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Abstract: Mosquito-borne infectious diseases are a persistent problem in tropical regions of the
world, including Southeast Asia. Vector control has relied principally on synthetic insecticides,
but these have detrimental environmental effects and there is an increasing demand for plant-based
agents to control insect pests. Invasive weedy plant species may be able to serve as readily
available sources of essential oils, some of which may be useful as larvicidal agents for control
of mosquito populations. We hypothesize that members of the genus Conyza (Asteraceae) may
produce essential oils that may have mosquito larvicidal properties. The essential oils from the aerial
parts of Conyza bonariensis, C. canadensis, and C. sumatrensis were obtained by hydrodistillation,
analyzed by gas chromatography–mass spectrometry, and screened for mosquito larvicidal activity
against Aedes aegypti, Ae. albopictus and Culex quinquefasciatus. The essential oils of C. canadensis
and C. sumatrensis, both rich in limonene (41.5% and 25.5%, respectively), showed notable larvicidal
activities against Ae. aegypti (24-h LC50 = 9.80 and 21.7 µg/mL, respectively) and Ae. albopictus (24-h
LC50 = 18.0 and 19.1 µg/mL, respectively). These two Conyza species may, therefore, serve as sources
for alternative, environmentally-benign larvicidal control agents.

Molecules 2020, 25, 4576; doi:10.3390/molecules25194576 www.mdpi.com/journal/molecules

http://www.mdpi.com/journal/molecules
http://www.mdpi.com
https://orcid.org/0000-0003-1123-2037
https://orcid.org/0000-0002-7741-9454
https://orcid.org/0000-0003-4762-741X
https://orcid.org/0000-0002-3639-0528
http://dx.doi.org/10.3390/molecules25194576
http://www.mdpi.com/journal/molecules
https://www.mdpi.com/1420-3049/25/19/4576?type=check_update&version=3


Molecules 2020, 25, 4576 2 of 15

Keywords: Erigeron; Conyza bonariensis; Conyza canadensis; Conyza sumatrensis; mosquito; vector control

1. Introduction

Mosquito-borne infectious diseases have been a continuous health problem in Southeast Asia,
including Vietnam. Dengue fever and dengue hemorrhagic fever are particularly problematic and
chikungunya fever is an emerging threat in the country [1,2]. Aedes aegypti (L.) (Diptera: Culicidae),
the yellow fever mosquito, is a recognized vector of dengue fever virus, chikungunya fever virus,
Zika virus, and yellow fever virus [3]. Aedes albopictus (Skuse) (Diptera: Culicidae), the Asian tiger
mosquito, is a key vector of several pathogenic viruses, including yellow fever virus [4], dengue
fever virus [5], chikungunya virus [6], and possibly Zika virus [7]. Culex quinquefasciatus Say (Diptera:
Culicidae), the southern house mosquito, is a vector of lymphatic filariasis [8] as well as several
arboviruses such as West Nile virus and St. Louis encephalitis virus [9] and possibly Zika virus [10].

Several members of the genus Conyza Less. (Asteraceae) have been introduced throughout the
tropics and subtropics where they have become invasive weeds [11–13]. Conyza bonariensis (L.)
Cronquist (syn. Erigeron bonariensis L.), flaxleaf fleabane, probably originated in South America [14],
but has been introduced throughout Asia, Africa, Mexico and the southern United States, Europe,
and Oceania [13,15]. Conyza canadensis (L.) Cronquist (syn. Erigeron canadensis L.), Canada fleabane,
is native to North America, but is also now naturalized throughout Europe, Asia, and Oceania [13].
Conyza sumatrensis (Retz.) E. Walker (syn. Erigeron sumatrensis Retz.) is probably native to South America,
but this species has also been naturalized in tropical and subtropical regions [16].

Non-native invasive plant species are generally detrimental to the local environments where they
have been introduced. They can outcompete native plant species and reduce biodiversity [17], they can
alter ecosystem functions [18], and can have substantial economic impacts [19]. Control methods for
invasive plants have generally included application of herbicides, physical cutting, or burning [20].
However, harvesting invasive species for beneficial uses as a method for control of invasive species
may provide economic incentives to offset eradication costs [21]. For example, Melaleuca quinquinervia
trees in south Florida have been cut and chipped for landscape mulch and boiler fuel [22]; it has
been suggested that mechanical harvesting of invasive cattail (Typha spp.), common reed (Phragmites
australis), and reed canary grass (Phalaris arundinacea) from coastal wetlands of Lake Ontario can be
used as an agricultural nutrient source or as a biofuel [23]. The leaf essential oil of Solidago canadensis,
an invasive plant in Europe, has been evaluated as a potential insecticide and demonstrated moderate
larvicidal activity against Cx. quinquefasciatus [24].

The use of synthetic pesticides for mosquito control has had detrimental effects on the
environment [25,26]. They tend to be persistent, toxic to non-target organisms, and insecticide
resistance has been steadily increasing in mosquito species [27]. Essential oils have been suggested as
viable, environmentally benign, and renewable alternatives to synthetic pesticides [28–32]. We have
recently studied several introduced invasive plant species in Vietnam for potential use as mosquito
vector control agents [33–35], and as part of our ongoing efforts in identifying readily-available
essential oils for mosquito control, we have examined three Conyza species for larvicidal activity
against Aedes aegypti, Aedes albopictus, and Culex quinquefasciatus, with the aim of identifying new
mosquito-control essential oils and the components responsible for the activity.

2. Results and Discussion

2.1. Essential Oil Compositions

The essential oils from the aerial parts of C. bonariensis, C. canadensis, and C. sumatrensis were
obtained by hydrodistillation in 1.10%, 1.37%, and 1.21% yield. The chemical compositions of the Conyza
essential oils, determined using gas chromatography–mass spectrometry, are summarized in Table 1.
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Conyza bonariensis essential oil was dominated by sesquiterpenoids, especially allo-aromadendrene
(41.2%), β-caryophyllene (13.3%), and caryophyllene oxide (12.2%). Concentrations of monoterpenoids
(1.8%) and diterpenoids (trace) were relatively small. The essential oils of C. canadensis and C. sumatrensis,
on the other hand, were rich in limonene (41.5% and 25.5%, respectively). The aerial parts essential
oil of C. sumatrensis also had a large concentration of (Z)-lachnophyllum ester (20.7%). There is wide
variation in the essential oil compositions of Conyza species, both between species and within the
same species (see Table 2). This is not surprising given the very different geographical locations of the
collection sites for these samples.

Table 1. Chemical compositions of the aerial parts essential oils of Conyza bonariensis, Conyza canadensis,
and Conyza sumatrensis collected in Vietnam.

RIcalc
a RIdb

b Compound Relative Content %
C. bonariensis C. canadensis C. sumatrensis

931 932 α-Pinene 0.5 0.5 0.2
948 950 Camphene tr c — —
967 972 (3Z)-Octen-2-ol — — tr
971 972 Sabinene tr 0.1 0.1
976 978 β-Pinene 0.8 8.8 3.0
982 984 6-Methylhept-5-en-2-one — — tr
987 989 Myrcene tr 1.2 1.0

1023 1025 p-Cymene tr 0.3 0.1
1028 1030 Limonene 0.2 41.5 25.5
1030 1031 β-Phellandrene — tr —
1034 1034 (Z)-β-Ocimene — — tr
1044 1045 (E)-β-Ocimene — tr 1.9
1049 1051 2,3,6-Trimethylhepta-1,5-diene — tr —
1056 1057 γ-Terpinene — tr —
1088 1091 p-Cymenene — 0.1 —
1090 1091 Rosefuran — — 0.1
1093 1097 α-Pinene oxide — — 0.2
1097 1098 Perillene — 0.1 —
1098 1101 Linalool 0.2 — —
1101 1101 6-Methyl-3,5-heptadien-2-one — — 0.1
1103 1104 Nonanal tr — —
1112 1113 4,8-Dimethylnona-1,3,7-triene — — 0.2
1118 1119 endo-Fenchol tr — —
1120 1121 trans-p-Mentha-2,8-dien-1-ol — 0.9 0.2
1124 1131 Cyclooctanone — 0.8 —
1129 1130 4-Acetyl-1-methylcyclohexene — 0.1 —
1131 1132 cis-Limonene oxide — 0.6 0.2
1134 1137 cis-p-Mentha-2,8-dien-1-ol — 1.2 0.3
1135 1137 trans-Limonene oxide — 0.6 —
1137 1137 Nopinone — 0.4 —
1137 1139 (E)-Myroxide — — 0.1
1139 1141 trans-Pinocarveol tr 1.6 0.1
1150 1152 Citronellal — 0.1 —
1160 1164 Pinocarvone — 0.8 tr
1170 1170 Borneol tr — —
1177 1179 2-Isopropenyl-5-methylhex-4-enal — 0.3 —
1182 1184 p-Methylacetophenone — 0.3 —
1185 1185 Cryptone — 0.4 —
1185 1187 trans-p-Mentha-1(7),8-dien-2-ol — 0.2 —
1189 1190 Methyl salicylate tr — —
1193 1195 α-Terpineol 0.1 — 0.1
1193 1196 Myrtenal — 1.4 —
1194 1195 Myrtenol — 1.2 —
1196 1197 Methyl chavicol (=Estragol) — 0.2 —
1198 1201 cis-Piperitol — 0.8 0.1
1206 1207 Oct-3E-enyl acetate — — 0.1
1217 1218 trans-Carveol — 3.8 0.2
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Table 1. Cont.

RIcalc
a RIdb

b Compound Relative Content %
C. bonariensis C. canadensis C. sumatrensis

1227 1228 cis-p-Mentha-1(7),8-dien-2-ol — 0.1 —
1230 1232 cis-Carveol — 1.1 0.1
1242 1242 Carvone — 3.8 0.2
1247 1249 Linalyl acetate tr — —
1266 1270 iso-Piperitenone — 0.6 —
1273 1277 Perilla aldehyde — 0.5 —
1287 1287 Limonene dioxide — 0.7 —
1296 1299 Perilla alcohol — 0.4 —
1303 — Unidentified d — 1.1 —
1316 1324 Limonene hydroperoxide — 1.1 —
1343 1346 Limonene-1,2-diol — 2.6 —
1344 1349 7-epi-Silphiperfol-5-ene — — 0.3
1345 1349 α-Cubebene 0.2 — —
1355 1340 p-Mentha-6,8-diene-2-hydroperoxide — 1.2 —
1367 1371 α-Ylangene tr — —
1374 1375 α-Copaene 4.5 — 0.1
1376 1380 Daucene — — 0.4
1377 1374 Isoledene — — 0.3
1379 1382 Modheph-2-ene — — 0.4
1381 1382 β-Bourbonene tr — —
1385 1387 β-Cubebene 0.4 — 0.1
1386 1385 α-Isocomene — — 0.1
1387 1390 β-Elemene 0.3 — 0.4
1392 1394 Sativene — — 0.1
1398 1405 (Z)-Caryophyllene 0.2 — —
1404 1406 α-Gurjunene 0.1 — —
1408 1411 β-Isocomene — — 0.1
1418 1417 (E)-Caryophyllene 13.3 — 5.5
1427 1430 β-Copaene 0.2 — 0.2
1430 1433 trans-α-Bergamotene — — 1.1
1432 1440 6,9-Guaiadiene — — 0.2
1433 1436 α-Guaiene 1.8 — —
1436 1438 Aromadendrene 0.2 — 0.1
1445 1449 (E)-Lachnophyllum acid — — 0.2
1451 1452 (E)-β-Farnesene — — 6.7
1453 1454 α-Humulene 5.4 0.3 0.7
1457 1463 cis-Cadina-1(6),4-diene — — 0.4
1460 1458 allo-Aromadendrene 41.2 — —
1469 — Unidentified e — — 1.3
1472 1472 trans-Cadina-1(6),4-diene 0.5 — 0.2
1476 1479 α-Amorphene 0.1 — —
1478 1483 Germacrene D 0.3 — 2.1
1481 1483 trans-β-Bergamotene — — 0.2
1486 1489 β-Selinene 0.5 — —
1488 1491 Viridiflorene 0.2 — —
1492 1497 Bicyclogermacrene — — 0.3
1493 1497 α-Selinene 0.3 — —
1495 1497 α-Muurolene 0.4 — 0.1
1498 1505 α-Bulnesene 1.8 — —
1501 1505 (E,E)-α-Farnesene — — 0.1
1504 1514 (Z)-Lachnophyllum acid — 0.2 0.8
1507 1510 (E)-Lachnophyllum ester — — 0.4
1510 1512 γ-Cadinene 0.4 — 0.1
1515 1515 (Z)-Lachnophyllum ester — 5.5 20.7
1515 1518 δ-Cadinene 0.6 — —
1518 1519 trans-Calamenene 0.3 — —
1521 1523 β-Sesquiphellandrene — — 0.3
1531 1532 Tridec-11-yn-1-ol — — 0.3
1533 1538 α-Cadinene 0.1 — —
1538 1541 α-Calacorene 0.1 — —
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Table 1. Cont.

RIcalc
a RIdb

b Compound Relative Content %
C. bonariensis C. canadensis C. sumatrensis

1556 1557 Germacrene B — — 0.1
1558 1560 (E)-Nerolidol — 0.2 1.8
1559 1564 β-Calacorene 0.1 — —
1565 1566 1,5-Epoxysalvial-4(14)-ene — — 0.2
1566 1568 Dendrolasin — — 0.1
1567 1567 Palustrol 0.1 — —
1574 1576 Spathulenol 1.3 — 5.2
1580 1577 Caryophyllene oxide 12.2 1.1 5.8
1582 1590 Globulol 0.4 — 0.5
1589 1593 Salvial-4(14)-en-1-one — 0.1 0.2
1590 1594 Viridiflorol 0.8 — 0.3
1593 1599 Cubeban-11-ol 0.2 — —
1599 1601 Carotol — — 1.1
1601 1605 Ledol 0.6 — —
1606 1611 Humulene epoxide II 2.2 2.9 0.4
1624 1628 1-epi-Cubenol 0.2 — —
1629 1629 iso-Spathulenol — — 0.6
1633 1635 Caryophylla-4(12),8(13)-dien-5β-ol 0.2 — —
1635 1632 Muurola-4,10(14)-dien-1β-ol — — 0.7
1638 1643 τ-Cadinol 0.2 — 0.4
1640 1644 τ-Muurolol 0.1 — 0.3
1643 1643 α-Muurolol 0.2 — —
1643 1644 allo-Aromadendrene epoxide — 0.3 —
1652 1655 α-Cadinol 0.6 0.3 0.4
1655 1655 Eudesma-4(15),7-dien-1α-ol — — 0.1
1661 1664 cis-Calamenen-10-ol 0.1 — —
1666 1666 14-Hydroxy-9-epi-(E)-caryophyllene 0.1 — —
1669 1677 Cadalene 0.1 — —
1686 1685 Eudesma-4(15),7-dien-1β-ol — 0.4 0.1
1698 1704 cis-Thujopsenol 0.1 — —
1717 — Unidentified f — 1.0 —
1738 1740 8α,11-Elemodiol 0.1 — —
1751 1748 Khusimol 1.5 — —
1790 1792 14-Hydroxy-δ-cadinene — — 0.2
1800 — Unidentified g 1.1 — —
1833 1836 Neophytadiene — — 0.2
1857 1860 Platambin 0.1 0.5 0.1
1882 1884 Corymbolone 0.2 — —
2103 2102 Phytol tr — 0.1

Monoterpene hydrocarbons 1.5 52.7 31.8
Oxygenated monoterpenoids 0.3 26.4 1.9
Sesquiterpene hydrocarbons 73.7 0.3 20.7
Oxygenated sesquiterpenoids 21.3 5.7 18.5
Diterpenoids trace — 0.4
Others trace 7.2 22.9
Total Identified 96.8 92.3 96.1

a RIcalc = Retention Index calculated with respect to a homologous series of n-alkanes on a ZB-5 column. b RIdb =
Retention Index from the databases [36–39]. c tr = trace (< 0.05%). d MS(EI): 150(3%), 135(51%), 121(29%), 119(38%),
109(42%), 107(66%), 93(97%), 91(89%), 81(50%), 79(100%), 69(82%), 67(37%), 55(65%), 53(40%), 43(75%), 41(85%).
e MS(EI): 204(25%), 189(3%), 161(100%), 147(9%), 133(28%), 120(48%), 119(25%), 105(51%), 91(47%), 69(20%), 57(19%),
55(21%), 41(20%). f MS(EI): 175(3%), 135(11%), 111(48%), 93(20%), 83(19%), 67(19%), 55(26%), 43(100%), 41(20%).
g MS(EI): 218(29%), 203(28%), 189(100%), 175(46%), 147(34%), 133(61%), 119(38%), 105(70%), 91(90%), 79(42%),
67(43%), 55(34%), 41(52%).
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Table 2. Major components of Conyza bonariensis, Conyza canadensis, and Conyza sumatrensis essential oils from different geographical locations.

Conyza Species (Collection Site) Major Components (>5%) Ref.

C. bonariensis aerial parts EO (Chapada dos Guimarães, Mato Grosso, Brazil) limonene (6.9%), (E)-caryophyllene (14.4%), (E)-β-farnesene (23.3%),
germacrene D (15.3%), bicyclogermacrene (8.3%), spathulenol (7.6%) [40]

C. bonariensis aerial parts EO (Melgaço, Pará, Brazil) limonene (22.9%), (E)-caryophyllene (13.3%), trans-α-bergamotene (5.3%),
(E)-β-farnesene (20.1%), bicyclogermacrene (6.6%), spathulenol (6.3%) [40]

C. bonariensis aerial parts EO (Peixe-Boi, Pará, Brazil) (E)-caryophyllene (13.3%), trans-α-bergamotene (8.1%), (E)-β-farnesene (30.9%) [40]

C. bonariensis aerial parts EO (alta Floresta, Mato Grosso, Brazil) limonene (12.6%), (E)-caryophyllene (13.0%), (E)-β-farnesene (19.1%),
germacrene D (13.2%), bicyclogermacrene (6.3%), spathulenol (5.7%) [40]

C. bonariensis aerial parts EO (Macapá, Amapá, Brazil) limonene (58.4%), (E)-β-farnesene (7.0%) [40]

C. bonariensis aerial parts EO (Rio de Janeiro, Brazil) limonene (45.0%), (E)-β-ocimene (13.0%), (E)-β-farnesene (6.6%), germacrene D (6.4%) [41]

C. bonariensis leaf EO (Minas Gerais State, Brazil) limonene (29.6%), trans-α-bergamotene (10.3%), matricaria methyl ester (8.3%),
β-copaen-4α-ol (7.4%) [42]

C. bonariensis aerial parts EO (Athens, Greece) limonene (8.3%), (E)-β-ocimene (11.5%), (E)-β-farnesene (8.1%), (Z)-lachnophyllum
ester (21.2%), matricaria ester (17.5%) [43]

C. bonariensis aerial parts EO (Southwestern Misiones Province, Argentina) limonene (13.5%), (E)-β-ocimene (13.3%), p-mentha-1,3,8-triene (5.2%),
germacrene D (14.6%), bicyclogermacrene (6.6%) [44]

C. bonariensis leaf EO (Monastir, Tunisia) limonene (5.8%), terpinolene (5.3%), (E)-β-farnesene (7.5%), matricaria ester (17.8%),
caryophyllene oxide (7.8%) [45]

C. bonariensis aerial parts EO (Cagliari, Sardinia, Italy) limonene (5.1%), carvacrol (9.8%), α-curcumene (10.2%), spathulenol (18.6%),
caryophyllene oxide (18.7%), neophytadiene (6.1%) [46]

C. bonariensis leaf EO (Mérida State, Venezuela) limonene (5.1%), (Z)-β-ocimene (5.1%), (E)-β-ocimene (20.7%),
(E)-β-farnesene (37.8%), α-farnesene (5.6%), β-sesquiphellandrene (9.8%) [47]

C. bonariensis leaf EO (Kabianga, Kericho, Kenya) β-pinene (5.4%), limonene (8.3%),
2,6,7,7a-tetrahydro-1,5-dimethyl-1H-indene-3-carboxaldehyde (49.1%) a [48]

C. bonariensis aerial parts EO (Parana State, Brazil) limonene (66.3%), 2-heptyl acetate (6.9%) [49]

C. bonariensis aerial parts EO (E)-caryophyllene (13.3%), α-humulene (5.4%), allo-aromadendrene (41.2%),
caryophyllene oxide (12.2%) this work

C. canadensis aerial parts EO (Plovdiv, Bulgaria) limonene (77.7–89.4%) [50]

C. canadensis aerial parts EO (Łódź, Poland) limonene (76.3%) [51]

C. canadensis aerial parts EO (Alps, France) limonene (83.2%) [51]
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Table 2. Cont.

Conyza Species (Collection Site) Major Components (>5%) Ref.

C. canadensis aerial parts EO (Rome, Italy) limonene (70.3%), (E)-β-ocimene (5.5%) [51]

C. canadensis aerial parts EO (Seville, Spain) limonene (51.4%), (E)-β-ocimene (13.4%), trans-α-bergamotene (11.9%) [51]

C. canadensis aerial parts EO (Belgium) limonene (68.0%), (E)-β-ocimene (5.1%), trans-α-bergamotene (5.4%),
germacrene D (7.3%) (Z,Z)-matricaria ester (6.1%) [51]

C. canadensis aerial parts EO (Plovdiv, Bulgaria) limonene (87.9%) [51]

C. canadensis aerial parts EO (Vilnius, Lithuania) limonene (77.7%), trans-α-bergamotene (5.5%) [51]

C. canadensis aerial parts EO (Israel) limonene (54.9%), (Z)-β-farnesene (6.3%) (Z,Z)-matricaria ester (7.7%) [51]

C. canadensis aerial parts EO (Kerman, Iran) myrcene (8.9%), limonene (12.3%), (E)-β-farnesene (14.6%), ar-curcumene (7.8%),
zingiberene (5.5%), spathulenol (14.1%), isospathulenol (7.7%), phytol (7.3%) [52]

C. canadensis aerial parts EO (Athens, Greece) β-pinene (9.5%), limonene (57.3%), matricaria ester (14.4%) [43]

C. canadensis aerial parts EO (Korea) limonene (68.3%), (E)-β-ocimene (15.9%) b [53]

C. canadensis EO (China) limonene (14.8%), epi-bicyclosesquiphellandrene (11.0%), C7H30B4Si (25.1%) c,
1-phenyl-1-nonyne (7.3%) [54]

C. canadensis aerial parts EO (Szeged, Hungary) limonene (79.2%) [55]

C. canadensis aerial parts EO (Manavgat, Antalya, Turkey) β-pinene (9.7%), limonene (28.1%), spathulenol (16.3%) [56]

C. canadensis aerial parts EO β-pinene (8.8%), limonene (41.5%), (Z)-lachnophyllum ester (5.5%) this work

C. sumatrensis aerial parts EO (Rondôndia state, Brazil) sabinene (5.3%), limonene (22.9%), (E)-β-ocimene (5.0%), (E)-β-farnesene (5.3%),
(Z)-lachnophyllum ester (43.7%) [57]

C. sumatrensis leaf EO (N’gorato village, Côte d’Ivoire)
limonene (13.0%), (E)-β-ocimene (6.5%), (E)-caryophyllene (10.5%),
(E)-β-farnesene (17.0%), (Z)-lachnophyllum ester (5.9%), germacrene D (13.6%),
bicyclogermacrene (5.2%)

[58]

C. sumatrensis leaf EO (Monastir, Tunisia) matricaria ester (7.5%), spathulenol (13.8%), caryophyllene oxide (20.5%) [59]

C. sumatrensis aerial parts EO limonene (25.5%), (E)-caryophyllene (5.5%), (E)-β-farnesene (6.7%),
(Z)-lachnophyllum ester (20.7%), spathulenol (5.2%), caryophyllene oxide (5.8%) this work

a The identification of this compound is uncertain; it is not found in the Dictionary of Natural Products [60]. b This compound was listed as δ-3-carene, but the retention time is more
consistent with (E)-β-ocimene rather than δ-3-carene. c The identification of this compound (2,3-µ-trimethylsilyl-C,C′-dimethyl-4,5-dicarba-nido-hexaborane) is not correct; the compound
listed is not a natural product.
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2.2. Mosquito Larvicidal Activity

The mosquito larvicidal activities of the Conyza essential oils are summarized in Table 3.
The essential oil of C. canadensis showed the best larvicidal activity against both Ae. aegypti
(24-h LC50 = 9.80 µg/mL) and Ae. albopictus (24-h LC50 = 18.0 µg/mL) and good larvicidal activity
against Cx. quinquefasciatus (24-h LC50 = 39.4 µg/mL). Conyza sumatrensis essential oil also showed
good larvicidal activity against the three mosquito species (24-h LC50 = 21.7, 19.1, and 26.7 µg/mL,
respectively, for Ae. aegypti, Ae. albopictus, and Cx. quinquefasciatus). Conyza bonariensis essential
oil was less active (24-h LC50 = 69.7, 81.1 and 130.0 µg/mL against Ae. aegypti, Ae. albopictus,
and Cx. quinquefasciatus, respectively).

The larvicidal activities of Conyza essential oils roughly coincides with the concentration of
limonene in the samples (41.5%, 25.5%, and 0.2%, respectively, for C. canadensis, C. sumatrensis,
and C. bonariensis), and this relationship is borne out in a principle component analysis based on the
major essential oil components (limonene, allo-aromadendrene, (Z)-lachnophyllum ester, caryophyllene
oxide, β-caryophyllene, β-pinene, (E)-β-farnesene, spathulenol, and α-humulene, along with the 24-h
larvicidal activities) (Figure 1). Limonene has shown excellent larvicidal activities against Ae. aegypti
(24-h LC50 = 17.7 µg/mL) and Cx. quinquefasciatus (24-h LC50 = 31.6 µg/mL) (Table 3) as well as
Ae. albopictus (LC50 10.8-41.8 µg/mL) [34]. Consistent with these results, Zeng and co-workers found
the larvicidal activity of C. canadensis from China (14.8% limonene) to be 56.9 µg/mL and 32.1 µg/mL
against Ae. albopictus and Cx. quinquefasciatus, respectively [54]. These workers also appreciated the
remarkable larvicidal activity and noted that C. canadensis essential oil has a potential for further
development. Furthermore, Citrus peel oils, rich in limonene, have also shown remarkable larvicidal
activities against Ae. albopictus [61] and Cx. quinquefasciatus [62].

Table 3. Mosquito larvicidal activity and insecticidal activity of Conyza essential oils.

24 h
Essential Oil or
Major Compound LC50 (95% Limits), µg/mL LC90 (95% Limits), µg/mL χ2 p Slope

Aedes aegypti
C. bonariensis 69.71 (64.82–75.36) 88.61 (82.13–97.54) 9.39 0.009 9.45
C. canadensis 9.801 (8.730–10.986) 23.27 (19.93–28.36) 8.70 0.069 12.18
C. sumatrensis 21.74 (20.16–23.36) 31.02 (28.29–35.50) 0.131 0.988 7.98
β-Pinene 23.63 (22.16-25.33) 32.12 (29.47-36.00) 0.225 0.994 7.69
Limonene 17.66 (16.45–18.97) 23.62 (22.03–25.73) 0.784 0.941 10.68
(E)-Caryophyllene 70.80 (65.49–76.69 107.2 (98.4–118.6) 4.08 0.395 12.75
α-Humulene 53.05 (48.69–58.08) 82.78 (75.81–91.87) 15.9 0.003 12.79
Caryophyllene oxide 136.6 (129.2–143.9) 180.2 (171.4–191.2) 30.1 0.000 12.37
Permethrin control 0.000643 (0.000551–0.00753) 0.00246 (0.00192–0.00344) 12.5 0.006 11.57

Aedes albopictus a

C. bonariensis 81.13 (74.61–87.97) 127.1 (117.5–139.9) 0.395 0.821 11.44
C. canadensis 18.04 (16.71–19.52) 26.20 (24.22–28.82) 1.46 0.834 11.30
C. sumatrensis 19.13 (17.73–20.66) 27.49 (25.41–30.38) 3.19 0.364 9.97
Permethrin control 0.0024 (0.0021–0.0026) 0.0042 (0.0038–0.0049) 4.64 0.031 8.45

Culex quinquefasciatus
C. bonariensis 130.0 (122.5–138.8) 178.4 (165.6–197.2) 0.675 0.713 8.97
C. canadensis 39.37 (36.83–42.00) 52.29 (49.04–56.56) 0.493 0.974 10.49
C. sumatrensis 26.74 (24.80–29.20) 36.83 (33.56–41.92) 8.97 0.030 7.96
β-Pinene 30.46 (28.21–33.21) 41.58 (38.10–46.58) 0.399 0.983 9.38
Limonene 31.63 (29.37–34.50) 41.51 (38.03–46.78) 0.874 0.928 8.23
(E)-Caryophyllene 165.4 (157.5–174.0) 220.6 (207.8–238.5) 10.0 0.040 9.91
α-Humulene 108.3 (101.4–115.5) 158.2 (148.5–170.5) 1.0 0.910 13.32
Caryophyllene oxide 98.52 (90.70–108.68) 144.5 (129.6–165.7) 1.60 0.809 9.20
Permethrin control 0.0165 (0.0149–0.0181) 0.0305 (0.0266–0.0367) 5.24 0.073 10.12

Diplonychus rusticus a

C. canadensis 135.7 (129.3–142.8) 182.5 (172.6–195.5) 7.78 0.051 12.35
C. sumatrensis 111.0 (106.1–116.7) 137.0 (129.5–147.6) 16.1 0.001 9.85
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Table 3. Cont.

48 h
Essential Oil or
Major Compound LC50 (95% Limits), µg/mL LC90 (95% Limits), µg/mL χ2 p Slope

Aedes aegypti
C. bonariensis 63.85 (59.07–70.75) 81.84 (74.16–94.79) 3.43 0.180 6.89
C. canadensis 7.091 (6.099–8.141) 22.46 (18.63–28.59) 5.98 0.201 11.63
C. sumatrensis 22.52 (21.18–23.87) 29.00 (27.23–31.68) 0.0488 0.997 10.12
β-Pinene 22.91 (21.29–24.85) 31.37 (29.03–35.03) 0.323 0.988 9.08
Limonene 17.43 (16.24–18.74) 23.17 (21.58–25.28) 0.664 0.956 10.48
(E)-Caryophyllene 65.92 (60.45–72.08) 106.4 (98.4–116.7) 14.2 0.007 13.10
α-Humulene 46.25 (42.27–50.94) 74.14 (67.47–82.99) 19.2 0.001 12.21
Caryophyllene oxide 120.2 (112.7–127.5) 165.4 (156.4–176.6) 19.8 0.001 12.34
Permethrin control 0.000575 (0.000483–0.00688) 0.00281 (0.00208–0.00423) 5.29 0.152 10.93

Aedes albopictus a

C. bonariensis 69.42 (63.20–75.93) 113.2 (103.8–125.8) 3.10 0.212 10.72
C. canadensis 15.12 (13.93–16.47) 22.67 (20.84–25.09) 7.23 0.124 12.22
C. sumatrensis 18.43 (17.05–19.93) 26.76 (24.71–29.58) 4.25 0.236 8.44

Culex quinquefasciatus
C. bonariensis 108.1 (101.4–115.1) 152.1 (142.4–165.1) 2.32 0.313 10.84
C. canadensis 29.81 (27.33–32.68) 47.06 (43.03–52.39) 14.5 0.006 12.17
C. sumatrensis 22.95 (21.22-25.08) 33.06 (30.07-37.60) 2.38 0.498 9.37
β-Pinene 28.36 (26.20–31.19) 39.01 (35.41–44.50) 2.41 0.661 8.39
Limonene 29.15 (26.89–31.98) 40.83 (37.19–46.07) 7.05 0.133 9.50
(E)-Caryophyllene 138.5 (129.3–148.5) 215.3 (200.1–234.9) 13.5 0.009 13.11
α-Humulene 87.81 (81.14–94.89) 140.0 (130.0–152.7) 9.80 0.044 13.50
Caryophyllene oxide 95.19 (86.69–106.26) 141.0 (127.6–160.8) 4.01 0.405 10.12

Diplonychus rusticus a

C. canadensis 124.0 (118.0–130.4) 165.0 (156.1–176.6) 1.17 0.760 12.17
C. sumatrensis 107.8 (103.1–113.4) 133.6 (126.1–144.4) 8.07 0.045 9.37

a Aedes albopictus and Diplonychus rusticus were obtained from the wild; the limited numbers of organisms available
precluded screening of individual components on these two insect species.

Other components in the Conyza essential oils likely contribute to the mosquito larvicidal
effects. Conyza bonariensis was rich in (E)-caryophyllene (13.3%) and caryophyllene oxide (12.2%),
but both of these compounds have been found to have weak larvicidal activities against Ae. aegypti
(24-h LC50 = 70.8 and 137 µg/mL, respectively (Table 3). On the other hand, β-pinene, a major
component of C. canadensis essential oil (8.8%), has shown larvicidal activity against Ae. aegypti
(24-h LC50 = 23.6 µg/mL), Cx. quinquefasciatus (24-h LC50 = 30.5 µg/mL) (Table 3), and Ae. albopictus [61].
In addition, synergy between essential oil components may also be important [63,64]. Scalerandi and
coworkers have found that the housefly (Musca domestica) metabolizes the major components in an
essential oil, but leaves the minor components to act as toxicants [65].

In order to assess the potential detrimental impact of the Conyza essential oils on beneficial aquatic
species, the insecticidal activity was assessed against the water bug, Diplonychus rusticus, an insect
predator of mosquito larvae [66]. Both C. canadensis and C. sumatrensis essential oils were substantially
less toxic to D. rusticus than they were to the mosquito larvae.
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Figure 1. Principal component biplot of PC1 and PC2 scores and loadings demonstrating the
relationships between Conyza essential oil major components and larvicidal activities.

3. Materials and Methods

3.1. Chemicals

Chemicals used for this study, dimethylsulfoxide (DMSO), β-pinene, limonene, (E)-caryophyllene,
α-humulene, caryophyllene oxide, dichloromethane, and permethrin, were obtained from
Sigma-Aldrich (St. Louis, MO, USA) and used as received without further purification.

3.2. Plant Material

The three Conyza species were collected from Bach Ma National Park, Thue Thien Hue province
(16◦ 11′ 34” N, 107◦ 51′ 12” E) in April 2020. The plants were identified by Dr. Do Ngoc Dai and Dr. Le
Thi Huong. Voucher specimens, LTH129 (Conyza canadensis), LTH130 (Conyza sumatrensis), and LTH131
(Conyza bonariensis) have been deposited in the Pedagogical Institute of Science, Vinh University. Four-kg
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samples of fresh aerial parts (leaves, stems, and flowers) of each of the plants were shredded and
hydrodistilled for 4 h using a Clevenger-type apparatus.

3.3. Gas Chromatography–Mass Spectrometry

The Conyza essential oils were analyzed by GC-MS as previously described [67]: Shimadzu
GCMS-QP2010 Ultra, electron impact (EI) mode, electron energy = 70 eV, scan range = 40–400 atomic
mass units, scan rate = 3.0 scans/s, ZB-5 fused silica capillary column (30 m × 0.25 mm, 0.25 µm
film thickness), He carrier gas, 552 kPa column head pressure, and 1.37 mL/min flow rate. Injector
temperature was 250 ◦C and the ion source temperature was 200 ◦C. The GC oven temperature program
was programmed for 50 ◦C initial temperature, temperature increased at a rate of 2 ◦C/min to 260 ◦C.
A 5% w/v solution of the sample in CH2Cl2 was prepared and 0.1 µL was injected with a splitting
mode (30:1). Identification of the oil components was based on their retention indices determined by
reference to a homologous series of n-alkanes, and by comparison of their mass spectral fragmentation
patterns with those reported in the databases [36–39].

3.4. Mosquito Larvicidal Assay

Mosquito larvicidal activity was carried out on Ae. aegypti, Ae. albopictus, and Cx. quinquefasciatus
as previously described [67]: For the assay, 1% stock solutions of each essential oil in dimethylsulfoxide
(DMSO) were prepared, and aliquots of the stock solutions were placed in 500-mL beakers and added
to water that contained 20 larvae (fourth instar). With each experiment, a set of controls using DMSO
was also run for comparison. Mortality was recorded after 24 h and again after 48 h of exposure during
which no nutritional supplement was added. The experiments were carried out 25 ± 2◦C. Each test was
conducted with four replicates with three concentrations (50, 25, and 12.5, µg/mL for C. canadensis and
C. sumatrensis; 150, 100, and 50 µg/mL for C. bonariensis). Permethrin was used as a positive control.

3.5. Non-Target Insecticidal Assay

The Diplonychus rusticus adults were collected in the field and maintained in glass tanks
(60 cm long × 50 cm wide) containing water at 25 ◦C with a water depth of 20 cm. The essential
oils were tested at concentrations of 200, 150, 100, 75, 50, and 25 µg/mL. Four replicates were performed
for each concentration. Twenty D. rusticus adults were introduced into each solution. The non-target
organism was observed for mortality after 24 h and 48 h exposure.

3.6. Data Analysis

The mortalities were recorded 24 h and 48 h after treatment. The data obtained were subjected to
log-probit analysis [68] to obtain LC50 values, LC90 values, 95% confidence limits, and chi square values
using Minitab® 18 (Minitab Inc., State College, PA, USA). For the principal component analysis (PCA),
the 9 major components (limonene, allo-aromadendrene, (Z)-lachnophyllum ester, caryophyllene oxide,
(E)-caryophyllene, β-pinene, (E)-β-farnesene, spathulenol, and α-humulene), and the 24-h larvicidal
activities against Ae. aegypti, Ae. albopictus, and Cx. quinquefasciatus were taken as variables using a
Pearson correlation matrix using XLSTAT Premium, version 2018.5 (Addinsoft, Paris, France). A total
of 33 data (11 variables × 3 samples) were used for the PCA.

4. Conclusions

Invasive plant species are generally considered to be ecologically and detrimental with potential
economic impacts, and the control or eradication of invasive plant species can be prohibitively costly.
However, identification of beneficial uses of invasive plants could be economically advantageous and
aid in the control of the species. Conyza spp., as well as Erechtites spp. [34], Crassocephalum crepidioides [35],
and Severinia monophylla [33], are invasive weeds in Vietnam, and essential oils from these plants have
demonstrated promising mosquito larvicidal activities. The plant materials are readily available and
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harvesting of these weeds may provide economically valuable “cash crops” as well as serve as a means
for ecological remediation. Note that C. bonariensis [69], C. canadensis [70], and C. sumatrensis [71] have
all shown resistance to the commonly used herbicide glyphosate, so herbicidal control of these weeds
is impractical as well as environmentally detrimental. Further research on potential formulations
(e.g., nanoemulsions or essential oil-loaded nanoparticles) [72] for field use of these promising essential
oils is warranted.
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