Supplementary Materials

Biological Activities and ADMET-Related Properties of Novel Set of Cinnamanilides ⁺

Jiri Kos¹, Andrzej Bak^{2,*}, Violetta Kozik², Timotej Jankech³, Tomas Strharsky¹, Aleksandra Swietlicka², Hana Michnova¹, Jan Hosek¹, Adam Smolinski⁴, Michal Oravec⁵, Ferdinand Devinsky⁶, Milan Hutta³ and Josef Jampilek^{3,*}

- ¹ Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacky University, Slechtitelu 27, 78371 Olomouc, Czech Republic; jiri.kos@upol.cz (J.K.); tomas.strharsky01@upol.cz (T.S.); michnova.hana@gmail.com (H.M.); jan.hosek@upol.cz (J.H.)
- ² Department of Chemistry, University of Silesia, Szkolna 9, 40007 Katowice, Poland; violetta.kozik@us.edu.pl (V.K.); aswietlicka@us.edu.pl (A.Sw.)
- ³ Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, 84215 Bratislava, Slovakia; timotej.jankech@gmail.com (T.J.); milan.hutta@uniba.sk (M.H.)
- ⁴ Central Mining Institute, Pl. Gwarkow 1, 40166 Katowice, Poland; smolin@gig.katowice.pl
- ⁵ Global Change Research Institute CAS, Belidla 986/4a, 60300 Brno, Czech Republic; oravec.m@czechglobe.cz
- ⁶ Faculty of Pharmacy, Comenius University, Odbojarov 10, 83232 Bratislava, Slovakia; devinsky@fpharm.uniba.sk
- * Correspondence: andrzej.bak@us.edu.pl (A.B.); josef.jampilek@gmail.com (J.J.)
- Preliminary results presented at the 23rd International Electronic Conference on Synthetic Organic Chemistry, 15 November–15 December 2019; Available online: https://ecsoc-23.sciforum.net/.

No.	logPa	miLogP⁵	ClogPc	ClogPd	ClogPe	ClogPf	ClogPg	MlogPh	AlogPi	ClogP ^j	ClogP ^k	ClogP ¹	ClogPm	ClogPn
1	3.12	3.47	3.14	3.20	3.66	3.57	3.73	3.08	3.29	3.08	3.61	3.18	3.71	3.18
2	3.35	3.81	3.44	3.61	3.27	4.00	4.22	3.70	4.46	2.56	3.48	3.66	4.14	3.44
3	3.34	3.81	3.44	3.61	4.33	4.00	5.01	3.70	4.46	3.68	3.48	3.66	4.00	3.45
4	4.75	4.75	4.35	4.23	4.59	4.78	5.24	4.41	4.31	3.81	4.26	4.3	5.14	4.6
5	5.36	5.36	4.95	4.75	5.21	5.38	5.96	5.08	4.82	4.45	5.07	4.86	5.73	5.5
6	5.33	5.36	4.95	4.75	5.94	5.38	6.30	5.08	4.82	5.02	5.84	4.86	5.61	5.51
7	4.71	5.01	4.57	4.78	4.86	5.11	5.54	4.58	4.55	4.30	4.57	4.84	5.44	4.8
8	4.15	4.24	3.84	3.85	4.27	4.32	4.56	3.95	4.19	3.37	3.99	3.9	4.57	4.04
9	4.21	4.37	3.96	4.13	5.02	4.48	5.30	4.04	4.31	4.17	3.97	4.17	4.72	4.14
10	4.06	4.45	4.08	4.22	5.23	4.59	5.25	4.23	4.55	4.25	4.17	4.26	4.74	4.23
11	4.64	4.88	4.47	4.51	5.45	4.94	5.72	4.49	4.43	4.62	4.95	4.57	5.15	4.88
12	4.61	4.88	4.47	4.51	4.71	4.94	5.36	4.49	4.43	4.05	4.50	4.57	5.29	4.75
13	4.51	5.10	4.71	4.87	5.01	5.22	5.52	4.77	4.78	4.37	4.76	4.93	5.46	4.9
14	4.01	4.45	4.08	4.22	3.78	4.59	5.21	4.23	4.55	3.68	3.54	4.26	4.74	3.8
15	4.50	4.97	4.59	4.60	4.35	5.05	6.11	4.69	4.67	4.13	4.06	4.66	5.31	4.84
16	4.45	5.10	4.71	4.87	4.50	5.22	5.78	4.77	4.78	4.37	4.13	4.93	5.46	4.86
17	3.76	4.25	3.06	2.10	3.55	4.39	5.48	3.92	4.10	4.02	3.27	4.25	4.34	4.16
18	4.10	4.25	3.06	2.10	4.99	4.39	5.60	3.92	4.10	4.58	4.39	4.25	4.34	4.27
19	5.16	5.84	5.43	5.66	5.08	5.99	5.45	5.52	5.39	4.70	5.45	5.76	6.32	5.32
20	5.22	5.71	5.29	5.44	4.74	5.85	6.35	5.45	5.17	4.58	5.29	5.55	6.16	5.67

Table S1. Theoretically estimated partition coefficient calculated by set of alternative methods for anilides **1–20**.

^a clogPS, ^b Molinspirations, ^c OSIRIS property explorer, ^d HyperChem 7.0, ^e Sybyl-X, ^f Marvin Sketch (ChemAxon) 15, ^g ChemSketch 2015, ^h Dragon 6.0, ⁱ Dragon 6.0, ^j Kowwin, ^k XlogP3, ¹ ChemDraw, ^m ChemBioDraw, ⁿ ACD/Percepta.

No.	pKaª	pKa ^b
1	13.98	0.42
2	10.79	0.04
3	11.38	-0.95
4	12.17	-1.12
5	11.50	-1.92
6	11.76	-1.80
7	12.17	-1.32
8	12.22	-0.62
9	12.32	-1.13
10	12.47	-2.44
11	12.43	-1.20
12	12.17	-1.12
13	12.50	-1.43
14	12.19	-1.52
15	12.34	-2.24
16	12.34	-2.44
17	12.00	-5.76
18	12.22	-4.65
19	11.40	-3.54
20	10.42	-2.12

Table S2. Theoretically estimated pK_a calculated by ACD/Percepta/pKa for anilides 1–20.

^aacid, ^b base

Figure S1. ¹³C-NMR (DMSO-*d*₆) spectrum of (2*E*)-3-phenyl-*N*-(2,4,6-trifluorophenyl)prop-2-enamide (2).

Figure S2. HR-MS record of (2E)-3-phenyl-N-(2,4,6-trifluorophenyl)prop-2-enamide (2).

Figure S3. ¹³C-NMR (DMSO-*d*₆) spectrum of (2*E*)-3-phenyl-*N*-(3,4,5-trifluorophenyl)prop-2-enamide (3).

Figure S4. HR-MS record of (2E)-3-phenyl-N-(3,4,5-trifluorophenyl)prop-2-enamide (3).

Figure S5. ¹³C-NMR (DMSO-*d*₆) spectrum of (2*E*)-*N*-(2,4-dichlorophenyl)-3-phenylprop-2-enamide (4).

Figure S6. HR-MS record of (2E)-N-(2,4-dichlorophenyl)-3-phenylprop-2-enamide (4).

Figure S7. ¹³C-NMR (DMSO-d₆) spectrum of (2E)-3-phenyl-N-(2,4,5-trichlorophenyl)prop-2-enamide (5).

Figure S8. HR-MS record of (2E)-3-phenyl-N-(2,4,5-trichlorophenyl)prop-2-enamide (5).

Figure S9. ¹³C-NMR (DMSO-d₆) spectrum of (2E)-3-phenyl-N-(3,4,5-trichlorophenyl)prop-2-enamide (6).

Figure S10. HR-MS record of (2E)-3-phenyl-N-(3,4,5-trichlorophenyl)prop-2-enamide (6).

Figure S11. ¹³C-NMR (DMSO-d₆) spectrum of (2E)-N-(2,4-dibromophenyl)-3-phenylprop-2-enamide (7).

Figure S12. HR-MS record of (2E)-N-(2,4-dibromophenyl)-3-phenylprop-2-enamide (7).

Figure S13. ¹³C-NMR (DMSO-*d*₆) spectrum of (2*E*)-*N*-(5-chloro-2-fluorophenyl)-3-phenylprop-2-enamide (8).

Figure S14. HR-MS record of (2E)-N-(5-chloro-2-fluorophenyl)-3-phenylprop-2-enamide (8).

Figure S15. ¹³C-NMR (DMSO-*d*₆) spectrum of (2*E*)-*N*-(4-bromo-3-fluorophenyl)-3-phenylprop-2-enamide (9).

Figure S16. HR-MS record of (2E)-N-(4-bromo-3-fluorophenyl)-3-phenylprop-2-enamide (9).

Figure S17. ¹³C-NMR (DMSO-d₆) spectrum of (2E)-N-[3-fluoro-4-(trifluoromethyl)phenyl]-3-phenylprop-2-enamide (10).

Figure S18. HR-MS record of (2*E*)-*N*-[3-fluoro-4-(trifluoromethyl)phenyl]-3-phenylprop-2-enamide (10).

Figure S19. ¹³C-NMR (DMSO-*d*₆) spectrum of (2*E*)-*N*-(4-bromo-3-chlorophenyl)-3-phenylprop-2-enamide (11).

Figure S20. HR-MS record of (2*E*)-*N*-(4-bromo-3-chlorophenyl)-3-phenylprop-2-enamide (11).

Figure S21. ¹³C-NMR (DMSO-*d*₆) spectrum of (2*E*)-*N*-(2-bromo-4-chlorophenyl)-3-phenylprop-2-enamide (12).

Figure S22. HR-MS record of (2*E*)-*N*-(2-bromo-4-chlorophenyl)-3-phenylprop-2-enamide (12).

Figure S23. ¹³C-NMR (DMSO-*d*₆) spectrum of (2*E*)-*N*-[2-bromo-5-(trifluoromethyl)phenyl]-3-phenylprop-2enamide (**13**).

Figure S24. HR-MS record of (2E)-N-[2-bromo-5-(trifluoromethyl)phenyl]-3-phenylprop-2-enamide (13).

Figure S25. ¹³C-NMR (DMSO-*d*₆) spectrum of (2*E*)-*N*-[4-fluoro-2-(trifluoromethyl)phenyl]-3-phenylprop-2enamide (14).

Figure S26. HR-MS record of (2E)-N-[4-fluoro-2-(trifluoromethyl)phenyl]-3-phenylprop-2-enamide (14).

Figure S27. ¹³C-NMR (DMSO-*d*₆) spectrum of (2*E*)-*N*-[4-chloro-2-(trifluoromethyl)phenyl]-3-phenylprop-2enamide (**15**).

Figure S28. HR-MS record of (2E)-N-[4-chloro-2-(trifluoromethyl)phenyl]-3-phenylprop-2-enamide (15).

Figure S29. ¹³C-NMR (DMSO-*d*₆) spectrum of (2*E*)-*N*-[4-bromo-2-(trifluoromethyl)phenyl]-3-phenylprop-2enamide (**16**).

Figure S30. HR-MS record of (2E)-N-[4-bromo-2-(trifluoromethyl)phenyl]-3-phenylprop-2-enamide (16).

Figure S31. ¹³C-NMR (DMSO-*d*₆) spectrum of (2*E*)-*N*-[4-nitro-2-(trifluoromethyl)phenyl]-3-phenylprop-2-enamide (17).

Figure S32. HR-MS record of (2E)-N-[4-nitro-2-(trifluoromethyl)phenyl]-3-phenylprop-2-enamide (17).

Figure S33. ¹³C-NMR (DMSO-*d*₆) spectrum of (2*E*)-*N*-[4-nitro-3-(trifluoromethyl)phenyl]-3-phenylprop-2-enamide (18).

Figure S34. HR-MS record of (2E)-N-[4-nitro-3-(trifluoromethyl)phenyl]-3-phenylprop-2-enamide (18).

Figure S35. ¹³C-NMR (DMSO-*d*₆) spectrum of (2*E*)-*N*-[2,6-dibromo-4-(trifluoromethyl)phenyl]-3-phenylprop-2enamide (**19**).

Figure S36. HR-MS record of (2E)-N-[2,6-dibromo-4-(trifluoromethyl)phenyl]-3-phenylprop-2-enamide (19).

Figure S37. ¹³C-NMR (DMSO-*d*₆) spectrum of (2*E*)-*N*-(2,6-dibromo-3-chloro-4-fluorophenyl)-3-phenylprop-2enamide (**20**).

Figure S38. HR-MS record of (2E)-N-(2,6-dibromo-3-chloro-4-fluorophenyl)-3-phenylprop-2-enamide (20).