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Abstract: Leucine-rich repeat kinase 2 (LRRK2) is involved in lipid metabolism; however, the role
of LRRK2 in lipid metabolism to affect non-alcoholic fatty liver disease (NAFLD) is still unclear.
In the mouse model of NAFLD induced by a high-fat diet, we observed that LRRK2 was decreased
in livers. In HepG2 cells, exposure to palmitic acid (PA) down-regulated LRRK2. Overexpression
and knockdown of LRRK2 in HepG2 cells were performed to further investigate the roles of LRRK2
in lipid metabolism. Our results showed that β-oxidation in HepG2 cells was promoted by LRRK2
overexpression, whereas LRRK2 knockdown inhibitedβ-oxidation. The critical enzyme ofβ-oxidation,
carnitine palmitoyltransferase 1A (CPT1A), was positively regulated by LRRK2. Our data suggested
that the regulation of CPT1A by LRRK2 may be via the activation of AMP-activated protein kinase
(AMPK) and peroxisome proliferator-activated receptor α (PPARα). The overexpression of LRRK2
reduced the concentration of a pro-inflammatory cytokine, tumor necrosis factor α (TNFα), induced
by PA. The increase in β-oxidation may promote lipid catabolism to suppress inflammation induced
by PA. These results indicated that LRRK2 participated in the regulation of β-oxidation and suggested
that the decreased LRRK2 may promote inflammation by suppressing β-oxidation in the liver.
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1. Introduction

Non-alcoholic fatty liver disease (NAFLD) is a common chronic liver disease with a global
prevalence [1]. NAFLD is caused by excess fat accumulation in livers [2]. About 20–25% of NAFLD
patients progress to non-alcoholic steatohepatitis (NASH), a severe form of NAFLD with inflammation [3].
NASH patients have a high risk of cirrhosis and hepatocellular carcinoma [1,3,4]. Obesity, one of the
primary risk factors for NAFLD [1,2,5], leads to the efflux of free fatty acids from adipose tissues into
circulation [6,7] resulting in the influx of free fatty acids into other organs, such as liver [8]. Palmitic
acid (PA, 16:0), a fatty acid abundant in plasma [9], is increased in the plasma of NAFLD patients [10,11].
PA can cause apoptosis [12,13], inflammation [14,15], and the impairment of fatty acid oxidation [16,17].
These factors may contribute to the development of NAFLD [18,19]. However, the mechanism of the
harmful effects caused by PA has not been fully understood.

The accumulated free fatty acid in cells can be converted to lipotoxic lipids which have been
suggested as a contributor to the inflammation of hepatocytes [20]. Carnitine palmitoyltransferase 1A
(CPT1A), an enzyme in the outer membrane of mitochondria, functions to transport fatty acid from
the cytosol into mitochondria [21]. After transport into mitochondria, the intracellular non-esterified
fatty acids (NEFA) can be catabolized via β-oxidation within mitochondria [22,23]. CPT1A can
be up-regulated via the activation of peroxisome proliferator-activated receptor α (PPARα) [24,25]
and AMP-activated protein kinase (AMPK) to promote β-oxidation [26–29]. CPT1A can promote
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β-oxidation to decrease the intracellular free fatty acid and suppress the secretion of pro-inflammatory
cytokines, such as tumor necrosis factor α (TNFα) [30,31]. Therefore, enhancing β-oxidation may be a
strategy to suppress inflammation in NAFLD.

Leucine-rich repeat kinase 2 (LRRK2) is a multifunctional protein with kinase, GTPase, and protein
interaction domains [32,33]. Due to its multiple domains, LRRK2 can associate with various proteins
to participate in different functions, including mitochondrial homeostasis, inflammation, autophagy,
and vesicle-trafficking [33,34]. In humans, LRRK2 is associated with Parkinson’s disease, inflammatory
bowel disease, and leprosy [35–37]. In addition, possible LRRK2 involvement in the regulation of lipid
metabolism has been shown in LRRK2 knockout rodents that displayed an accumulation of lipids in
livers and kidneys [38,39]. The level of ceramide, a lipotoxicity-causing lipid derivative, is significantly
higher in the LRRK2 knockout compared to wild-type mice [40]. The elevation of ceramide may be
induced by glucocerebrosidase 1 activity, an enzyme that converts glucosylceramide to ceramide and
glucose [40]. The Y1699C mutant of LRRK2, a pathogenic mutant for Parkinson’s disease, promotes
the enlargement of lipid droplets through the phosphorylation of Rab8a in an adipose cell line [41].

Previous studies suggest that LRRK2 may play roles in the regulation of lipid metabolism.
However, the detailed mechanism is still unclear. In the current paper, we observed the change
of LRRK2 expression in NAFLD livers accompanied by inflammation in mice. Furthermore, we
investigated the roles of LRRK2 in lipid metabolism in vitro. Our results suggested that LRRK2 plays a
role in the regulation of β-oxidation. Moreover, the down-regulation of LRRK2 in the livers of NAFLD
mice may result in the suppression of β-oxidation, which may result in inflammation.

2. Results

2.1. LRRK2 Was Down-Regulated in the Liver of High-Fat Diet Induced NAFLD Mice

To confirm the presence of LRRK2 expression, brain and liver lysates from C57BL/6JNarl male
mice were analyzed. The result showed that LRRK2 protein was present in the liver and brain tissues
(Figure 1a). To investigate the association of LRRK2 and lipid metabolism in the liver, the NAFLD
mouse model was induced by high-fat diet feeding for 16 weeks. After histological examination by
hematoxylin and eosin (H&E) staining, livers from mice fed a high-fat diet displayed hepatic steatosis
and ballooning (Figure 1b). The lipogenesis-related genes, Fasn and Acc, and pro-inflammatory genes,
Tnfa and Il1b, were up-regulated (p < 0.05) in the livers of NAFLD mice (Figure 1c). The high-fat diet
induced NAFLD mice presented characteristics of NASH [42,43]. In addition, current data showed
both that the change in gene and protein expression of LRRK2 were observed in livers of NAFLD
mice. The mRNA expression of LRRK2 was decreased (p < 0.05) in NAFLD livers compared to livers
of the control group by real-time PCR (Figure 1d). The LRRK2 protein was lower (p < 0.05) in the
NAFLD livers compared to the control group (Figure 1e,f). The results of immunohistochemistry (IHC)
analysis confirmed that LRRK2 was down-regulated in the liver of NAFLD mice (Figure 1g).
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Figure 1. Leucine-rich repeat kinase 2 (LRRK2) was down-regulated in the liver of high-fat diet 
induced non-alcoholic fatty liver disease (NAFLD) mice. (a) A western blot was used to detect the 
presence of LRRK2 in an equal amount (25 μg) of lysates from brains and livers. (b) Histological 
analysis of the livers in the mice fed with indicated diets by H&E staining. Green arrow indicates 
steatosis, and black arrow indicates hepatic ballooning. Scale bar = 50 μm. (c) The lipogenesis related 
genes, Fasn, Srebp1c, Acc, and Pparg, and pro-inflammatory cytokine genes, Tnfa and Il1b, were 
analyzed in the livers of the mice fed with a chow diet or a high-fat diet using real-time PCR. (d) 
Relative levels of LRRK2 mRNA in the livers of chow diet and high-fat diet groups were analyzed by 
real-time PCR. (e) The protein expression of LRRK2 in the livers of chow diet and high-fat diet groups 
was analyzed by western blot. (f) The quantitative results of protein levels of LRRK2 in western blots. 
(g) IHC analysis of the livers in indicated groups using anti-LRRK2 antibody. Scale bar = 50 μm. The 
quantitative data are shown as mean ± SEM (n = 5 for each group). T-test, * p ≤ 0.05, ** p ≤ 0.01. 
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Figure 1. Leucine-rich repeat kinase 2 (LRRK2) was down-regulated in the liver of high-fat diet induced
non-alcoholic fatty liver disease (NAFLD) mice. (a) A western blot was used to detect the presence of
LRRK2 in an equal amount (25 µg) of lysates from brains and livers. (b) Histological analysis of the
livers in the mice fed with indicated diets by H&E staining. Green arrow indicates steatosis, and black
arrow indicates hepatic ballooning. Scale bar = 50 µm. (c) The lipogenesis related genes, Fasn, Srebp1c,
Acc, and Pparg, and pro-inflammatory cytokine genes, Tnfa and Il1b, were analyzed in the livers of the
mice fed with a chow diet or a high-fat diet using real-time PCR. (d) Relative levels of LRRK2 mRNA
in the livers of chow diet and high-fat diet groups were analyzed by real-time PCR. (e) The protein
expression of LRRK2 in the livers of chow diet and high-fat diet groups was analyzed by western blot.
(f) The quantitative results of protein levels of LRRK2 in western blots. (g) IHC analysis of the livers in
indicated groups using anti-LRRK2 antibody. Scale bar = 50 µm. The quantitative data are shown as
mean ± SEM (n = 5 for each group). T-test, * p ≤ 0.05, ** p ≤ 0.01.
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2.2. Palmitic Acid Reduced the Expression of LRRK2 in HepG2 Cells

To determine whether LRRK2 is expressed in liver cell lines, we performed a western blot to
examine the protein expression of LRRK2 in various liver cell lines, including Hep3B, HepG2, and PLC5.
The result showed that LRRK2 was detectable in all the aforementioned liver cell lines (Figure 2a).
The level of LRRK2 in HepG2 cells was higher than in Hep3B and PLC5 cells (Figure 2a). Therefore,
we used HepG2 cells as a cellular model for further experiments. After treatment with 400 µM
oleic acid (OA, C18:1) for 24 h, the level of LRRK2 was comparable to that in the control group
(Figure 2b). However, after treatment with 400 µM palmitic acid (PA, C16:0) for 24 h, the level of
LRRK2 was decreased in HepG2 cells (Figure 2b). The decrease in LRRK2 with PA treatment was in
a dose-dependent manner (0, 200, and 400 µM) (Figure 2c). These results indicated that the level of
LRRK2 was down-regulated by PA treatment of HepG2 cells.
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Figure 2. Palmitic acid reduced the expression of LRRK2 in HepG2 cells. (a) Western blots were used
to detect the presence of LRRK2 in the liver cell lines, Hep3B, HepG2, and PLC5. (b) A western blot
was used to analyze the levels of LRRK2 protein in HepG2 cells treated with vehicle, 400 µM PA,
or 400 µM OA, respectively. HepG2 cells were treated with indicated fatty acids for 24 h. (c) Protein
levels of LRRK2 in the HepG2 cells treated with PA at indicated concentrations for 24 h and analyzed
by western blot.

2.3. Overexpression of LRRK2 Promoted Catabolism of Free Fatty Acid in PA-Treated HepG2 Cells

To examine whether LRRK2 plays a role in lipid metabolism, we generated LRRK2-ovexpressed
HepG2 cells via transfection with the 2XMyc-LRRK2-WT plasmid [44], harboring a wild-type LRRK2
gene, into HepG2 cells. The control group was the HepG2 cells transfected with the control vector.
To investigate the role of LRRK2 in lipid metabolism, control and LRRK2-overexpressed HepG2 cells
were treated with PA at 0, 200, and 400 µM for 24 h (Figure 3a). The NEFA in control HepG2 cells was



Molecules 2020, 25, 4122 5 of 19

increased (p < 0.05) after PA treatment (Figure 3b). After treatment with 400 µM PA, the level of NEFA
in LRRK2-overexpressed HepG2 was lower (p < 0.05) than in the control group (Figure 3b). However,
the level of triglyceride (TG) in LRRK2-overexpressed HepG2 cells was comparable to the control group
after treatment with PA, at 0, 200, and 400 µM for 24 h. (Figure 3c). These data suggested that LRRK2
may play a role in the catabolism of NEFA, but not TG. The intracellular NEFA can be transported into
mitochondria and degraded through β-oxidation [23]. The overexpression of LRRK2 decreased the
levels of intracellular NEFA after PA treatment; this may result from the enhancement of β-oxidation
in HepG2 cells. To examine whether LRRK2 is involved in the regulation of β-oxidation, we evaluated
the activity of fatty acid oxidation in the control and LRRK2-overexpressed HepG2 cells. The data
showed that the activity of fatty acid oxidation was increased (p < 0.05) in LRRK2-overexpressed
HepG2 cells compared to the control group (Figure 3d). In contrast, the activity of fatty acid oxidation
was decreased (p < 0.05), while LRRK2 was knocked-down by short hairpin RNA (shRNA) (Figure 3e).
These data indicated that LRRK2 played a role in the free fatty acid catabolism.
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Figure 3. Overexpression of LRRK2 promoted catabolism of free fatty acid in palmitic acid (PA)-treated
HepG2 cells. (a) The HepG2 transfect with 2XMyc-LRRK2-WT plasmid was as LRRK2-overexpressed
group. The HepG2 cells transfected with control plasmid was as vector control. Both the control and
the LRRK2- overexpressed HepG2 cells were treated with PA at 0, 200 or 400 µM, respectively. (b) The
levels of intracellular NEFA (n = 5 for each group) and (c) intracellular TG (n = 3 for each group) were
measured. The levels of intracellular NEFA and TG were normalized with the protein concentration
of the individual lysate. Data are shown as mean ± SD. Two-way ANOVA, * p ≤ 0.05. Groups with
no significant difference were labeled with a common letter. (d) The cell lysates from control and
LRRK2-overexpressed HepG2 cells were used to analyze the activity of fatty acid oxidation. (n = 5 for
each group) Data are shown by mean ± SD. T-test, * p ≤ 0.05. A western blot was used to present the
levels of LRRK2 in vector control and LRRK2-overexpressed HepG2 cells. (e) The HepG2 cells with
shRNA targeting to LRRK2 was as LRRK2- knockdown group. The HepG2 cells with shRNA having
no hits in any human mRNAs was as a scramble control group. The cell lysates from scramble control
and LRRK2-knockdown (KD) HepG2 cells were used to analyze the activity of fatty acid oxidation.
(n = 4 for each group) Data are shown as mean ± SD. T-test, * p ≤ 0.05. A western blot was used to
present the levels of LRRK2 in scramble-control and LRRK2-knockdown HepG2. Vector: vector control;
Scramble: scramble control.

2.4. LRRK2 Positively Regulated CPT1A in HepG2 Cells

β-oxidation is a critical process of fatty acid catabolism and it can be disrupted by PA [16]. Our
data showed that PA led to the down-regulation of LRRK2 in HepG2 cells, whereas treatment with
OA showed no effects on the protein expression of LRRK2. To compare the effects of OA and PA
treatments on β-oxidation, we examined the levels of CPT1A, a rate limiting enzyme of β-oxidation,
after treatment with OA or PA at 0, 200, and 400 µM for 24 h in HepG2 cells. The data showed that
CPT1A was increased (p < 0.05) by both OA and PA treatment (Figure 4a,b). However, the level
of CPT1A stimulated by 400 µM PA was lower (p < 0.05) than that stimulated by OA (Figure 4a,b).
To confirm whether LRRK2 is involved in the regulation of CPT1A, we analyzed the expression levels
of CPT1A in HepG2 cells with the manipulation of the expression of LRRK2. Our data showed
knockdown of LRRK2 decreased CPT1A in HepG2 cells (Figure 4c). Conversely, overexpression of
LRRK2 increased the levels of CPT1A in HepG2 cells (Figure 4d). Previous studies indicate that
fatty acid induces β-oxidation by increasing CPT1A [23,45,46]. Therefore, we analyzed the changes
of CPT1A in the LRRK2-overexpressed and control HepG2 cells after treatment with PA at 0, 200,
or 400 µM. Consistent with previous studies [45,46], both the control and LRRK2-ovexexpressed HepG2
cells had increased CPT1A after treatment with 200 or 400 µM PA for 24 h (Figure 4e). After treatment
with 400 µM PA, the level of CPT1A was higher (p < 0.05) in LRRK2-overexpressed HepG2 cells than in
control cells (Figure 4f). We analyzed the change in CPT1A in control and LRRK2-knockdown HepG2
cells after treatment with OA (caused no decrease of LRRK2). After treatment with 200 or 400 µM OA
for 24 h, the level of CPT1A was increased in control and LRRK2-knockdown HepG2 cells (Figure 4g).
After treatment with of 400 µM OA, the level of CPT1A was lower (p < 0.05) in LRRK2-knockdown
cells than in control cells (Figure 4h). These data indicated that LRRK2 plays a role in the regulation
of CPT1A.
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Figure 4. LRRK2 positively regulated carnitine palmitoyltransferase 1A (CPT1A) in HepG2 cells.
(a) Western blots were used to analyze the levels of LRRK2 in HepG2 cells after treatment with 0, 200
or 400 µM OA or PA for 24 h. (b) The quantified data for the LRRK2 protein levels in HepG2 cells
treated with the indicated concentrations of OA or PA. (n = 5 for each group) Data are shown as mean
± SD. Two-way ANOVA, * p ≤ 0.05. Groups with no significant difference were labeled with a common
letter. (c) A western blot was used to analyze the protein levels of LRRK2, CPT1A and α-Tubulin in the
HepG2 cells with scramble shRNA or LRRK2 shRNA and (d) the HepG2 cells transfected with vector
control or 2XMyc-LRRK2-WT plasmid. (e) The levels of CPT1A after treatment with 0, 200 or 400 µM
of PA for 24 h in the vector control and LRRK2-overexpressed HepG2 cells. (f) The levels of CPT1A
were quantitated and normalized with its levels of α-Tubulin (n = 4 for each group). All data were
further normalized to the group with 0 µM of PA. Data are shown as mean ± SD. Two-way ANOVA,
* p ≤ 0.05, ns: non-significant difference. (g) The levels of CPT1A after treatment with 0, 200 or 400 µM
of OA for 24 h in the scramble control and LRRK2-knockdown HepG2 (detected using a western blot).
(h) The levels of CPT1A were quantified and normalized to the sample levels of α-Tubulin (n = 4 for
each group). All the data were further normalized to the group with 0 µM of OA. Data were shown
as mean ± SD. Two-way ANOVA, * p ≤ 0.05, ns: non-significant difference. Vector: vector control;
Scramble: scramble control.
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2.5. LRRK2 Activated AMPK and PPARα in HepG2 Cells

In order to investigate the mechanism of how LRRK2 regulates CPT1A in HepG2 cells, we
analyzed upstream proteins from CPT1A by western blots. It has been shown that LRRK2 enhances the
activation of AMPK to regulate autophagy [47]. Therefore, we examined whether LRRK2 also regulates
the activity of AMPK in HepG2 cells. The results showed that the phosphorylated Thr172 of AMPK
was increased in the LRRK2-overexpressed HepG2 cells (Figure 5a) The PPARα was up-regulated in
LRRK2-overexpressed HepG2 cells (Figure 5a). The nuclear PPARα was increased after 400 µM PA
treatment in LRRK2-overexpressed HepG2 cells compared to control cells (Figure 5b).
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Figure 5. LRRK2 activated AMP-activated protein kinase (AMPK) and peroxisome proliferator-activated
receptor α (PPARα) in HepG2 cells. (a) Western blots were used to analyze the protein levels of LRRK2,
p-AMPK, AMPK, PPARα, and α-Tubulin in the HepG2 cells transfected with vector control or
2XMyc-LRRK2-WT plasmid. (b) A western blot was used to analyze the changes in nuclear and
cytoplasmic PPARα in the control and LRRK2-overexpressed HepG2 cells after 0 or 400µM PA treatment
for 2 h. Lamin A was a loading control for nuclear protein, and α-Tubulin was a loading control for
cytoplasmic protein. Vector: vector control.
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2.6. LRRK2 Suppressed the Levels of TNFα in HepG2 Cells after PA Treatment

Previous studies indicate that the overexpression of CPT1A can suppress the released
pro-inflammatory cytokines after treatment with free fatty acids [30,48]. In order to determine
whether LRRK2 contributes to suppression of the pro-inflammatory cytokines released by HepG2
cells exposed to PA, we harvested the medium from the control and LRRK2-overexpressed HepG2
cells after treatment with PA for 24 h. The concentrations of extracellular TNFα of both vector
control and LRRK2-overexpressed HepG2 cells were increased (p < 0.05) by 400 µM PA treatment
(Figure 6a). However, compared to the control group, overexpression of LRRK2 decreased (p < 0.05)
the concentration of extracellular TNFα, indicating that LRRK2 may suppress the TNFα induced
by PA. In addition, our results indicated that overexpression of LRRK2 produced no changes in the
concentration of IL-8 induced by PA (Figure 6b). We also analyzed the mRNA levels of TNFA and IL8
in control and LRRK2-overexpressed HepG2 cells after treatment with PA. Overexpression of LRRK2
reduced (p < 0.05) the mRNA expression of TNFA compared to the vector control (Figure 6c). There was
no change in the levels of IL8 mRNA expression (Figure 6d). These data suggest that overexpression of
LRRK2 suppressed the levels of TNFα induced by PA.

Molecules 2020, 25, x FOR PEER REVIEW 9 of 18 

 

treatment for 2 h. Lamin A was a loading control for nuclear protein, and α-Tubulin was a loading 
control for cytoplasmic protein. Vector: vector control. 

2.6. LRRK2 Suppressed the Levels of TNFα in HepG2 Cells after PA Treatment 

Previous studies indicate that the overexpression of CPT1A can suppress the released pro-
inflammatory cytokines after treatment with free fatty acids [30,48]. In order to determine whether 
LRRK2 contributes to suppression of the pro-inflammatory cytokines released by HepG2 cells 
exposed to PA, we harvested the medium from the control and LRRK2-overexpressed HepG2 cells 
after treatment with PA for 24 h. The concentrations of extracellular TNFα of both vector control and 
LRRK2-overexpressed HepG2 cells were increased (p < 0.05) by 400 μM PA treatment (Figure 6a). 
However, compared to the control group, overexpression of LRRK2 decreased (p < 0.05) the 
concentration of extracellular TNFα, indicating that LRRK2 may suppress the TNFα induced by PA. 
In addition, our results indicated that overexpression of LRRK2 produced no changes in the 
concentration of IL-8 induced by PA (Figure 6b). We also analyzed the mRNA levels of TNFA and 
IL8 in control and LRRK2-overexpressed HepG2 cells after treatment with PA. Overexpression of 
LRRK2 reduced (p < 0.05) the mRNA expression of TNFA compared to the vector control (Figure 6c). 
There was no change in the levels of IL8 mRNA expression (Figure 6d). These data suggest that 
overexpression of LRRK2 suppressed the levels of TNFα induced by PA. 

 
Figure 6. LRRK2 suppressed the levels of tumor necrosis factor α (TNFα) in HepG2 cells after PA 
treatment. (a) After vehicle or 400 μM PA treatment for 24 h, the secreted TNFα (n = 8 for each group) 
and (b) IL−8 from the vector control and LRRK2-overexpressed HepG2 cells were measured using an 
ELISA assay (n = 8 for each group). (c) Real-time PCR analysis of the mRNA levels of TNFA (n = 3 for 
each group) and (d) IL8 (n = 3 for each group) in vector control and LRRK2-overexpressed HepG2 
cells after treatment with vehicle or 400 μM PA for 24 h. Data were indicated as mean ± SD. Two-way 
ANOVA, * p ≤ 0.05. Groups with no significant difference labeled with a common letter. Vector: vector 
control. 

  

Figure 6. LRRK2 suppressed the levels of tumor necrosis factor α (TNFα) in HepG2 cells after PA
treatment. (a) After vehicle or 400 µM PA treatment for 24 h, the secreted TNFα (n = 8 for each group)
and (b) IL−8 from the vector control and LRRK2-overexpressed HepG2 cells were measured using
an ELISA assay (n = 8 for each group). (c) Real-time PCR analysis of the mRNA levels of TNFA
(n = 3 for each group) and (d) IL8 (n = 3 for each group) in vector control and LRRK2-overexpressed
HepG2 cells after treatment with vehicle or 400 µM PA for 24 h. Data were indicated as mean ± SD.
Two-way ANOVA, p ≤ 0.05. Groups with no significant difference labeled with a common letter. Vector:
vector control.
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3. Discussion

Research on LRRK2 is mainly focused on the central nervous system and immune system, due to
the association with Parkinson’s disease, inflammatory bowel disease, and leprosy [35–37]. However,
the phenotype of LRRK2 knockout rodents indicates that fat is abnormally accumulated in the liver
and kidney [38,39]. These studies imply that LRRK2 may be functional in the liver, particularly
connected to lipid metabolism. According to previous studies, the expression of LRRK2 in liver is still
controversial [49–51]. Our data showed that both the mRNA and protein of LRRK2 were detectable in
mouse liver by real-time PCR and western blot analyses. In addition, LRRK2 is also expressed in hepatic
cell lines. To elucidate the effects between LRRK2 and lipid metabolism in the liver, we measured the
levels of LRRK2 in the livers of NAFLD mice after feeding a high-fat diet. Consistent with previous
studies [42,43], the results showed the histological appearances of steatosis and steatohepatitis in the
livers by high-fat diet feeding for 16 weeks. Increased mRNA levels of the pro-inflammatory cytokines,
Tnfa and Il1b, confirmed that inflammation occurred in the livers of NAFLD mice. We also found that
LRRK2 was down-regulated in the livers of NAFLD mice. However, mice fed with a high-fat diet
combined with the consumption of high fructose/glucose for 8 weeks have an activated LRRK2-related
pathway in livers, as analyzed by gene set enrichment [52]. The different NAFLD models or various
time points during the development of NAFLD may result in the different pathophysiological status.
Monitoring the change of LRRK2 level during the development of NAFLD in various models will be
required to solve the controversial observations.

Current data showed that PA treatment led to a decrease of LRRK2 in HepG2 cells; however,
OA had no effect on the expression of LRRK2, suggesting that the down-regulation of LRRK2 only
occurs after treatment with a particular fatty acid. The effects on lipid metabolism caused by PA are
distinct from OA [17,53]. Compared to PA, OA treatment increases intracellular TG levels [53,54].
The intracellular free fatty acids can be converted to TG and form lipid droplets [20]. Treatment with
OA leads to the formation of TG-enriched lipid droplets and PA treatment yields less TG-enriched lipid
droplets in cells [55,56]. OA increases the rate of fatty acid oxidation through sirtuin 1 and peroxisome
proliferator-activated receptor gamma co-activator 1 α [57]. OA has little effect on apoptosis; however,
PA leads to apoptosis and mitochondrial dysfunction [17,53,54,58]. Unlike OA, PA activates NF-κB
signaling and induces the secretion of pro-inflammatory cytokines, such as TNFα and IL−8 [14].
In addition, exposure to PA leads to the impairment of fatty acid oxidation [16,17]. Therefore, the
decrease in LRRK2 may be correlated with the different responses in the cells exposed to different
fatty acids.

Current data showed that LRRK2 decreased the levels of NEFA induced by PA, suggesting that
LRRK2 may function to regulate β-oxidation and thus promote catabolism of NEFA. The LRRK2
positively regulated β-oxidation-related proteins, such as CPT1A, PPARα, and AMPK [23]. Previous
studies show that knockout of LRRK2 results in the accumulation of fat in the livers and kidneys of
rodents [38,39]. Our data indicated that LRRK2 was involved in the increase of CPT1A to promote
β-oxidation. Therefore, the absence or extensive reduction in LRRK2 would reduce lipid catabolism.
The steatosis in the livers and kidneys in LRRK2 knockout mice may be as a result of the diminished
β-oxidation regulated by LRRK2.

The intracellular NEFA can be esterified and converted to TG stored in lipid droplets; this has
been considered an adaptive and protective response to prevent lipotoxicity [20,55]. The free fatty
acids accumulated within cells can be converted to ceramide and diacylglycerol [20]. The ceramide
and diacylglycerol are lipotoxic lipids that can cause oxidative stress, inflammation, and liver damage
associated with the progression of NAFLD [20,59]. The intracellular free fatty acids can also be
transported into mitochondria and generate energy through β-oxidation [23]. Previous studies
indicate that the promotion of β-oxidation via overexpression of CPT1A suppresses the concentration
of pro-inflammatory cytokines released by cells after treatment with free fatty acids [30,31]. Our
data showed that the over expression of LRRK2 suppressed TNFα induced by PA. Previous studies
indicate that PA leads to increased ceramide in cells and livers [60–63]. Ceramide is a sphingolipid
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associated with oxidative stress and inflammation that is increased in the livers of NASH patients [64].
Inhibition of ceramide synthesis improves the steatosis and fibrosis in the livers of NAFLD rats [65].
The ceramide level is elevated in the brains from the LRRK2 knockout compared to wild-type mice [40].
Previous studies indicate that LRRK2 is involved in pro-inflammation in vivo and in vitro [35,66,67].
Thus, the anti-inflammatory effect of LRRK2 may not be a direct effect. We hypothesized that the
anti-inflammatory effect of LRRK2 may be through the promotion of β-oxidation and decreased
lipotoxic lipids.

In conclusion, we observed that LRRK2 was down-regulated in the livers from NAFLD mice
and a PA-treated human hepatic cell line. The LRRK2 was involved in the regulation CPT1A
to enhance β-oxidation, and may contribute to the suppression of inflammation induced by PA.
The increase of CPT1A by LRRK2 was led by the activation of AMPK and PPARα. We conclude that the
down-regulation of LRRK2 in the livers of NAFLD mice may result from the decrease of the catabolism
of NEFA. Therefore, the induction of LRRK2 or increase in the activity of LRRK2 may be a strategy to
improve NAFLD.

4. Materials and Methods

4.1. Animals

Male C57BL/6JNarl mice were provided by the National Laboratory Animal Center, National
Applied Research Laboratories, Taipei, Taiwan. The mice were kept at 20−22 ◦C under a 12 h light/dark
cycle. Food and water were given ad libitum throughout the experiments. The 8-week-old mice were
randomly divided into two groups; one was fed a chow diet and one was fed a high-fat diet with
60% kcal as fat (D12492, Research Diets, Inc., New Brunswick, NJ, USA). After feeding the diets for
16 weeks, mice were sacrificed using CO2. Mouse livers were obtained immediately after sacrificing
and divided into several portions for further analyses. Samples for protein and RNA analyses were
snap-frozen in liquid nitrogen and then stored at −80 ◦C. Specimens for histological analyses were
fixed in 10% formaldehyde and then embedded in paraffin. The animal experiments were approved by
the Institutional Animal Care and Use Committee of National Taiwan University (NTU105-EL-00073).

4.2. Histological Analyses

The paraffin-embedded specimens were sliced at 4 µm using a microtome. The sections were
stained with H&E to observe the pathological morphology of mouse livers. For immunohistochemistry
(IHC) analysis, the procedure was described previously [68]. Briefly, the sliced sections reacted with
anti-LRRK2 antibody (1/200, ab133474, Abcam, Cambridge, UK) as primary antibody. The detection
of the signal was conducted using a horseradish peroxidase diaminobenzidine system (Agilent
Technologies, Inc., Santa Clara, CA, USA).

4.3. RNA Extraction and Real-Time PCR Analyses

Total RNA of mouse liver and HepG2 cells was extracted using GENEzolTM Reagent (Geneaid
Biotech, Ltd., New Taipei City, Taiwan). The RNA concentration was measured at 260/280 nm using a
NanoDropTM One (Thermo Fisher Scientific, Waltham, MA, USA). For each sample, 4 µg of RNA was
treated with TURBOTM DNase (Thermo Fisher Scientific, Waltham, MA, USA). The DNase-treated
total RNA was used to generate cDNA using a High-Capacity cDNA Reverse Transcription Kit
(Thermo Fisher Scientific, Waltham, MA, USA). The cDNA was utilized to conduct real-time PCR
using SensiFastTM SYBR No-ROX Kit (Bioline, London, UK) via CFX96TM Real-Time System (Bio-Rad
Laboratories, Inc., Berkeley, CA, USA). Real-time PCR was performed using the following program:
two minutes at 95 ◦C for polymerase activation, 40 cycles at 95 ◦C for five seconds for denaturation
and 60 ◦C for 30 s for annealing/ extension. The primer sets are listed in Table 1.
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Table 1. Primer sets for real-time PCR.

Target Gene Primer Sequence Reference Sequence

Mouse Fasn F: GGAGGTGGTGATAGCCGGTAT
R: TGGGTAATCCATAGAGCCCAG NM_007988.3

Mouse Srebp1c F: GGAGCCATGGATTGCACATT
R: GGCCCGGGAAGTCACTGT NM_001358314.1

Mouse Acc F: TAATGGGCTGCTTCTGTGACTC
R: CTCAATATCGCCATCAGTCTTG NM_133360.2

Mouse Pparg F: TTGCTGTGGGGATGTCTCAC
R: AACAGCTTCTCCTTCTCGGC NM_001127330.2

Mouse Tnfa F: CCACGTCGTAGCAAACCAC
R: TTGTCCCTTGAAGAGAACCTG NM_013693.3

Mouse Il1b F: GCAGTGGTTCGAGGCCTAAT
R: GCTGCTTCAGACACTTGCAC NM_008361.4

Mouse Lrrk2 F: ATGGAGTTGGCCTCCAAAGG
R: GATCCCGTAGTCCGCAATCT NM_025730.3

Mouse Ppia F: AGGATTCATGTGCCAGGGTG
R: GATGCCAGGACCTGTATGCT NM_008907.2

Human TNFA F: AGCCTCTTCTCCTTCCTGAT
R: AAGATGATCTGACTGCCTGG NM_000594.4

Human IL8 F: CCAGGAAGAAACCACCGGA
R: GAAATCAGGAAGGCTGCCAAG NM_000584.4

Human ACTB F: GAAGATCAAGATCATTGCTCCTC
R: CTAAGTCATAGTCCGCCTAGAAG NM_001101.5

4.4. Protein Extraction and Western Blot

Liver tissue was ground on ice using a Teflon pestle in an eppendorf with RIPA lysis buffer (EMD
Millipore, Waltham, MA, USA), supplemented with protease and phosphatase inhibitors (Thermo
Fisher Scientific, Waltham, MA, USA). The lysed, homogenized liver samples were centrifuged after
30 min (10,000× g was for 30 min at 4 ◦C). The supernatant fraction was kept as the liver protein
sample. The concentration of the protein was determined using the BCA protein assay (Thermo Fisher
Scientific, Waltham, MA, USA). The cell lines were lysed and centrifugated as indicated for mouse
livers. The concentration of cell protein was determined using the BCA assay as well. For Western
blots, equal amounts of sample proteins were diluted with 40 mM Tris (pH 6.8), 1% dodecyl sodium
sulfate, 5% glycerol, 0.0003% bromophenol blue, and 0.05M DTT. Electrophoresis was performed using
6% to 10% SDS-PAGE with a running buffer composed of 25 mM Tris, 190 mM Glycine, and 0.1% SDS at
80 V, until the dye of the sample buffer reached the bottom of the gel. Before transfer, gels were soaked
in transfer buffer composed of 25 mM Tris, 190 mM Glycine, and 20% methanol for 20 min. Proteins
were transferred from gels to methanol-activated PVDF membranes (PerkinElmer, Inc., Waltham, MA,
USA) in transfer buffer at 200 mA for 2 h. After transfer, PVDF membranes were soaked in a blocking
buffer composed of 25 mM Tris (pH7.4), 150 mM NaCl, 0.1% Tween 20, and 5% skim milk with gentle
shaking for 1 h. Membranes were incubated with primary antibodies diluted in TBST buffer, composed
of 25 mM Tris (pH 7.4), 150 mM NaCl, and 0.1% Tween 20 overnight at 4 ◦C. After the incubation
with primary antibodies, PVDF membranes were washed using TBST buffer three times for 10 min
each. Then, the membranes were incubated with secondary antibodies diluted in TBST buffer at room
temperature for 1 h. After washing in TBST buffer, PVDF membranes were incubated with ClarityTM

Western ECL Substrate (Bio-Rad Laboratories, Inc., Santa Clara, CA, USA) and detected using the
ChemiDoc Touch Imaging System (Bio-Rad Laboratories, Inc., Santa Clara, CA, USA). The quantitation
of bands was conducted using Image Lab software (Bio-Rad Laboratories, Inc., Santa Clara, CA, USA),
and the relative levels of particular proteins in samples were normalized with α-tubulin. The antibodies
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used for Western blot were anti-LRRK2 (1/1000, ab133474, Abcam, Cambridge, UK); anti-CPT1A
(1/1000, ab128568, Abcam, Cambridge, UK); anti-PPARα (1/1000, sc-9000, Santa Cruz Biotechnology
Inc., Dallas, TX, USA); anti-phospho-AMPK (Thr 172) (1/1000, #2535, anti-AMPK (1/1000, #2532,) and;
anti-Lamin A/C (1/1000, #2032, Cell Signaling Technology, Inc., Danvers, MA, USA); anti-α-Tubulin
(1/1000, ab52866, Abcam, Cambridge, UK); anti-β-Actin (1/1000, sc-47778, Santa Cruz Biotechnology
Inc., Dallas, TX, USA); anti-rabbit IgG (1/5000, #7074); and anti-mouse IgG (1/5000, #7076, Cell Signaling
Technology, Inc., Danvers, MA, USA).

4.5. Cell Culture and Fatty Acid Treatment

Hep3B and PLC5 cells were gifts from Professor Shiou-Hwei Yet in Graduate Institute of
Microbiology, College of Medicine, National Taiwan University. HepG2, Hep3B, and PLC5 cells
were grown in Dulbecco’s modified Eagle medium (DMEM) supplemented with 10% fetal bovine
serum (Thermo Fisher Scientific, Waltham, MA, USA) and 1% penicillin- streptomycin- amphotericin
B Solution (Biological Industries, Kibbutz Beit Haemek, Israel). Prior to the treatment with fatty
acids, 6 × 105 cells were seeded on 6-well plates and incubated overnight in a cell incubator with
5% CO2 in air at 37 ◦C. Palmitic acid (PA) (Cayman Chemical Company, Ann Arbor, MI, USA) and
oleic acid (OA) (Cayman Chemical Company, Ann Arbor, MI, USA) were both dissolved in ethanol
(Sigma-Aldrich Corporation, St. Louis, MO, USA), and the dissolved PA or OA was aliquoted and
stored at −20 ◦C. The PA or OA was conjugated with 1% BSA with low fatty acid, low endotoxin,
and low IgG (US Biological Life Sciences, Swampscott, MA, USA), in complete DMEM medium prior
to treating cells. The BSA-conjugated fatty acids were added to the wells of 6-well plates for the
indicated time.

4.6. Knockdown of LRRK2 in HepG2 Cells

The lentivirus harboring the shRNA of scramble control or LRRK2 were purchased from RNA
Technology Platform and Gene Manipulation Core, Academia Sinica, Taiwan. The target sequence
of scramble and LRRK2 are as follows: scramble = CCTAAGGTTAAGTCGCCCTCG; LRRK2 =

CCCAGGATGTTGGAAATGATT. The HepG2 cells were seeded at 2 × 105 cells on 6-well plates
and were incubated overnight. Before lentiviral infections, medium was replaced by growth media
(complete DMEM medium with 8 µg / mL polybrene (Sigma-Aldrich Corporation, St. Louis, MO,
USA), and finally the viruses were added. Media were replaced with fresh growth medium after viral
incubation for 24 h. The analyses of western blots, triglyceride (TG), and NEFA were performed within
48 h after lentiviral infections.

4.7. Overexpression of LRRK2

The 2XMyc-LRRK2-WT plasmid harboring a human LRRK2 gene was a gift from Mark Cookson
(Addgene plasmid #25361; http://n2t.net/addgene:25361; RRID: Addgene_25361) [44]. The sequence
of the LRRK2 coding region was confirmed by DNA sequencing. To generate a control plasmid,
2XMyc-LRRK2-WT plasmid was digested with NotI-HF and KpnI-HF (New England Biolabs, Rowley,
MA, USA) to separate the coding region of LRRK2 from the vector backbone. The fragment of 4187 bp
was isolated via DNA electrophoresis on 0.8% agarose gel (Vivantis Technologies, Selangor, Malaysia),
and purified using a QIAEX II Gel Extraction Kit (Qiagen, Hilden, Germany). The isolated fragment
was blunted by T4 DNA polymerase (New England Biolabs, Rowley, MA, USA) and ligated using
T4 DNA ligase (New England Biolabs, Rowley, MA, USA); the end product was used as the control
plasmid for the 2XMyc-LRRK2-WT plasmid. Prior to DNA transfection, 4 × 105 HepG2 cells were
seeded on a 6-well plate and incubated overnight. The DNA transfection was performed using
PolyJetTM (SignaGen Laboratories, Montgomery, MD, USA), and its manufacturer’s guidelines were
followed during the process of transfection.

http://n2t.net/addgene:25361
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4.8. Measurement of TG and NEFA

After the treatment with PA or OA for 24 h, cells were washed twice with PBS. The cells were
scraped with PBS using cell scraper and harvested into glass tubes. One-tenth of the volume of cell
lysate was obtained to extract protein for protein quantification. To extract intracellular lipids, one
part of cell lysate was added to four parts of chloroform/methanol (2/1, v/v) [69]. Then, the cell lysates
were vortexed vigorously for one minute. After incubating on ice for two hours, cell lysates were
centrifuged at 1650× g at 4 ◦C for 10 min. After centrifugation, the bottom phase was transferred into a
new glass tube using a glass Pasteur pipet. The fractions of bottom phase were dried using nitrogen
gas at 37 ◦C. The lipid samples were dissolved using isopropanol/Nonidet P-40 (9:1, v/v) solution [70].
The measurement of TG and NEFA was performed using TRIGS and NEFA detection kits (Randox
Laboratories, County Antrim, UK), respectively; the signals for TG and NEFA were detected using
an ELISA reader at 500 nm and 550 nm, respectively. Protein concentrations of the samples were
measured using the BCA assay. To compare the relative levels of various samples, the concentration of
TG or NEFA of each sample was normalized with its protein concentration.

4.9. Measurement the Activity of Fatty Acid Oxidation

First, 1 × 106 cells were washed with PBS before harvesting cell lysates. The extraction of cell
lysates was conducted using the cell lysis solution provided in the fatty acid oxidation (FAO) assay kit
(Biomedical Research Service Center, New York, NY, USA). After obtaining the cell lysates, the protein
concentration of samples was determined using the BCA assay. The samples were diluted with the cell
lysis solution to 2 mg/mL to measure the activity of fatty acid oxidation. The procedures followed
the manufacturer’s instructions, and the signals were detected using an ELISA reader at 492 nm. To
compare the relative levels of various samples, the activity of fatty acid oxidation of each sample was
normalized with values from control groups.

4.10. Extraction of Cytoplasmic and Nuclear Proteins

Next, 1 × 106 cells were washed with PBS before extracting the cytoplasmic and nuclear proteins.
The isolation of cytoplasmic and nuclear proteins was performed using EpiXtractTM Nuclear Protein
Isolation Kit II (nucleic acid-free) (Enzo Life Sciences Inc., New York, NY, USA). After extracting
cytoplasmic and nuclear proteins, the BCA assay was utilized to determine the protein concentrations.
Equal amounts of proteins were used for western blot analysis.

4.11. ELISA Analysis of TNFα and Interleukin 8 Concentrations

The medium for ELISA measurements was obtained after PA or vehicle treatment. To remove
the debris in the medium, it was centrifugated at 150× g for 5 min and the supernatant fraction was
retained. Human TNF alpha ELISA Ready-Set-GoTM and IL-8 ELISA Ready-Set-GoTM kits (Thermo
Fisher Scientific, Waltham, MA, USA) were utilized to measure the concentration of extracellular TNFα
and interleukin 8 (IL-8) in the medium, respectively. The signals were detected using an ELISA reader
at 570 nm.

4.12. Statistical Analysis

Data were analyzed using GraphPad Prism (GraphPad Software, Inc., CA, USA) and represented
as mean ± SEM or mean ± SD as indicated. A paired t test, one-way ANOVA, and two-way ANOVA
followed by Tukey’s multiple comparison test were used for group comparisons. A p value ≤ 0.05 was
considered statistically different.
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2. CPT1A Carnitine palmitoyltransferase 1A
3. H&E Hematoxylin and eosin
4. IHC Immunohistochemistry
5. IL-8 Interleukin-8
6. LRRK2 Leucine-Rich Repeat Kinase 2
7. NAFLD Nonalcoholic fatty liver disease
8. NASH Nonalcoholic steatohepatitis
9. NEFA Non-esterified fatty acid
10. NF-κB Nuclear factor kappa B
11. OA Oleic acid
12. PA Palmitic acid
13. PPARα Peroxisome proliferator-activated receptor α
14. shRNA Short hairpin RNA
15. TG Triglyceride
16. TNFα Tumor necrosis factor α
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