it has been shown that 3D AL models with pre-defined topologies can be
correctly classified using machine learning. Classification was facilitated on the basis of AL image
feature representations learned with convolutional neural networks. Therefore, we have further
investigated image analysis for quantitative comparison of 3D ALs and devised an approach to
determine (dis)similarity relationships for ALs representing different compound datasets. Herein,
we report this approach and demonstrate proof-of-principle. The methodology makes it possible
to computationally compare 3D ALs and quantify topological differences reflecting varying SAR
information content. For SAR exploration in drug design, this adds a quantitative measure of AL
(dis)similarity to graphical analysis.

Keywords: active compounds; three-dimensional activity landscapes; topological features;
structure–activity relationships; image analysis; grid representations; landscape comparison;
similarity measures

1. Introduction

Graphical representations are desirable to support the analysis of structure–activity relationships
(SARs), especially when large sets of active compounds are investigated [1,2]. SARs are determined by
chemical similarity and potency relationships between compounds active against a given target [3].
If sequential structural modifications of compounds lead to small or moderate changes in potency,
SARs are continuous in nature. By contrast, if small structural changes cause potency alterations
of large magnitude, SARs are discontinuous. Activity cliffs (ACs), i.e., pairs of structural analogs
with large potency differences, are centers of SAR discontinuity in datasets [3,4]. Activity landscape
(AL) representations were introduced to combine the analysis of similarity and potency information
in various ways [5–7]. AL representations differ substantially in their design and complexity [5].
They range from plots and graphs such as the structure–activity similarity map [8,9], SAR map [10],
or ligand-target differentiation map [11] and annotated molecular networks such as network-like
similarity graphs [12] to multi-dimensional representations [13]. Formally, in an n-dimensional AL
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model, n-1 dimensions represent a chemical descriptor/feature space and the nth dimension represents
activity space [13]. In other words, a multi-dimensional AL can be rationalized as a chemical feature
space containing a biological activity hypersurface [5]. For SAR visualization and interpretation,
three-dimensional (3D) AL views are particularly attractive because they are akin to geographical maps,
with topologies accounting for the presence of characteristic local SARs [13–15]. Accordingly, smooth
regions in 3D ALs mirror SAR continuity, whereas rugged regions are indicative of SAR discontinuity
and contain ACs. For different compound datasets, 3D AL models can be constructed by combining a
two-dimensional (2D) projection of (n-1)-dimensional chemical space with compound potency values
subsequently added as a third dimension [14,15]. From distributed potency values, a coherent potency
surface is interpolated and color-coded by potency, resulting in a 3D view reminiscent of a geographical
map [14,15]. In many compound datasets, both continuous and discontinuous SARs are found to
coexist that are formed by different compound subsets [16]. The coexistence of locally continuous and
discontinuous SARs gives rise to global SAR heterogeneity [16] and 3D ALs containing both smooth
and rugged regions, termed variable ALs [14,15]. Of note, a 3D AL principally represents a non-linear
quantitative SAR (QSAR) model, given its interpolated potency hypersurface to which descriptor
coordinates of test compounds can be mapped. As such, the 3D AL is suitable for mapping of active
compounds to regions of high or low potency, but not for actual potency prediction in lieu of machine
learning [15]. This typically is a consequence of intrinsic overfitting of a 3D AL model to a given
dataset, which yields a high-resolution SAR visualization, but prohibits generalization of the model for
the prediction of numerical potency values [15]. Hence, while numerical SAR analysis functions are
applicable to account for SAR continuity [16], discontinuity [16–18], or heterogeneity [16] in datasets,
3D AL models have thus far only been qualitatively analyzed and compared [19].

While SAR visualization is a key task of 3D AL modeling, one would clearly benefit from a more
quantitative comparison of 3D ALs. Qualitative analysis of 3D ALs typically aims at relating topological
features to SAR characteristics such as the relative content of continuous vs. discontinuous SAR
components. One of the key tasks in SAR exploration of compound datasets is revealing differences
in SAR information between different sets [5]. For example, for practical compound optimization,
one often would like to assess which sets of compounds with activity against related targets have
similar SAR characteristics and are rich in SAR discontinuity. Such datasets would be preferentially
selected as compound source to guide optimization efforts. On the other hand, for computational SAR
modeling and QSAR, one would like to give preference to datasets that contain more SAR continuity.
Estimating and comparing relative SAR information content goes beyond the opportunities of SAR
visualization and qualitative AL comparison. For example, large-scale SAR analysis would greatly
benefit from identifying datasets that have similar SAR characteristics to a given compound set of
interest, which is impossible on the basis of visual inspection. Hence, the ability to systematically
relate topological differences to varying SAR information content and quantify SAR similarity of
different datasets would complement SAR visualization and further extend the utility of 3D ALs,
beyond intuitive analysis and comparison. Quantitative assessment would also aid in differentiating
between datasets with heterogeneous 3D ALs displaying subtle topological differences that are difficult
to appreciate on the basis of visual inspection. This is of practical relevance when evaluating the
potential of further advancing SARs for compounds with activity against related targets. In such
cases, one would favor focusing on compound sources capturing more SAR discontinuity than others,
similar to the application scenario described above. Hence, there are multiple reasons motivating the
development of methods for quantitative comparison of ALs.

However, from a computational point of view, the development of quantitative 3D AL methods
is far from being a trivial task. Recently, it has been attempted to classify 3D ALs using machine
learning (ML) based on features extracted from color-coded AL images using convolutional neural
networks [20]. For a given 3D AL, variants with altered topologies were generated by either increasing
the smoothness (continuity) or ruggedness (discontinuity) of the original AL. These topologically
modified reference states were then distinguished from original 3D ALs by binary class label prediction
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using various ML approaches including deep learning [20]. These studies provided first evidence that
3D AL models with different topological features can be correctly classified on the basis of image data.
However, the findings were limited to 3D AL variants and reference states with deliberately modified
topologies. Accordingly, it remained unclear whether image processing might also be applicable to
differentiate between original heterogeneous 3D ALs. Therefore, we have investigated a conceptually
different image-based computational approach to determine (dis)similarity relationships between
original 3D ALs of different compound datasets.

2. Results and Discussion

2.1. Activity Landscape Images

Images generated from 3D ALs preserve pairwise compound similarity relationships and
their potency data as topographical features. Topology and color codes account for different SAR
characteristics of compound datasets. Of note, SARs are determined by potency differences between
compounds with varying degrees of similarity and are thus largely independent of absolute potency
values. The interpolated potency surface of a 3D AL yields color gradients that can be represented in
heatmaps without significant information loss (see Methods) [20]. Such heatmaps represent a top-down
view of the 3D AL and the encoded color gradients implicitly—but comprehensively—account for the
spatial distribution of topological features. Hence, 3D ALs and corresponding heatmaps are in principle
well suited for image analysis. Given the aim of our method development effort, we have reasoned
that comparing AL image features in a well-defined way should have the potential to discriminate
between different 3D ALs in quantitative terms.

2.2. Image Similarity Analysis

Three-dimensional AL images embed topological features and color profiles, which are
characterized by different color gradients resulting from potency value and compound similarity
distributions (the combination of which determines AL topology). In heatmaps derived from 3D
ALs, topological features and ensuing color gradients are encoded by color pixel intensities that can
be algorithmically extracted. The basic premise underlying similarity-based comparison of 3D AL
images, as introduced herein, is that scaled color pixel intensities can be quantitatively compared
across different heatmaps. To this end, a common grid representation of heatmaps plays a central
role. Using an evenly spaced grid, the heatmap is divided into a constant number of cells, which are
assigned to different categories based upon color intensity threshold values. The distribution of cells
over different categories is then quantitatively compared as a measure of AL (dis)similarity. Figure 1
illustrates the approach. Methodological and calculation details are provided in the Methods Section.

2.3. Heatmaps and Grid Representations

Conversion of 3D AL images into heatmaps established a reference frame for quantitative AL
comparison. The heatmap corresponded to a top-down view of the color-coded 3D AL. Heatmaps were
mapped onto an evenly spaced grid of dimensionality 56 × 60. Accordingly, each heatmap was divided
into total 3360 cells. Figure 2 shows a 3D AL representation for a set of 673 corticotropin-releasing
factor receptor 1 ligands, the corresponding heatmap, and its grid representation.
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Figure 2. Activity landscape and heatmap representations. In (a), the 3D AL of a set of corticotropin-
releasing factor receptor 1 ligands taken from ChEMBL version 23 [21] is shown (generated as detailed 
in the Methods Section). The surface is color-coded according to compound potency using a 
continuous spectrum ranking from red (high potency) over yellow to green (low potency). In (b), the 
corresponding heatmap is displayed. In (c), the heatmap is represented on an evenly spaced grid. 

In Figure 3 below, the heatmap of the of corticotropin-releasing factor receptor 1 ligands is 
enlarged, and positions of exemplary weakly or highly potent compounds are mapped. These 
compounds originated from two different analog series and occupy distant regions in the heatmap. 
The weakly potent compounds are found in a green region (corresponding to a valley) and the highly 
potent in a red region (formed by peaks). The representation illustrates color intensity-based 
encoding of 3D AL topology resulting from different compound potency levels. 

For heatmaps, red and green channel pixel intensity values were combined into a single intensity 
value ranging from -1 to 1 (see Methods). To identify peaks using color intensities, positive threshold 
value intervals of (0, 0.25), (0.25, 0.5), (0.5, 0.75), and (0.75, 1.0) were applied. To identify smooth 
regions (valleys), negative threshold intervals of (0, −0.25), (−0.25, −0.5), (−0.50, −0.75), and (−0.75, −1.0) 
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and intermediate peak-to-valley and valley-to-peak regions. It should be noted that pixel intensities 
do not only encode potencies of individual molecules. Because intensities are obtained by 
interpolating a color gradient reflecting potencies of neighboring compounds, pixel intensities also 
implicitly account for locality information. 

Figure 2. Activity landscape and heatmap representations. In (a), the 3D AL of a set of
corticotropin-releasing factor receptor 1 ligands taken from ChEMBL version 23 [21] is shown (generated
as detailed in the Methods Section). The surface is color-coded according to compound potency using a
continuous spectrum ranking from red (high potency) over yellow to green (low potency). In (b), the
corresponding heatmap is displayed. In (c), the heatmap is represented on an evenly spaced grid.
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In Figure 3 below, the heatmap of the of corticotropin-releasing factor receptor 1 ligands is enlarged,
and positions of exemplary weakly or highly potent compounds are mapped. These compounds
originated from two different analog series and occupy distant regions in the heatmap. The weakly
potent compounds are found in a green region (corresponding to a valley) and the highly potent in a
red region (formed by peaks). The representation illustrates color intensity-based encoding of 3D AL
topology resulting from different compound potency levels.Molecules 2020, 25, x FOR PEER REVIEW  6 of 12 
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Figure 3. Heatmap with compound positions. The heatmap from Figure 2b is enlarged and positions
of different compounds are indicated using black triangles. Exemplary weakly potent (top) and
highly potent compounds (bottom) belong to two different analog series and map to green regions
(valleys) and red regions, respectively. For each compound, its potency value is reported, and structural
modifications distinguishing analogs from each series are highlighted in red.

For heatmaps, red and green channel pixel intensity values were combined into a single intensity
value ranging from -1 to 1 (see Methods). To identify peaks using color intensities, positive threshold
value intervals of (0, 0.25), (0.25, 0.5), (0.5, 0.75), and (0.75, 1.0) were applied. To identify smooth regions
(valleys), negative threshold intervals of (0, −0.25), (−0.25, −0.5), (−0.50, −0.75), and (−0.75, −1.0) were
used. Thus, different threshold intervals represented highest elevations (peaks), deepest valleys, and
intermediate peak-to-valley and valley-to-peak regions. It should be noted that pixel intensities do not
only encode potencies of individual molecules. Because intensities are obtained by interpolating a
color gradient reflecting potencies of neighboring compounds, pixel intensities also implicitly account
for locality information.

2.4. Grid-Based Similarity Analysis

Heatmap cells were assigned to eight different categories on the basis of the threshold value
intervals specified above. The assignment yielded an AL-dependent distribution of categorized
cells. Grid-based partitioning of a heatmap and categorization of the resulting cell population
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provided two fundamental advantages for subsequent similarity analysis. First, a constant number
of cells was obtained; second, the distribution of cells over different threshold categories was image
orientation-invariant. While grid locality information is not preserved in the global cell distribution,
SAR information from neighboring molecules is retained by interpolated intensities and hence implicitly
included in the comparison. As a measure of AL (dis)similarity, cell distributions of different heatmaps
were quantitatively compared by calculating symmetric relational entropy and cosine distances (see
Methods).

2.5. Activity Landscape Comparison

Figure 4 shows heatmaps for 3D ALs of four exemplary compound datasets from ChEMBL
version 23 [21] that are reported in Table 1. The datasets consisted of 673–887 compounds with activity
against different targets covering different potency ranges. All four sets were characterized by SAR
heterogeneity, i.e., their 3D ALs contained both smooth and rugged regions, corresponding to SAR
continuity and discontinuity, respectively. However, on the basis of visual inspection, there also were
apparent differences between these ALs, reflecting varying SAR information content. For example, the
heatmap of compound dataset CHEMBL1800 (C1800) contained more and more widely distributed
peak regions than the others, and C1800 and CHEMBL238 (C238) appeared to be overall the most
dissimilar pair. Other relationships involving CHEMBL3759 (C3759) CHEMBL1833 (C1833) were
difficult to judge, illustrating the limitations of visual inspection.
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Table 1. Datasets. The table summarizes the composition of four exemplary compound datasets
(different activity classes) used for 3D AL analysis.

ChEMBL Target ID Target Name Number of Compounds
Potency (pKi)

Min Max

1800 Corticotropin-Releasing Factor Receptor 1 673 4.3 9.7

3759 Histamine H4 receptor 887 2.9 10.4

1833 5-hydroxytryptamine receptor 2B 695 5.0 10.0

238 Sodium-dependent dopamine transporter 850 2.1 9.4

For the heatmaps, we then determined the grid-based cell intensity distributions over the eight
threshold intervals. Figure 5 compares these distributions.
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Figure 5. Cell intensity distributions. For the four compound datasets, cell distributions over eight
threshold intervals are reported and color-coded as indicated. From left to right, valleys (interval 1–3),
intermediate regions (interval 4,5), and peaks (interval 6–8) are accounted for.

Large differences between these distributions were found in smooth regions. Here, C238 (green
curve in Figure 5) had by far the largest number of cells accounting for valleys and C1800 (red)
the smallest. Furthermore, C1800 and C238 had the largest and smallest number of cells covering
intermediate regions, respectively. In peak regions, the distributions of three of the four datasets were
similar, except C1800, which had a larger number of cells accounting for peaks than the others. These
findings were consistent with conclusions that could be drawn from visual inspection. Going beyond
what could be concluded on the basis of visual inspection, the profiles of C1833 (orange) and C3759
(magenta) were found to be overall similar. While C1833 had more cells accounting for smooth regions
than C3759, the traces of the distributions closely followed each other in intermediate and peak regions.
Taken together, comparison of cell intensity distributions revealed quantifiable differences between AL
images of different datasets and thus provided a sound basis for (dis)similarity analysis.

To quantify differences between cell distributions in a pairwise manner and provide a numerical
measure of AL (dis)similarity, relative entropy (RE) was determined by calculating the Kullback–Leibler
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divergences (KLD) [22] between feature vectors of cell distributions (see Methods). In addition, cosine
distance (CD) values were determined for pairwise comparison of distribution feature vectors,
a standard dissimilarity measure [23]. Increasing RE and CD values indicate increasing dissimilarity
between ALs. Table 2 reports the results of pairwise comparisons of the cell intensity profiles.

Table 2. Similarity calculations. Relative entropy (RE) and cosine distance (CD) values for comparison
of cell distribution feature vectors are reported.

AL Comparison RE CD

C1800/C3759 0.19 0.10

C1833/C238 0.28 0.24

C1800/C1833 0.22 0.12

C1800/C238 0.53 0.33

C3759/C1833 0.08 0.05

C3759/C238 0.09 0.09

As expected, largest RE (0.53) and CD (0.33) values were obtained for the C1800/C238 comparison,
confirming that the ALs of these datasets were most dissimilar. By contrast, smallest RE and CD values
were calculated for the C3759/C1833 (0.08 and 0.05, respectively) and the C3759/C238 comparison
(0.09 in both instances). As discussed above, C3759 and C1833 yielded the overall most similar
cell distributions. Furthermore, for the C1833/C238 comparison, intermediate RE (0.28) and CD
(0.24) values were obtained, which were also reconcilable on the basis of the observed distribution
traces. The comparisons revealed that RE and CD calculations were suitable for comparing cell
distribution feature vectors. Since RE values covered a larger value range for the reported comparisons
than CD values, we would assign preference to the former, at least in these cases. Regardless,
the calculations reported herein are generally applicable and provide a first quantitative measure of 3D
AL (dis)similarity.

2.6. Conclusions

The AL concept was introduced for graphical analysis of SARs contained in compound datasets.
For SAR visualization, 3D AL representations are particularly intuitive since they are akin to
geographical maps and their topological features mirror SAR characteristics. Three-dimensional
ALs of most compound datasets are variable in nature, reflecting different degrees of SAR heterogeneity.
Going beyond visual inspection and qualitative comparison of 3D ALs, the ability to quantitatively
account for topological differences between 3D ALs would provide substantial support for SAR
exploration of compound datasets and various practical applications. In this work, we have introduced
a computational methodology to quantify (dis)similarity relationships between 3D ALs on the
basis of image data. Three-dimensional AL images can be converted into heatmaps representing a
top-down view of the ALs with very little loss in information such that color intensities and textures
represent topological features. Heatmaps are then mapped onto evenly spaced grids with constant
dimensions, which yields a constant number of cells, providing a basis for AL comparison. These
cells are then categorized on the basis of color intensities, which implicitly account for the spatial
distribution of corresponding topological features they represent. Differences in the distribution
of cells over different threshold intervals are then quantified as a measure of 3D AL (dis)similarity.
Importantly, cell-based comparison of ALs is image-orientation invariant and thus generally applicable.
As shown in our proof-of-concept investigation, comparison of categorized cell distributions provides
a meaningful quantitative readout for comparison of 3D ALs and, thus, further extends the utility of
AL representations for SAR exploration.
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3. Methods

3.1. Three-Dimensional Activity Landscapes

Three-dimensional AL models of compound datasets (Figure 2) were generated following
the protocol reported in [20]. Briefly, chemical reference space was generated on the basis of
extended connectivity fingerprint with bond diameter 4 (ECFP4) [24] Tanimoto distances [25] for
pairwise compound comparisons. The 2D projection of chemical reference space was computed using
multi-dimensional scaling (MDS) [26], applying a stress function based on pairwise Tanimoto distances.
The potency surface was interpolated via Gaussian process regression (GPR) [27] and color-coded
by compound potency applying a continuous color gradient from red (highest potency in a dataset)
over yellow to green (lowest potency). Intermediate potency values were computed using a Gaussian
process based on prior covariances of experimental potency values. The “Sum of Matern and White”
kernel [27] was used assuming a mean of zero to derive relationships between experimental data
points (potency values). Gaussian noise factors were applied to permit minor variations of z-values for
points on the x-y plane and optimize the global fit of the surface to experimental data points. Noise
factors were adjusted for each target activity class by optimizing the kernel’s alpha parameter between
10−1 and 10−7 over 10 iterations. The gradient was applied to a limited pKi range from 3.72 (green)
over 5.75 (yellow) to 8.75 (red). Potencies outside this range were assigned to green (less than 3.72) or
red (larger than 8.75).

3.2. Image Processing and Analysis

For each 3D AL, a heatmap was initially obtained using the RGB color model of OpenCV version
3.0 with eight bits per channel [28,29]. Heatmaps were cropped to dimensions of 280 × 300 pixels
(starting from the original 600 × 400 pixels including white excess areas). Because 3D AL models were
created by interpolating potency values using the color gradient from red over yellow to green, without
using the blue channel, the red and green (RG) channel pixel values were extracted by subtracting
green channel intensity values from red channel intensity values and combined into a single intensity
value ranging from −255 to 255. Accordingly, the dataset compound with lowest potency (brightest
green pixels), intermediate (yellow pixels), and highest potency (brightest red pixels) corresponded to
values of −255, 0, and +255, respectively. RG pixel values were then normalized to the range of −1 to
+1. The RG color model preserved more than 95% of the RGB colors, except for shades of white (i.e.,
interpolated surface area without experimental potency), which were accounted for by yellow hues
using the RG model.

3.3. Grid Representation

Each heatmap was mapped to an evenly spaced grid of dimensionality 56 × 60, forming total 3360
square cells. Color intensity values were divided into eight different threshold intervals (categories), as
specified above. Average pixel intensity values from the 25 pixels of each cell were assigned to the cell,
and the distribution of cells over the eight threshold intervals was determined. For comparison, cell
intensity distributions were encoded as individual feature vectors.

3.4. Similarity Analysis

To quantify (dis)similarity between any two 3D ALs images based upon their heatmaps, relative
information entropy and cosine distances were calculated for cell distribution feature vectors. Relative
entropy (RE), also known as the Kullback−Leibler divergence (KLD), is calculated between two
probability distributions P(x), P(y). These were obtained from the feature vectors x and y by converting
the distributions to relative frequencies. KLD is defined as [22]:

KLD(P(x)
∣∣∣∣∣∣P(y)) =

∑
P(x) log

(
P(x)
P(y)

)
(1)
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Given the intrinsic asymmetry of KLD, symmetric relative entropy values for comparison of feature
vector probability distributions P(x) and P(y) were obtained by taking the average of KLD(P(x)

∣∣∣∣∣∣P(y))
and KLD(P(y)

∣∣∣∣∣∣P(x)):
RE(P(x), P(y)) =

∑
P(x) log

(
P(x)
P(y)

)
+

∑
P(y) log

(
P(y)
P(x)

)
2

(2)

In addition, cosine distances between feature vectors were calculated. The cosine coefficient is
widely used to measure the relationship between any two given feature vectors by calculating the
cosine of the angle between the two vectors [23]. It is defined as the inner product of two vectors
divided by the product of their lengths. The cosine distance CD is obtained by subtracting the cosine
similarity value from 1 and given by:

CD(x, y) = 1−
(

x·y
‖x‖‖y‖

)
(3)
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