

Article

Probing the Highly Disparate Dual Inhibitory Mechanisms of Novel Quinazoline Derivatives Against *Mycobacterium tuberculosis* Protein Kinases A and B

Fisayo A. Olotu and Mahmoud E. Soliman *

Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4001, South Africa; olotuf@ukzn.ac.za

* Correspondence: soliman@ukzn.ac.za; Tel.: +27 (0) 31 260 8048; Fax: +27 (0) 31 260 7872

SUPPLEMENTARY INFORMATION

Figure S1: RMSD analyses of structural and NBP stability of (**A**) unbound PknA (black) and unbound PknB (red) (**B**) Comparative whole structure FE-RMSD (post-equilibrated) of unbound PknA and PknB (**C**) Comparative FE-RMSD analysis of unbound PknA and PknB nucleotide binding pocket (**D**) FE-RoG analysis of the degree of mobility (compactness) of unbound PknA and PknB.

Figure S2: Hydrogen bond analyses of the simulated systems across the entire trajectory (**A**) unbound- (black), **57**- (green) and **33**-bound (red) PknA (**B**) unbound-, **57**- and **33**-bound PknB. Inset is the estimation of average hydrogen bonds that occurred within each system over the entire trajectory.

Figure S3: Post-equilibrated (FE) RMSF analyses of unbound PknA and PknB. Highlighted in (**A**) and (**B**) are regions that correspond to the P-loop, Helix C, Catalytic loop and DFG motif. (**C**) DCCM analysis of residual motions across the entire unbound PknA structure and (**D**) DCCM analysis for unbound PknB. Highlighted are motions within the catalytic components.

Figure S4: Conformational variations of catalytic components in unbound PknA and PknB along the simulated trajectories.

Table 1. Hydrogen bond occupancies \geq 90% in the unbound PknA, unbound PknB, 33-PknA, 33-PknB, 57-PknA and 57-PknB.

Systems	H-Acceptor	H-Donor	Donor	Occupancy (%)	Distance	Angle
				07.10	(A)	(*)
PknA	GLUI8/-OE2	ARG260-HH12	ARG260-NHI	97.10	2.8	165
	LEU248-0	THR252-HGI	THR252-OG1	96.18	2.7	163
	MET121-0	IHKI25-HGI	IHKI25-OGI	95.20	2.7	163
	ASP199-0D2	HIS139-H	HISI39-N TVD241 OU	93.40	2.8	161
	PK0281-0		1 Y K201-UH	93.34	2.7	105
	TVP192 O	SED202 HC	SED 202 OC	93.20	2.8	164
	CLU1660E2	3EK202-HU	3EK202-00	92.4	2.1	105
PknB	ULU1000E2	ARG242-HH22	ARG242-NH2	97.12	2.8	165
	TVP162 O	TYR187-HH	TYR187-OH	95.71	2.7	166
	ASP30_0D2	SER181-HG	SER181-OG	95.54	2.7	164
	GLU166-OF1	ARG10-HH11	ARG10-NH1	93.92	2.8	160
	GE0100-OE1	ARG242-HH12	ARG242-NH1	93.90	2.8	166
33-PknA	GLU187-OE2	ARG260-HH12	ARG260-NH1	98.25	2.8	164
	TYR183-O	SER202-HG	SER202-OG	95.53	2.7	164
	GLU187-OE1	ARG260-HH22	ARG260-NH2	95.12	2.8	164
	MET121-O	THR125-HG1	THR125-OG1	94.75	2.7	164
	ARG17-O	GLU29-H	GLU29-N	92.69	2.8	164
	LEU248-O	THR252-HG1	THR254-OG1	92.38	2.7	163
	ASP199-OD2	HIS139-H	HIS139-N	91.96	2.8	164
	ASP32-OD1	ARG12-HE	ARG12-NE	91.91	2.8	164
	PRO281-O	TYR261-HH	TYR261-OH	91.50	2.7	165
	GLU29-O	GLN16-H	GLN16-N	91.27	2.8	160
	GLU61-O	THR65-HG1	THR65-OG1	90.22	2.7	163
	ASP32-OD2	ARG12-HH21	ARG12-NH2	90.11	2.8	159
	GLU187-OE1	GLU187-H	GLU187-N	90.08	2.8	151
	ASP199-OD2	HIS133-HE2	HIS133-NE2	90.03	2.8	166
33-PknB	ASP228-OD2	SER217-HG	SER-217-OG	98.20	2.6	166
	GLU188-OE1	TYR162-HH	TYR162-OH	96.72	2.6	166
	GLUI66-OEI	ARG242-HH12	ARG242-NHI	95.40	2.8	165
	ILEI34-O	SER129-HG	SER129-OG	95.28	2.7	164
	ILE214-O	TYRI87-HH	TYRI87-OH	95.21	2.7	166
	ASP30-OD2	ARGI0-HHII	ARG10-NH1	92.66	2.8	159
	ASP/6-0	VAL91-H	VAL91-N	92.24	2.8	161
	ALA38-O	ME192-H	ME192-N	92.17	2.8	162
	GLUI00-OE2	AKG242-HH22	AKG242-NH2	92.11	2.8	164
	VAL91-O	IYK/3-H	IYK/J-N	92.08	2.8	160
	MET 145-0	L I 5155-H	L I 5155-IN	92.06	2.8	101
	VAL25-O	LEUI/-H	LEUI/-N VAL20 N	92.01	2.8	157
	ПІ520-0 ASD178 ОD2	VAL39-П	VAL59-IN	91.19	2.8	156
	ASP1/6-OD2		CLU166 N	91.00	2.8	150
	CLU100-OE1	GLU100-П SED100 ЦС	SED100-N	90.00	2.8	150
57-PknA 57-PknB	TVP183 O	SER196-HG	SER198-00 SER202.0G	96.25	2.0	167
	CLU187 OF2	ADC260 UU12	A D C 260 NH1	97.07	2.7	164
	GLU187-OE2	ARG200-11112 ARG260_HH22	ARG200-NH1 ARG260-NH2	95.53	2.8	165
	LEU248-0	THR252_HG1	THR252-0G1	95.02	2.8	164
	MET121-0	THR125_HG1	THR125-0G1	92.51	2.7	162
	PRO281-0	TYR261-HH	TYR261-OH	91.89	2.7	166
	ASP32-0D2	ARG12-HH21	ARG12-NH2	91.82	2.7	157
	ASP199-0D2	HIS139-H	HIS139-N	91.42	2.0	165
	PRO235-0	TYR208-HH	TYR208-OH	91.37	2.0	163
	ASP228-0D2	111200 1111	111200 011	71.57	2.,	105
	GLU166-OF2	SER217-HG	SER217-OG	98.67	2.6	167
	ILE214-0	ARG242-HH22	ARG242-NH2	96.36	2.8	165
	ASP30-0D2	TYR187-HH	TYR187-OH	95.05	2.7	166
	GLU166-OE1	ARG10-HH11	ARG10-NH1	93.43	2.8	160
	VAL25-0	ARG242-HH12	ARG242-NH1	92.97	2.8	166
	GLU166-OE1	LEU17-H	LEU17-N	92.77	2.8	155
	VAL91-0	GLU166-H	GLU166-N	92.61	2.8	149
	ALA38-O	TYR75-H	TYR75-N	91.74	2.8	163
	VAL39-O	MET92-H	MET92-N	91.62	2.8	159
		HIS26-H	HIS26-N	90.16	2.9	160

© 2020 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).