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Abstract: Over the past few decades, nanostructured conducting polymers have received great
attention in several application fields, including biosensors, microelectronics, polymer batteries,
actuators, energy conversion, and biological applications due to their excellent conductivity, stability,
and ease of preparation. In the bioengineering application field, the conducting polymers were
reported as excellent matrixes for the functionalization of various biological molecules and thus
enhanced their performances as biosensors. In addition, combinations of metals or metal oxides
nanostructures with conducting polymers result in enhancing the stability and sensitivity as the
biosensing platform. Therefore, several methods have been reported for developing homogeneous
metal/metal oxide nanostructures thin layer on the conducting polymer surfaces. This review will
introduce the fabrications of different conducting polymers nanostructures and their composites with
different shapes. We will exhibit the different techniques that can be used to develop conducting
polymers nanostructures and to investigate their chemical, physical and topographical effects. Among
the various biosensors, we will focus on conducting polymer-integrated electrochemical biosensors
for monitoring important biological targets such as DNA, proteins, peptides, and other biological
biomarkers, in addition to their applications as cell-based chips. Furthermore, the fabrication and
applications of the molecularly imprinted polymer-based biosensors will be addressed in this review.

Keywords: conducting polymers; molecularly imprinted polymer; cell-based chip; nanotechnology;
electrochemical sensor; biosensors

1. Introduction

Conducting polymers (CPs) have emerged as one of the most promising materials in many
biological and biomedical applications, including biosensors and tissue engineering applications [1–3].
The wide applications of the CPs are owing to their biocompatibility and their unique electrical
properties that could convert the biochemical information into electrical signals. In addition, CPs
have several functional groups, which provide maximum enzyme loading through the interaction
between the enzyme molecules and the polymers’ functional groups, thus a well-organized scaffold
biosensors could be achieved [4]. Recently, nanostructured CPs represented an excellent building block
for developing highly sensitive biosensors [5] due to their unique properties that combine with those
of the CPs (biocompatibility, direct electrochemical synthesis) and the nanomaterials (e.g., large surface
area, flexibility for the immobilization of biomolecules and quantum effect) [6–8]. Several synthetic
strategies were reported for the nanostructured CPs (NSCPs) synthesis, including template-based
(either hard or soft template) methods, template-free synthesis [9–12], as well as the physical approaches
(e.g., electrospinning) [13].
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Among the many NSCPs, polyaniline nanostructures (PANI NSs) have been mainly prepared
with the aid of template-guided polymerization within channels of microporous zeolites, porous
membranes, and chemical route in the presence of self-organized supramolecules or stabilizers [14–16].
PANI NSs have higher sensitivity and faster time response than its conventional bulk counterpart due
to higher active surface area and shorter penetration depth for target molecules [16]. The high surface
area and porous structure further allow the fast diffusion of molecules into the framework leading
to their applicability as biosensors. The blend of metal nanoparticles with conjugated polymers to
form nanocomposite is intended to increase electrical conductivity [17,18]. One of the most significant
current discussions has clearly demonstrated that gold and silver nanoparticles could be embedded
into a polymeric layer, which largely increased the surface area for modification of diverse biomolecules.
In recent years, there has been considerable interest in the system of electrode modification using
nanoparticles and conducting polymers [18–24].

2. NSCP-Integrated Electrochemical Biosensors

2.1. Nscps for Electrochemical Detection of Glucose and H2O2

Nowadays, diabetes mellitus represents a severe health problem worldwide due to its
complications that are more harmful than diabetes itself [25]. Therefore, developing an accurate and
fast assay for early diagnosis of diabetes disease is an urgently needed issue. Several analytical assays
were reported for monitoring diabetes based on the measurement of glucose level in blood [26–28].
The glucose sensors could be classified into enzymatic and enzyme-free sensors [26–29]. Here, we
will discuss the uses of CPs for developing highly sensitive glucose sensors. Deepshikha et al. report
on the preparation of PANI NSs by using sodium dodecylsulphate (NSPANI-SDS) as glucose and
H2O2 biosensor [15]. SDS acts as an ideal structure-directing agent for the synthesis of ordered
nanostructured polymer composed of framework protonated amine such as PANI NSs. The uses of
these NSs polymer with large specific surface area could enhance the conductivity of PANI and results
in easily immobilization with high loading of horseradish peroxidase (HRP) and glucose oxidase (GOx).
In addition, these NSs enhance the rate of electron transfer and the current response. These modified
PANI NSs were used as optical and electrical biosensors with good performances, fast response time,
wide linear range, and good selectivity, stability and reproducibility. Furthermore, Abidian et al.
have reported the fabrication and applications of PEDOT nanofibers for electrochemical detection of
glucose based on entrapped of the glucose oxidase enzyme (GOx) into the PEDOT nanofibers during
the galvanostatic polymerization process at Pt electrode [30]. This sensor has demonstrated a high
sensitivity, high electrochemical stability and lower limit of detection (LOD) than the GOx-incorporated
PEDOT film (PEDOT F-GOx) sensors (as shown in Figure 1a) that related to their large surface area.
Soganci et al. have modified the graphite rod electrode with a super-structured CP composed of amine
substituted thienyl-pyrrole derivative based on the electropolymerization process [31]. This CP is
characterized by the presence of free amine groups that allowed the covalent bonding between the
electrode and the biorecognition elements such as glucose oxidase (GOx). This sensor was applied for
glucose detection in beverages. Munteanu et al. showed a dual electrochemical sensor with optical
microscopy as an opto-electrochemical sensor for detecting both hydrogen peroxide and glucose [32].
The principal of the sensor is based on uses of osmium complex-based redox polymer hence its
oxidation state could change during the interactions of hydrogen peroxide and glucose with the
enzyme, which is a time-dependant interaction as depicted in Figure 1b,c.
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Figure 1. (a) Glucose oxidase (GOx)-incorporated PEDOT on the microelectrode array: (i) Pt 
microelectrode array. (ii) Electrodeposition of GOx-incorporated PEDOT film (PEDOT F-GOx) with 
electrospinning of PEDOT nanofibers (PEDOT NFs-GOx), poly(L-lactide) (PLLA) nanofibers on the 
microelectrode array. (iii) Electrodeposition of PEDOT around the PLLA nanofibers to form GOx-
incorporated PEDOT nanofibers (PEDOT NF-GOx). Optical and scanning electron microscope (SEM) 
images of the entire microelectrode array are below Reproduced with permission [30]. Copyright 2014 
Wiley. (b) Schematics of BFRLM for increasing the spatial resolution of redox hydrogel-based 
electrochemical biosensors. The incident light is refracted and reflected on the different interfaces of 
the multilayered sensor [32]. (c) Electrochemical detection of hydrogen peroxide using an Fluorine 
doped Tin Oxide (FTO) electrode modified with horseradish peroxidase (HRP)-based redox hydrogel 
[32]. 

2.2. Nscps for Cell-Based Chip Applications 

It is challenging to understand cell behavior based on the measurement of only nucleic acid or 
protein expression levels because the cells are much more complicated than the sum of its 
components [33]. Several electrically conductive scaffolds have been used for making a cell-based 
chip for enhancing the adhesion, proliferation, and differentiation of several cell types such as 
neurons [33–35]. Here, we will address the uses of CPs modified electrodes for developing cell-based 
chips and their applications. Lee et al. developed an electrochemical conducting scaffold composed 
of pyrrole N-hydroxyl succinimidyl ester and pyrrole (PPy-NSE) copolymer, then modified this 
copolymer with nerve growth factor (NGF) and it used for PC12 cells immobilizations [36]. They have 
claimed that cells have extended neurites similarly to that for cells cultured in medium containing 
NGF. El-Said et al. reported on uses of a thin layer of polyaniline emeraldine base (EB) coated 
indium–tin oxide (ITO) electrode as a cell-based chip [35]. On the contrary to the metal electrodes, 
PANI-EB/ITO electrode showed an excellent electrochemical activity at neutral pH without co-
deposition of an acidic counterion. The developed electrode was used as a cell-based chip for quick 
and easy measuring cellular electrochemical properties, the cell viability, cell adhesion, cell 
proliferation and monitoring the effects of different anticancer drugs on the cell viability. The same 
group has reported the in-situ electrochemical synthesis of polypyrrole (PPy) nanowires with a 
nanoporous alumina template [37]. They have shown the formation of highly ordered porous 
alumina substrate and the growth of the PPy nanowires inside the nanoporous structures based on 
the direct electrochemical oxidation of the pyrrole monomer, as shown in Figure 2a. The cellular 

Figure 1. (a) Glucose oxidase (GOx)-incorporated PEDOT on the microelectrode array: (i) Pt
microelectrode array. (ii) Electrodeposition of GOx-incorporated PEDOT film (PEDOT F-GOx) with
electrospinning of PEDOT nanofibers (PEDOT NFs-GOx), poly(L-lactide) (PLLA) nanofibers on
the microelectrode array. (iii) Electrodeposition of PEDOT around the PLLA nanofibers to form
GOx-incorporated PEDOT nanofibers (PEDOT NF-GOx). Optical and scanning electron microscope
(SEM) images of the entire microelectrode array are below Reproduced with permission [30]. Copyright
2014 Wiley. (b) Schematics of BFRLM for increasing the spatial resolution of redox hydrogel-based
electrochemical biosensors. The incident light is refracted and reflected on the different interfaces of the
multilayered sensor [32]. (c) Electrochemical detection of hydrogen peroxide using an Fluorine doped
Tin Oxide (FTO) electrode modified with horseradish peroxidase (HRP)-based redox hydrogel [32].

2.2. Nscps for Cell-Based Chip Applications

It is challenging to understand cell behavior based on the measurement of only nucleic acid
or protein expression levels because the cells are much more complicated than the sum of its
components [33]. Several electrically conductive scaffolds have been used for making a cell-based
chip for enhancing the adhesion, proliferation, and differentiation of several cell types such as
neurons [33–35]. Here, we will address the uses of CPs modified electrodes for developing cell-based
chips and their applications. Lee et al. developed an electrochemical conducting scaffold composed
of pyrrole N-hydroxyl succinimidyl ester and pyrrole (PPy-NSE) copolymer, then modified this
copolymer with nerve growth factor (NGF) and it used for PC12 cells immobilizations [36]. They have
claimed that cells have extended neurites similarly to that for cells cultured in medium containing NGF.
El-Said et al. reported on uses of a thin layer of polyaniline emeraldine base (EB) coated indium–tin
oxide (ITO) electrode as a cell-based chip [35]. On the contrary to the metal electrodes, PANI-EB/ITO
electrode showed an excellent electrochemical activity at neutral pH without co-deposition of an acidic
counterion. The developed electrode was used as a cell-based chip for quick and easy measuring
cellular electrochemical properties, the cell viability, cell adhesion, cell proliferation and monitoring
the effects of different anticancer drugs on the cell viability. The same group has reported the in-situ
electrochemical synthesis of polypyrrole (PPy) nanowires with a nanoporous alumina template [37].
They have shown the formation of highly ordered porous alumina substrate and the growth of the PPy
nanowires inside the nanoporous structures based on the direct electrochemical oxidation of the pyrrole
monomer, as shown in Figure 2a. The cellular behavior, cell morphology, adhesion, and proliferation, as
well as the biocompatibility of PPy nanowires/nanoporous alumina substrate towards both cancerous
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and normal cells, were investigated compared with other substrates. They have demonstrated that
the PPy nanowires/ nanoporous alumina substrate showed better cell adhesion and proliferation than
other control substrates. This study showed the potential of the PPy nanowires/nanoporous alumina
substrate as biocompatibility electroactive polymer substrate for both healthy and cancer cell cultures
applications. Strover et al. have incorporated pyrrole and thiophene moieties in its monomer, to
fabricated PolyPyThon (PPyThon)-based molecular brushes [38]. A film of this CP was deposited on
the gold substrate used as a scaffold for electrical stimuli-responsive surfaces of human fibroblasts
cells, as shown in Figure 2b.
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Copyright 2013 Elsevier. 
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Figure 2. (a) Schematic diagram represented the fabrication of different cell culture substrates and the
cell immobilization process. Reproduced with permission [37]. Copyright 2010 Elsevier. (b) Human
fibroblasts after two days in culture on PPyThon film on gold. Green stains Ki67 (proliferation marker),
yellow stains vinculin (focal adhesion marker), red stains actin (cytoskeleton). Nuclei counterstained
with DAPI (blue). The scale bar is 100 µm. Reproduced with permission [38]. Copyright 2013 Elsevier.

Based on the above, uses of the cell-based chips is a promising alternative to animal experiments,
due to the disadvantages of the uses of animal models because they are violating animals’ rights, costly,
time-consuming and also poor relevance to human biology. In addition, the uses of cell-based chips as
biosensors for monitoring effects of anticancer drugs or for monitoring the differentiation of the neural
cells showed many advantages that including (1) increasingly more sophisticated representation of
absorption, distribution, metabolism, excretion, and toxicity (ADMET) process, (2) better understand
the drug interaction mechanisms in the human body, and (3) showed a great potential to better predict
drug efficacy and safety.

2.3. Nscps for Different Biosensor Applications

Conducting polymers have been widely used for preparing of sensor platforms and imparts many
advantages due to the incorporation of their functional groups into their fabrication. Here, we will
discuss the fabrication and uses of different NSCPs and their composites, as well as their electrochemical
biosensor applications for the various biological targets such as nucleic acid, ATP, neurotransmitter,
etc. Guanine (G) and adenine (A) and are two of the purine bases, which participate in the building
of nucleic acids and are fundamental compounds in different biological systems. The abnormal
concentration of A and G in body fluid is related to the deficiency of the immunity system. Hence,
monitoring of the A and G concentration in living organisms is a great demand issue. El-Said et al.
have fabricated poly(4–aminothiophenol) (PATP) nanostructures layered on gold nanodots patterned
indium tin oxide (ITO) electrode based on a simple method as shown in Figure 3a [39]. The modified
gold nanodots ITO electrode was fabricated based on thermal evaporation of pure Au metal onto
the ITO surface through polystyrene monolayer. Then, use of these Au nanodots as a template for
self–assembly immobilization of ATP molecules followed by electrochemical polymerization of ATP
into PATP. The modified electrode was applied to monitor the concentration of the mixture of adenine
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and guanine with LOD of 500 and 250 nM, respectively. Furthermore, the modified electrode was
extensively applied for detecting adenine and guanine in human serum.

Aksoy et al. have developed a selective electrochemical dopamine biosensor based on
polyimide (PI) and polyimide-boron nitride (PI-BN) composites as a selective membrane for dopamine
detection [40]. The introduction of BN particles into the PI matrix results in enhancement of the
sensitivity, selectivity, and reversibility (i.e., the rapid electron transfer), with a LOD of about 4 × 10−8 M.
Hybridization of PANI with nanomaterials could endow great promise in the sensors field due to
the enhancement of its electrical conductivity in addition to its capability to act as a scaffold for
immobilization of the biological species [41]. Pseudomonas aeruginosa (P. aeruginosa) is among the
most common pathogenic gram-negative bacteria that could cause corneal ulcers and blindness
within two days. Pyocyanin (PYO) is the biomarker that has been used for monitoring P. aeruginosa.
Elkhawaga et al. have prepared PANI/Au NPs/ITO electrode as PYO sensor in a culture of P. aeruginosa.
The results indicated that PANI/Au NPs/ ITO electrode is more sensitive toward PYO biomarker
than either bare ITO electrode or Au NPs/ITO electrode with LOD of 500 nM [42]. The enhancement
of the electrochemical activity of PANI/Au NPs/ITO modified electrode towards the PYO related
to the presence of positive charges on its surface that could enhance the mass transfer rate of the
negatively charged PYO based on the electrostatic attraction force. The same group has extended
the uses of PANI/Au NPs/ ITO electrode for diagnosis of P. aeruginosa in 50 samples collected from
patients suffering from corneal ulcers as shown in Figure 3b [43]. The obtained results were compared
with the results gained by the screen-printed electrode (SPE), conventional techniques, automated
identification method, and the amplification of the 16 s rRNA gene by polymerase chain reaction (PCR)
as a standard test for P. aeruginosa identification. The electrochemical detection of PYO by square wave
voltammetry (SWV) technique using PANI/Au NPs modified ITO electrode was the only technique
showing 100% agreement with the molecular method in sensitivity, specificity, positive and negative
predictive values when compared with the SPE, conventional (including colony morphology, pigment
production, and biochemical tests) and automated (including the automated ID and Ast system and
the PCR) methods. Thus, PANI/Au NPs/ITO electrode is recommended as a fast, cheap, accurate, and
selective PYO biomarker sensor in P. aeruginosa in the corneal ulcer cases based on the SWV technique.

Zika virus (ZIKV) is a flavivirus. Recently, there is an increasing interest in developing a rapid
Zika virus identification assay due to the appearance of the viral infection in infants. Tancharoen et al.
report the development of a new type of ZIKV electrochemical biosensor [44]. This biosensor consisted
of surface imprinted polymers (SIPs)/graphene oxide composites, as shown in Figure 3c. The LOD of
this sensor agreed with that of the RT-PCR method, in addition to the capability of this sensor to detect
the Zika virus in the presence of the dengue virus and serum samples.

Lactate is one of the cellular metabolites, which is associated with some critical health
care conditions. Pappa et al. reported the fabrication of a micrometer-scale polymer-based
transistor platform for the detection of lactate, as shown in Figure 3d [45]. The uses of the
electron-transporting (n-type) organic polymer incorporate hydrophilic side chains that have enhanced
the ion transport/injection, facilitated the enzyme conjugation and acted as a series of redox centers.
The developed sensor showed a fast, selective, and sensitive metabolite capability.
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Figure 3. (a) Preparation of PATP nanostructures patterns gold modified Indium Tin Oxide. Reproduced
with permission [39]. Copyright 2014 Elsevier. (b) The schematic diagram for the fabrication of
polyaniline (PANI)/Au NPs/ITO electrode and the interaction between PANI and pyocyanin (Pyocyanin
(PYO) [43]. (c) Scheme depicting surface imprinted polymers (SIPs)-graphene oxide composites
preparation on a gold surface for making the ZIKV biosensor. Reproduced with permission [44].
Copyright 2019 ACS publication. (d) Schematic of the organic electrochemical transistor (OECT)
(gate dimensions, 500 mm2; channel dimensions, 10 mm (length) × 100 mm (width) × ~100 nm
(thickness)) [45].

3. Molecularly Imprinted Polymers as Selective Biosensors

Molecularly imprinted polymers (MIPs) were reported as one of the most sensitive and selective
materials for biosensor applications [46]. The fabrication process of the MIPs involved the uses of
three components (i) the template molecules (imprinted molecules), (ii) the functional monomers (FM)
and (iii) the cross-linker molecules. The fabrication process of the MIPs and its recognition uses was
summarized in Figure 4a, in which the template molecules (imprinted molecules) combined with the
functional monomer to form multiple reaction sites. The polymerization process was performed in
the presence of a cross-linker. The template molecules were removed from the resultant polymers to
form imprinted cavities that could rebind with the template molecules during the recognition process.
The selectivity mechanism of the MIPs is based on the fact that these MIPs offered structurally adapted
recognition sites for the rebinding of target molecules such as drugs in complex mixtures. The selectivity
of the MIPs to molecules is related to their matching in chemical groups and the interactions between
template molecules and imprinted groups that depend on the shape and rigidity of the template
molecules. Therefore, these cavities could be used for enantiomeric resolution (i.e., differentiate
between the S-type and R-type analogs (optical enantiomers)).

MIPs were used for electrochemical recognition of different targets [47–49]. Cyanocobalamin (Cbl)
is one of the eight B-complex vitamins that could affect the brain function and the entire nervous system.
The decrease of the Cbl levels reflects several health problems such as hematological and neurological
disorders [50,51]. Singh et al. have reported on fabrication of a biomimetic imprinted polymer consisted
of a sheet of reduced graphene oxide (rGO) decorated with multiwalled carbon nanotubes and methyl
blue composite and functionalized with poly acryloylurea as shown in Figure 4b [52]. This sensor was
applied for ultra-trace detection of Cbl based on differential-pulse voltammetry (DPV) technique, which
demonstrated a linearity relationship within a concentration range from 0.021 to 1.44 ng/mL with LOD
of 0.0056 ng/mL and absolutely no interference in real samples. The high electrochemical conductivity
of this sensor related to the interaction between methyl blue/rGO could and the f-MWCNTs based on π
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stacking, and the high solubility of the MB-rGO/f-MWCNTs composite in water due to the presence of
the hydrophilic sulphonate (SO3− groups).
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Figure 4. (a) Scheme for the preparation of a molecularly imprinted polymer (MIP). (1) First, template
molecule (T) and functional monomers (FM) are mixed to get the complex FM-T. (2) The rest of the
components of the pre-polymerization mixture are added, i.e., co-monomers (CM) and cross-linker
(CL). (3) After the addition of a radical initiator (thermal or photochemical) or a catalyst (acid or base),
polymerization takes place. (4) T is removed resulting in a pocket within the polymeric matrix. (5) T re-binds
the selective cavity while other potential interfering species are blocked due to limitations in terms of size,
shape and/or functional group distribution [46]. (b) Schematic presentation of MB-rGO/f-MWCNTs/AU-MIP
Development. Reproduced with permission [52]. Copyright 2018 ACS publication.

Nonylphenol is one of the phenolic environmental estrogens, which could affect different
organisms’ systems, including the endocrine systems, the immune and reproductive system [53–55].
Liu et al. reported on the fabrication of MIP-modified glassy carbon electrode as an electrochemical
nonylphenol sensor [56]. The MIP electrode consisted of the surface of acrylamide-functionalized
multi-walled carbon nanotubes (MWNT) as a carrier surface, nonylphenol as a template molecule,
methacrylic acid as functional monomer and ethylene glycol dimethacrylate as a crosslinking agent
and the polymerization was performed based on the thermal polymerization process. This sensor
showed a linear range within the concentration range from 0.1 to 30 µM with a LOD of 0.02 µM.

4. Conclusions

Here we have discussed the synthesis and uses of conducting polymers nanostructured as well
as their biosensors and biological applications. Uses of the conducting polymers nanostructures in
the biosensors field related to their excellent conductivity, stability, and ease of preparation. One
of the important inherent specificity of enzyme-based electrochemical biosensors is that the uses
of biorecognition elements are to choose suitable matrixes for immobilization of the biorecognition
elements. The conducting polymers could provide excellent matrixes for immobilization of different
biorecognition elements molecules (e.g., enzymes) with keeping their redox centers in excellent
electrical communication with the transducing electrode and hence enhance their biosensors efficiency.
Furthermore, combinations of metals nanostructures with conducting polymers result in enhancing the
stability of the nanostructures composites. Here we have shown the synthesis and application of several
metals/conducting polymer nanostructures. Especially the electrochemical biosensor applications of
the conducting polymers nanostructures for monitoring different important biological target species
such as DNA bases, proteins, peptides, glucose, viruses, and cell-based chips. Moreover, we have
discussed the fabrication of the molecularly imprinted polymer-based biosensors.
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40. Aksoy, B.; Paşahan, A.; Güngör, Ö.; Köytepe, S.; Seçkin, T. A novel electrochemical biosensor based on
polyimide-boron nitride composite membranes. Int. J. Polym. Mater. Polym. Biomater. 2017, 66, 203–212.
[CrossRef]

41. El-Said, W.A.; Yea, C.-H.; Kim, H.; Choi, J.-W. Fabrication of self-assembled RGD layer for cell chip to detect
anticancer drug effect on HepG2 cells. Curr. Appl. Phys. 2009, 9, e76–e80. [CrossRef]

42. Elkhawaga, A.A.; Khalifa, M.M.; El-badawy, O.; Hassan, M.A.; El-Said, W.A. Rapid and highly sensitive
detection of pyocyanin biomarker in different Pseudomonas aeruginosa infections using gold nanoparticles
modified sensor. PLoS ONE 2019. [CrossRef] [PubMed]

43. Khalifa, M.M.; Elkhawaga, A.A.; Hassan, M.A.; Zahran, A.M.; Fathalla, A.M.; El-Said, W.A.; El-Badawy, O.
Highly specific Electrochemical Sensing of Pseudomonas aeruginosa in patients suffering from corneal ulcers:
A comparative study. Sci. Rep. 2019, 9, 18320. [CrossRef] [PubMed]

44. Tancharoen, C.; Sukjee, W.; Thepparit, C.; Jaimipuk, T.; Auewarakul, P.; Thitithanyanont, A.; Sangma, C.
Electrochemical Biosensor Based on Surface Imprinting for Zika Virus Detection in Serum. Acs Sens. 2019, 4,
69–75. [CrossRef] [PubMed]

45. Pappa, A.M.; Ohayon, D.; Giovannitti, A.; Maria, I.P.; Savva, A.; Uguz, I.; Rivnay, J.; McCulloch, I.;
Owens, R.M.; Inal, S. Direct metabolite detection with an n-type accumulation mode organic electrochemical
transistor. Sci Adv. 2018, 4, eaat0911. [CrossRef] [PubMed]

46. Rico-Yuste, A.; Carrasco, S. Molecularly Imprinted Polymer-Based Hybrid Materials for the Development of
Optical Sensors. Polymers 2019, 11, 1173. [CrossRef] [PubMed]
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