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Abstract: With the rapid growth of industrialization, diverse pollutants produced as by-products are
emitted to the air-water ecosystem, and toxic contamination of water is one of the most hazardous
environmental issues. Various forms of carbon have been used for adsorption, electrochemical,
and ion-exchange membrane filtration to separation processes for water treatment. The utilization of
carbon materials has gained tremendous attention as they have exceptional properties such as chemical,
mechanical, thermal, antibacterial activities, along with reinforcement capability and high thermal
stability, that helps to maintain the ecological balance. Recently, engineered nano-carbon incorporated
with polymer as a composite membrane has been spotlighted as a new and effective mode for water
treatment. In particular, the properties of zero-dimensional (0D) carbon forms (fullerenes and carbon
dots) have encouraged researchers to explore them in the field of wastewater treatment through
membrane technologies as they are biocompatible, which is the ultimate requirement to ensure the
safety of drinking water. Thus, the purpose of this review is to highlight and summarize current
advances in the field of water purification/treatment using 0D carbon-polymer-based nanocomposite
membranes. Particular emphasis is placed on the development of 0D carbon forms embedded into a
variety of polymer membranes and their influence on the improved performance of the resulting
membranes. Current challenges and opportunities for future research are discussed.

Keywords: fullerenes; carbon dots; biocompatibility; 0D carbon-polymer nanocomposite membranes;
water treatment

1. Introduction

Hygienic water is vital for the ecological environment and human health. Vast amounts of water
deteriorated by contaminants are discharged from industry or through intensification of human activity,
thus it is significant to implement conventional water treatments, resource recovery and purification
technologies [1]. Increasing demands for advanced water treatments have stimulated an intensive
exploration for use of high-performance membrane-based technologies. Membrane-based technologies
are exceptionally attractive as they are highly efficient, have low energy consumption, easy scale-up
feasibility and have a small carbon footprint [2,3]. Diverse membrane-based technologies have been
used for the treatment of water, including micro/ultra/nano-filtration (µF/UF/NF), reverse osmosis and
membrane distillation [4]. A common driving force for membrane separation is pressure [5]. Amongst
membrane-based technologies, the most common one is commercialized reverse osmosis, which is based
on pressure driving forces, consumes high energy and has high operational costs, thus hindering its
wider application [6]. For the development of these membrane-based technologies for water purification,
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membranes made of polymeric materials are attracting increased research interest. Polymeric
membranes are energy efficient, can be easily scaled, offer time-saving processes, they are highly
permeable to water, have stable structures, are highly water selective, have excellent solute rejection
at low operation pressures and are sturdily resistant to oxidation and fouling. Aside from polymer
membrane technology, other known processes to purify water are distillation, electrolysis/dialysis,
adsorption, chemical oxidation, ion exchange, and biological remediation. For the formation of polymer
membranes, polymers such as polyvinylidene difluoride, sulfone polymers, polyacrylonitrile, polyvinyl
alcohol/chloride, polyethylene/propylene/ amide, and chitosan are preferred. Some preparation
methods for forming polymeric membranes are electrospinning [7], track-etching, stretching, vapor
deposition, sol-gel process, phase inversion, and interfacial polymerization (IP) [8]. Thin film composite
(TFC) membranes are fabricated using IP, which is essential for commercialization of reverse osmosis
and NF processes. Most of these membranes produced via IP have polyamide as a skinny layer on
the upper part of a membrane support. The active monomers used to form functional polyamide
skinny layers are commonly m-phenylenediamine and trimesoyl chloride. The synthetic pathway for
preparation of membranes is shown in Scheme 1. The polyamide membranes derived from monomers
have good desalination properties [9].
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Scheme 1. Commercial polyamide membrane derived from monomers such as m-phenylenediamine
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Properties of membranes such as crystallinity, structure, hydrophobicity/hydrophilicity, surface
charge and roughness affect their permeate flux, flux rejection, and fouling performances.
Most polymer-based water separation membranes are fabricated based on their surface properties
that are porous super hydrophobic or hydrophilic [10]. The antifouling properties of hydrophilic
membranes are better than those of hydrophobic membranes [11]. Generally, a membrane with
higher permeate flux recovery rates exhibits better antifouling properties. The major drawbacks of
the available polymer-based membranes are the fouling of membranes caused by the adsorption
of surfactants, plugging of pores and structural degradation after long periods in use. The fouling
properties depend on the surface characteristics of membranes such as their porosity, hydrophobicity,
size and morphology of pores [12]. For hydrophobic membranes, surface roughness and a low surface
energy are essential [13], and are achieved by precise surface treatments. With the incorporation
of nanomaterials, the surface roughness is increased, and thus polymer nanocomposite membranes
are formed. In general, knowledge of nanotechnology comes from the basic elements with certain
characteristics. Further, nanotechnology encompasses terms such as nanoscale (about 1–100 nm) and
nanomaterials (nano-objects and nanostructured). Nano-objects have dimensions in the nanoscale range,
whereas, nanostructured materials have an internal core structure or surface structure that lies in the
nanoscale range. When the nanoscale and nanomaterials are jointly present in a polymer/non-polymer
matrix they form nanocomposites. Nanocomposites can be defined as nanomaterials which have a
multiphase structure which consists of at least one phase of nanoscale dimensions. Nanomaterial
properties such as large surface for adsorption, unique surface chemistry, photo- catalysis, antimicrobial,
super-paramagnetic, electric and optical properties are beneficial for improving the properties of the
resulting material. Nanomaterials could be organic, inorganic compounds or composites. For improving
the hydrophilicity and antifouling properties, approaches implemented include IP [14], coating on
substrate membranes [15,16], incorporating in situ hydrophilic surface modifying macromolecules [17],
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grafting [18], blending, or using hydrophilic polymers and monomers [19–21], etc. Incorporating
various forms of carbon nanofillers to form polymer composite membranes is one of the membrane
modification methods. Several nanofillers such as SiO2, Al2O3, Au, zeolites, Fe, Ag, TiO2, ZnO,
polyhedral oligomeric silsesquioxanes, metal-organic frameworks, etc., are currently used for the
formation of nanocomposite polymer membranes. Compared to all these materials, it is critical
to know that materials of a carbonaceous nature are environmentally friendly, have low toxicity,
facile preparations, they are abundantly available and have excellent biocompatibility. Carbon-based
materials are organic compounds containing carbon atoms that exist in the form of spheres, sheets,
ellipsoids, nanobuds/ribbons, and hollow tubes. Fullerenes, carbon nanotubes, carbon nanofibers,
carbon black, graphene, nanodiamond, CDs, carbon onions, etc. all have different structures and
bonding and are the known carbon forms. Carbon nano-forms can be produced in various shapes
such as spheres, tubes, sheets, dots and so on. The shape, size and surface properties of nanofillers
are important factors affecting the nanocomposite membrane performance, mainly reduced solute
selectivity and performance stability.

Carbon-based polymer nanocomposite membranes have recently attracted significant attention for
wastewater treatment and purification, mostly for removal of microorganisms, chemical compounds,
heavy metals, and separation of oil from water. Figure 1 presents the trend in publications using
carbon-polymer nanocomposites developed for wastewater treatment. It can be seen from the figure
that the research in the area of wastewater treatment using carbon-polymer nanocomposites is relatively
new and the research progress is boosted from 2016 onwards.
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Figure 1. Publication trends from 1990–2020 in the field of carbon-polymer nanocomposites for waste-
water treatment (Source: Google Scholar, data extracted on 31.3.2020).

With the usage of the carbon nanomaterials it is possible to achieve desirable pore size,
larger surface area, and unique surface functionalities that further provides opportunities to enhance the
water permeability, thermomechanical stability, improving hydrophilicity, and antifouling properties
of polymer-based nanocomposite membranes [22]. All the forms of carbon nanomaterials are
biocompatible [23–25]. Surface functionalization and interactions of carbon nanomaterials with
polymers and approaches to enhance the carbon-polymer interface for the bio-environment have been
described in [26] in detail. Antibacterial and photocatalysis characteristics of carbon nanomaterials add
advantages to improve the membrane functionality. Consequently, a substantial primary challenge for
membrane research lies in improving permeability, rejection, stability and antifouling of carbon-polymer
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nanocomposite membranes [27–29], with a proper characterization of the carbon and carbon-polymer
matrix interfaces during loading and assessing the efficiency of load transfer in the nanocomposites.

Looking at the current prerequisites, amongst various carbon forms: 0D fullerene and quantum
dots (carbon, graphene, graphene oxide), one-dimensional carbon nanotubes (single-walled and
multi-walled), nanofibers and nanohorns, two-dimensional pristine graphene and its derivatives,
and ordered mesoporous carbon have been used so far. With large size and higher dimensions as
fillers, carbon nanoforms restrict the performance improvements of polymer membranes as it is hard
to ensure their real incorporation inside membranes. One way is to meticulously control/reduce
the size of nanofillers. With small sized carbon nanofillers the membrane antifouling resistance
is enhanced. Further, 0D carbon nanomaterials have proven promising for membrane technology
due to their ultra-small size, rich chemical functional groups, and better antifouling properties.
0D carbon nanoparticles result in a smoother membrane surface, smaller pore size, greater permeability
enhancement in thin film nanocomposite (TFN) membranes, higher surface hydrophilicity and thus
higher water flux composites. Therefore, here we report precisely on 0D nano-forms of carbon
materials in polymer membrane composites. Figure 2 is a schematic representation of carbon 0D forms.
The crucial aspect of reviewing 0D carbon forms is that they have unique physical as well as surface
properties, which help fabricate excellent carbon-incorporated polymer membranes based on a variety
of polymers. Above all, the 0D carbon nano-forms are highly biocompatible, which is extremely vital
for wastewater treatment, environmental sustainability and human health. In addition, with heaps of
research carried out in the field of polymer membrane technology, the 0D carbon nanoforms embedded
into polymers to form nanocomposite membranes are rarely reviewed. Therefore, we review the recent
insights in the improvement and development of 0D carbon-polymer nanocomposite membranes.

Molecules 2020, 25, x FOR PEER REVIEW 4 of 28 

 

primary challenge for membrane research lies in improving permeability, rejection, stability and 

antifouling of carbon-polymer nanocomposite membranes [27–29], with a proper characterization of 

the carbon and carbon-polymer matrix interfaces during loading and assessing the efficiency of load 

transfer in the nanocomposites. 

Looking at the current prerequisites, amongst various carbon forms: 0D fullerene and quantum 

dots (carbon, graphene, graphene oxide), one-dimensional carbon nanotubes (single-walled and 

multi-walled), nanofibers and nanohorns, two-dimensional pristine graphene and its derivatives, 

and ordered mesoporous carbon have been used so far. With large size and higher dimensions as 

fillers, carbon nanoforms restrict the performance improvements of polymer membranes as it is hard 

to ensure their real incorporation inside membranes. One way is to meticulously control/reduce the 

size of nanofillers. With small sized carbon nanofillers the membrane antifouling resistance is 

enhanced. Further, 0D carbon nanomaterials have proven promising for membrane technology due 

to their ultra-small size, rich chemical functional groups, and better antifouling properties. 0D carbon 

nanoparticles result in a smoother membrane surface, smaller pore size, greater permeability 

enhancement in thin film nanocomposite (TFN) membranes, higher surface hydrophilicity and thus 

higher water flux composites. Therefore, here we report precisely on 0D nano-forms of carbon 

materials in polymer membrane composites. Figure 2 is a schematic representation of carbon 0D 

forms. The crucial aspect of reviewing 0D carbon forms is that they have unique physical as well as 

surface properties, which help fabricate excellent carbon-incorporated polymer membranes based on 

a variety of polymers. Above all, the 0D carbon nano-forms are highly biocompatible, which is 

extremely vital for wastewater treatment, environmental sustainability and human health. In 

addition, with heaps of research carried out in the field of polymer membrane technology, the 0D 

carbon nanoforms embedded into polymers to form nanocomposite membranes are rarely reviewed. 

Therefore, we review the recent insights in the improvement and development of 0D carbon-polymer 

nanocomposite membranes. 

 

Figure 2. Schematic representation of carbon types in 0D form. 

2. 0D carbon Nanomaterials (Fullerenes and Carbon Dots): Structure, Properties and Advantages 

2.1. Fullerenes 

Fullerenes are 0D nano-carbons that exist in closed-caged structure with pentagonal and 

hexagonal rings, represented with the formula of C20 + n where n is an integer. Spherical fullerene (C60/ 

buckyball), is widely explored within entire fullerene family. It has the shape of an icosahedron, 

contains 12 pentagonal and 20 hexagonal rings, a perfect symmetrical cage structure, and is 

Figure 2. Schematic representation of carbon types in 0D form.

2. 0D carbon Nanomaterials (Fullerenes and Carbon Dots): Structure, Properties and Advantages

2.1. Fullerenes

Fullerenes are 0D nano-carbons that exist in closed-caged structure with pentagonal and hexagonal
rings, represented with the formula of C20+n where n is an integer. Spherical fullerene (C60/ buckyball),
is widely explored within entire fullerene family. It has the shape of an icosahedron, contains 12
pentagonal and 20 hexagonal rings, a perfect symmetrical cage structure, and is approximately 1 nm in
size. Furthermore, carbon in C60 has sp2 hybridization. C60 can resist high pressures (over 3000 atm
pressure) and return to the original shape after the pressure is released. C60 species have an effective
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bulk modulus of 668 GPa making it harder than diamond, a high refraction index, a dielectric constant
~4, a large molecular volume, high electron affinities, and large surface-to-volume ratios. C60 is
traditionally produced by the arc-discharge method, chemical vapor deposition, or by combustion [30].
C60 is insoluble or sparingly soluble in several solvents like water. C60 dissolve in common solvents at
room temperature. Toluene, benzene and carbon disulfide (organic solvents) are the solvents most often
used to solubilize them. C60 is the only known allotrope of carbon with room temperature solubility,
and this allows straightforward processing of C60 [31]. C60 contains carboxyl, epoxy, and hydroxyl
surface groups capable of attracting water molecules. Their adsorption abilities to bond organic
molecules through their covalent or non-covalent bonds are good, which facilitates functionalization.
C60 has a spherical π-conjugated structure and the pyramidalization angle is large due to which
chemical functionalization gets easier and higher solubility of C60 in many solvents is achieved.
Furthermore, interactions of C60 with polymers are possible due to their molecular π-electron system
which provides minimum transformations. C60 can be incorporated into a wide variety of polymers via
formation of donor-acceptor or covalent bonds. By inclusion of C60 in the polymer matrix, the properties
of the polymer changes comprehensively, although the unique properties of C60 are retained [32].
Figure 3 shows SEM micrographs illustrating the morphology of poly(phenylene-isophthalamide)
membranes modified by 2, 5 and 10 wt% C60. The pristine membrane exhibits brittle fracture with
a few fracture lines shown as sharp white lines and some plastic deformations shown as rounded
white lines in image (a). Fracture surfaces with inclusion of C60 (images b-d) contains more plastic
deformations, and there is an increase in the density with increasing C60 concentration. This shows
that the polymer membrane matrix properties are strongly influenced by the carbon nanofiller. C60 has
been tested by researchers for use in the environment and is found to be beneficial for water treatment.
C60s have a low aggregation tendency and a high surface area that makes their use as adsorbents in
wastewater treatment plausible. C60 is preferred due to the low cost of production, easy operation and
availability of different adsorbents. C60 is ideal as it can adsorb organic compounds in water and is
much more effective than soot or activated carbon (a suitable adsorbent, which has a porous structure
and large surface area). The ability of C60 to adsorb compounds is realized mainly through their
interactions in dispersion solutions. Further, C60 is hydrophobic, has high electron affinity, large surface
to volume ratio, more surface defects, low biological toxicity, and above all it is a photoactive molecule.
C60 is hydrophobic in behavior and through functionalization it can be turned into a hydrophilic or
amphiphilic substance [33,34]. Although beneficial for water treatment applications, the direct use of
C60 in membrane development is challenging due to its low solubility and poor dispersibility [35].
And in most cases, it must be modified on its surface [8], or forms aggregated (nC60) [9], or mixed with
a suitable surfactant and stabilizing agents [10].
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2.2. Carbon Dots

Carbon dots (CDs) are 0D nano-carbon materials with sizes lower than 10 nm, displaying
bright fluorescence (the highest quantum yield over 90%), with low toxicity and superior
photostability [36]. CDs have intrinsic emission derived from the quantum confinement effect
due to the existence of multiple photoluminescence centers. The observed photoluminescence is
size independent, excitation dependent, has a broad emissive full width at half maxima and short
lifetimes. CDs have superior optical properties such as strong absorption, bright photoluminescence,
excellent light stability (resistance to light decomposition, photobleaching and blinking). Most CDs
contain sp2-π bonds, typically alike to nano crystalline graphite, although without structural
identification [37–41]. Concretely they are classified as carbon nanodots (CnDs), carbon quantum dots
(CQDs), graphene/graphene oxide quantum dots (GQDs/GoQDs), and carbonized polymer dots (CPDs).
All of these types have similar sizes and photoelectrochemical properties, although they differ in
carbon core structure, and surface chemical groups [42]. Amorphous quasi-spherical nanodots that lack
quantum confinement are considered to be CnDs. CnDs are mainly prepared by pyrolysis processes
or by polymerization using tiny molecular precursors [36,43,44]. While spherical quantum dots with
quantum confinement and crystalline structures are referred as CQDs, the optoelectronic properties
of these quantum dots can be altered and enriched upon surface passivation or functionalization.
The π-conjugated single graphene sheets are referred to as GQDs. By pyrolysis methods with graphite
as starting material it is possible to exfoliate graphite into a few-layers of GQDs. GQDs must not be
mistaken with CDs. The of core CDs is mainly composed of sp3-hybridized carbon, usually amorphous
and spherical, with less than 10 nm in size. On the other hand, GQDs are a disk of graphene in the
2–20 nm size range and are composed mainly of sp2-hybridized carbon. They are crystalline and have
“molecule-like” character rather than colloidal. Quantum confinement is still not well understood for
GQDs. GQDs can have different sizes and the same bandgap energy (i.e., 3.4 eV), however, the bandgap
energy of pristine graphene is 0 eV or close to 0 eV, that’s why they are named quantum dots when
compared to graphene. Although GQDs have identical photoluminescence and similar emission
properties to CDs. GQDs have molecule-like character and thus show tunable optoelectronic properties.
The position of the absorption peak is not influenced by the size of GQDs, unlike other CDs. CDs and
GQDs have complex surface functional groups, especially oxygen-related functional groups, such as
carboxyl and hydroxyl. The surface groups contribute greatly to the optical properties of CDs and
GQDs and even make them water-dispersible. CPDs have a mixed polymer-carbon structure and a
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carbon core. They comprise abundant functional groups and polymer chains on their surface. CPDs are
obtained due to the incomplete carbonization of the polymer clusters while using the hydrothermal or
solvothermal processes [45]. CPDs have prominent optical properties similar to CDs and GQDs, and in
addition have the privilege of polymer properties such as abundant functional groups, short polymer
chains and highly crosslinked network (polymer/carbon hybrid) structures. CPDs have excellent
aqueous solubility and outstanding photoluminescence quantum yield as compared to CDs and GQDs.
CPDs mostly possess strong blue and green emission, even up to several long wavelengths. They have
strong absorption in the UV region and have excitation dependent emission. CPDs with dual-emission
fluorescence intensities (red and blue emission) prepared in different pH conditions, were used to
distinguish between four types of bacteria [46]. CPDs are newly emerging luminescent CDs and still
lack use in membrane-based water treatment research.

CDs are mostly prepared using physical or chemical methods, denoted as “top-down” and
“bottom-up” methods. With the development of microwave and hydrothermal technologies, various
“bottom-up” methods were explored to prepare CDs from small molecules, graphite, polymers,
biomolecules, and biomass [47–49]. Figure 4 is a schematic diagram which shows the formation of CDs
from glycine and the formation includes dehydration, polymerization, carbonization and passivation
steps [50]. CDs possess many functional groups on their surface which includes amines, epoxy, ethers,
carbonyls, hydroxyls, and carboxylic acids [51]. Plenty of functional groups on the surface of CDs
make them highly hydrophilic in nature and provide opportunities to functionalize them with a variety
of organic, polymeric, inorganic, or biological species [26,52–55]. Since CDs are hydrophilic, they show
good solubility and stability in water. CDs exhibit excellent biocompatibility, which can allow exposed
cells or organisms to live sustainably, even at high concentrations [56–58]. In addition, CDs form high
performance NF membranes and break the trade-off effect between water permeability and selectivity.
Besides, GQDs have a strong sorption capacity for heavy metals compared to other substrates. The large
amount of surface groups/polymer chains, such as carboxyl, hydroxyl, amine, etc., give rise to their
excellent water solubility and convenience for forming composites with other materials without phase
separation. TFNs with improved water permeability, antifouling performance, bactericidal effects or
mono-/divalent ion separation capacity have been successfully developed. GoQDs-based composite
membranes have favorable water permeability and are anticipated to be a creative filler to capture
water molecules and provide shorter diffusion pathways in the membranes. Currently, the green
synthesis (i.e., where the starting materials are non-toxic reagents, eco-friendly and biosafe) approach
has gained a lot of popularity in the field of CQDs synthesis which has several advantages for the
environment [57].
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3. Biocompatibility Implications of 0D Nano-Carbon in Water Effluent Treatments

During the process of wastewater treatment using carbon-polymer nanocomposite membranes,
it is possible that the 0D nano-carbons might enter and remain in freshwater ecosystems. Thus,
this section describes the study of their biocompatible impact. C60 is apt as a representative material
for environmental studies. C60 is reported to be either not cytotoxic or harmful under specific
conditions [59,60], and have biological consequences that are neutral [61–64]. The antibacterial
activities of water-soluble C60 derivatives [65–67] or nC60 have been investigated, and the studies have
shown that when C60 were prepared under specifically low salt conditions, they were found to be
toxic to bacteria [68–70]. An anaerobic biodegradation of wastewater sludge was performed using C60.
The analysis showed no significant effect on the structure or function of the anaerobic community [71].
For a basal soil respiration study, 1 µg of C60 per gram of soil in aqueous suspension or 1000 µg C60 per
gram of soil in granular form were used. From denaturing gradient gel electrophoresis profiles a slight
impact on the structure (as shown in Figure 5) and on the function of the soil microbial community and
processes was seen [72]. Furthermore, C60 is not cytotoxic towards human and animal cells in vitro
although acute toxicity is observed in animal tissues in vivo [73–78]. By modifying the surface, the C60

can interact differently to the biological molecules and make them cytotoxic [79,80]. Thus, likely only
modified C60 could be cytotoxic. C60s are used as bio-receptors and sensors, as they are biocompatible
with living organism-based nanomaterials [81–85]. Overall, C60 is non-toxic and can be safely exploited
for water treatments such as filtration, as adsorbents, and membrane technologies for the environment.
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Figure 5. Denaturing gradient gel electrophoresis profiles of 16 S rRNA fragment amplified for three
samples from the control soil and soils treated with tetrahydrofuran THF-C (control without carbon),
1 µg of C60 per gram of soil in aqueous suspension and 1000 µg C60 per gram of soil in granular form
after 180 days of incubation. M is the marker. Reproduced with permission from [72]. Copyright©
2020, American Chemical Society.
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Few studies have examined the environmental behavior and toxicology of CDs on natural mineral
particles [86–88]. Individual types of CDs possess distinct physicochemical properties, which in turn
determine their potential toxicity. Generally, the carbon itself is not toxic and if any cytotoxicity is
reported it is primarily due to the surface passivating agents used [89]. Even if CDs are modified
with highly cytotoxic profile agents, they still can be used for in vivo applications, provided specific
conditions are used such as low concentrations and short incubation times. CDs are safe for health
and free of environmental concerns [89,90] and have been developed for nanobioprobes and clinical
treatments. CDs (with or without surface passivation) have low toxicity and can be internalized
into cells for imaging purposes [91,92]. CDs have been demonstrated to cause no cytotoxicity at
concentrations of approximately 0.1–10 µg/mL (which is 10–1000 times higher than the normal amount
required for imaging applications) [40]. The synthesis of CDs using green synthesis methods represents
an improvement in biocompatibility and low cytotoxicity, which is crucial for the environment [57].

4. Development and Influences of 0D Carbon Nano-Forms Incorporated in Various Polymers to
Form Nanocomposite Membranes

4.1. Fullerene-Incorporated Polymer Nanocomposites

C60 is often chemically functionalized so as to enhance the mixing capability of C60 with other host
polymers [93,94]. A sequence of studies have shown that when the polymer membranes are modified
with C60, the membranes’ initial properties are improved [95]. The outstanding activity towards the
damage by radicals, and excellent thermal as well as antifouling performance are reported. Usage of
aromatic polyamides, such as polyphenylene isophthalamide shows promise for NF, UF, distillation,
and reverse osmosis. These polymers are mechanically resistant, chemically stable, have low cost,
ease of workability and rigidity, and have high porosity [96–99]. Novel membranes are made using
aromatic polyamides, typically modified by polyhydroxylated C60 (fullerenol/C60(OH)n), carboxy C60

and C60 derivatives with L-arginine via a solid phase synthesis route. These C60-modified polyamide
membranes show high permeation fluxes and enhanced selectivity [100]. With the modification of
aromatic polyamides by C60 derivatives, the structural environment of the polyamide changes (due to
the noncovalent bonding between them) and the internal composite membrane structure changes.
In addition, it is observed that the surface hydrophilicity, membrane density and surface roughness
increases. Figure 6 shows the graphical form of mixed matrix pervaporation (PV) membranes prepared
by Dimitrenko et al., and Table 1 shows the PV separation indexes. From Table 1 it can be seen that
aromatic polyamide membranes modified with fullerenol shows the best transport properties for
the PV of azeotropic methanol-toluene (72/28 wt%) mixtures. In addition, in comparison to other
C60 derivatives, membranes containing fullerenol show the highest permeation flux (0.649 kg/(m2h)),
and enhanced selectivity with respect to methanol. In another report, a polyphenylene isophthalamide
membrane was modified by adding 10 wt% C60 via a solid-phase method to form nano-UF membranes.
With the increase in C60 content the membrane rigidity was enhanced and showed improvement in its
technological parameters [96]. In addition, polyphenylene isophthalamide with 10 wt% C60 membranes
showed increased flux, reduced recovery (0.8–0.9) and lower protein sorption [101]. Polyphenylene
isophthalamide with C60 improves the PV properties as well [32]. Furthermore, the physical properties
of membranes such as the intrinsic viscosity are significantly influenced by the inclusion of C60 in
a polyphenylene isophthalamide matrix. With the inclusion of C60, the structure of the membranes
becomes more compact, denser, and reveals a non-monotonic effect on the glass transition temperature.

Asymmetric polymer membranes based on the hydrophobic polymer poly(2,6-dimethyl-
1,4-phenylene oxide) (PPO) with inclusion of 2 and 10 wt% C60 are prepared using a solid-phase
interaction method. These PPO-C60 membranes are prepared to study removal and adsorption
behaviors of estrogenic compounds. The morphology of the membranes showed an increase in the
pore size and porosity on the dense top layer of PPO-C60 membranes as compared to pure PPO
membrane. The permeation flux is reported to be higher for PPO-10 wt% C60 membranes. Notably,
the effect on the inclusion of C60 in PPO matrix depends on the approach used for modifying the
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matrix [32]. Changes in the polymer properties after modification by C60 have been demonstrated
using polymers such as poly(vinylpyrrolidone) (PVP) and polystyrene (PS) [102–104]. By spectroscopic
analysis, it has been proven that donor-acceptor interactions exist between the polymers and C60 in
PS-C60 [104] and PVP-C60 [96] complexes. It is reported that membranes formed using fullerenol and
PVP-C60 are useful in water treatments as these membranes can help to target specific pollutants or
microorganisms in the water, and are more sensitive to superoxide or singlet oxygen [105]. C60 and
C60(OH)12 -doped Nafion composite membranes were fabricated by Tasaki et al. through a solution
casting method. This method opened the possibility to directly incorporate C60 into immiscible
polymers without any chemical modification. By using this method, the characteristics of C60

and C60(OH)12 were retained in the Nafion composite membranes [106]. Photoconductivity and
antimicrobial activity studies have been performed using C60 incorporated into a variety of polymers
such as polycarbonate, polyethylene, PS-polyisoprene-PS, PS-polybutadiene-PS, polythiophenes,
poly(bromostyrene), poly(n-vinylcarbazole), and 1,4-polydiene [107–113].Molecules 2020, 25, x FOR PEER REVIEW 10 of 28 
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4.2. Carbon Dot-Incorporated Polymer Nanocomposites

CDs have plenty of hydrophilic carbonyl and carboxyl groups on their surface which benefits their
uniform dispersion in water. In addition, these surface functional groups provide an immense tendency
to get attached to the pendant polar groups that are present in polymers. Further, these functional groups
help to ease the membrane fabrication process while incorporating CDs into polymers and provide better
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membrane performances [114–117]. The working span of polymer composite membranes gets affected
due to stress dissipation, lack of reinforcement homogeneity and may suffer from thermal stability.
In this context, CQDs act as distinct reinforcers by providing uniform-dispersion, selective transport
sites for separation membranes and play a significant role in the remediation. Few other advantages
of CDs are their carbon core, finite tuned size, good dispersion in organic/aqueous solvents [116]
and ease of synthesis [118]. Overall, their nontoxic nature permits a high potential use of CDs for
modifying polymer membrane properties for water treatment uses. For the fabrication of polymer
nanocomposite membranes, the surface chemistry of CDs is tuned so as to accomplish better membrane
stability and performance as reported in references [114,115,119]. Sun et al., tuned the CQDs with a
variety of functional groups such as carboxyl, amino and sulfonic acids and incorporated them in
a polyamide layer via IP and studied the properties of the resulting membranes. The membranes
functionalized with sulfonic acid functional groups on CQDs were reported to have a permeate flux of
42.1 L/m2h and a Na2SO4 rejection of 93.6%, and was endowed with the best antifouling performance.
These changes in the membrane properties were due to the formation of looser polyamide chemical
structures and a largely negatively charged membrane surface due to the incorporated CQDs, whereas,
the membranes functionalized with amino-modified surface functional groups on CQDs exhibited
better retention properties and exhibited a less negatively charged membrane surface compared to the
non-functionalized CQDs-polyamide composite membranes [117]. CD-based membranes for water
treatment are formed by two main approaches. First is CDs incorporated into a thin polymer layer,
known as TFN membranes, where typically CDs are dispersed in the aqueous phase and subsequently
contribute in the IP process to form TFN membranes. TFN membranes are produced via techniques
such as coating in addition to IP processes, although large-scale preparation is a challenge. Secondly,
mixed matrix membranes are composed by adding CDs in polymer matrices to form homogenous
solutions via various spinning methods. Here the challenges are the uniform dispersion of CDs
and leaching [120]. Approaches such as coating of CDs on the top layer of membrane surface are
also reported.

Polyamide TFN membrane made by IP techniques differ in characteristics (higher water flux,
separation capability, pH tolerance) from the asymmetric membranes which are formed via phase
inversion techniques. Here, it is worth mentioning that particles with larger size allow faster fouling
of membranes [121]. Conversely, using ultra-small sized nanoparticles, such as CQDs allow one to
significantly enhance the membrane antifouling resistance [122,123]. Li et al. incorporated CDs which
are super hydrophilic and have quantum sizes of 6.8 nm into a polyamide layer. The incorporation
of such CDs led to higher surface hydrophilicity and water flux for the formed membranes [116].
Bi et al., fabricated TFN membranes incorporated with ~2 nm GQDs via IP of piperazine and trimesoyl
chloride. The GQDs were added as aqueous additives into the membranes and poly(ether sulfone)
was used as support membrane. Addition of small-sized GQDs efficiently tuned the surface roughness,
membrane structure and hydrophilicity of the formed TFN membranes [122]. Figure 7 is a schematic
representation of flow of water passing through the membrane channels at the interface between
the GQDs and the polyamide layer. These membranes present excellent water permeation, due to
a synergistic effect of the surface hydrophilic GQDs. Additionally the graph in Figure 7 shows the
antifouling properties of the GQD-based polyamide membranes that are assessed through a dead-end
filtration experiment. The foulants used were bovine serum albumin, humic acid and emulsified oil.
The results showed that steady water fluxes under harsh fouling conditions could be achieved using
GQD-polyamide TFN membranes.
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Figure 7. Schematic diagram of water channels in GQDs-polyamide TFN membranes. The graph
shows the time-dependent flux of the prepared NF membrane (0#) and the GQDs-polyamide TFN
membrane (3#) during the filtration of bovine serum albumin (BSA), humic acid (HA), and emulsified
oil solutions. The experiments were carried out under operation pressure of 0.2 MPa. Reproduced with
permission from [122]. Copyright© 2020 Elsevier B.V.

Another report showed that nitrogen-doped GoQDs-polyamide TFN membranes could be
developed. The formed amine groups on the GoQDs surface due to nitrogen doping were used as
linkers to form chemical bonds between GoQDs and the polyamide matrix. The GoQDs formed
stable dispersions, with improved thermal stability and surface hydrophilicity. Further, the water
permeability increases thrice with maintained salt rejection, which is promising for high flux water
desalination applications [119]. µF and UF membranes made from poly(vinylidene fluoride) (PVF),
are widely used in industrial wastewater treatment, as the PVF membranes have superior chemical and
thermal stability, high resistance to radiation and strong mechanical properties [124]. Zeng et al. used
covalent bonding of GoQDs onto amino-modified PVF membranes, and found improved hydrophilicity,
anti-bacterial, anti-fouling performance and an increase in water flux [125]. Moreover, the water
contact angle was reported to decrease from 118.5◦ to 34.3◦ due to the coating of GoQDs on the PVF
membrane surface. Novel GQDs-PVF nano-fibrous mixed matrix membranes are prepared for water
desalination via an air gap membrane distillation process [126]. By adding GQDs the formed PVF
membrane structure is more compact, has rougher surface and higher wetting resistance. CDs with
tailored functional groups were facilely synthesized and embedded into polyethyleneimine matrix,
and then dip-coated on polyacrylonitrile support to prepare composite membranes. The method
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used is IP, and these membranes are prepared to study polar organic solvent transport across the
membranes for NF. The low and high carbonation degrees of CDs were obtained by decreasing glycerol
mass in the reaction solution while modifying the surface of CDs. The low carbonation CDs could
facilitate polar solvent migration through the membrane by providing bonding sites of hydrophilic
groups (-OH, -CO2H, -NH2). In contrast, high carbonation CDs showed an increase of non-polar
solvent uptake and permeation via their hydrophobic domains [114]. Another report shows that the
membrane hydrophilicity is improved by Na+ functionalization on CQDs [127,128], as the existence
of Na+ containing groups facilitates uniform dispersion of CQDs in aqueous solutions. Moreover,
Na+-containing CQDs exhibited the highest water flux of 53.54 L/m2h and power density of 34.20 W/m2

for pressure retarded osmosis membranes [115]. The Na+ functionalized on CQDs is dispersed during
the IP in the polyamide selective layer to form novel TFC membranes, and the membranes showed
effective changes in the surface structure of membranes due to their rich functionality and small size.
The membranes were prepared to remove heavy metals via NF [128]. TFN membranes incorporated
with GQDs embedded in a polyamide matrix via IP of piperazine and trimesoyl chloride were fabricated.
The formed GQDs-polyamide TFN membranes exhibited enhanced water permeability and antifouling
properties [122]. The amine groups of piperazine and hydroxyl or carboxyl groups of GQDs reacted with
the acyl chloride groups of trimesoyl chloride at the oil/water phase zone during the IP method, which
resulted in an ultrathin polyamide layer on the porous substrate. Nanocomposites consisting of CDs and
polypyrrole, with high electrical conductivity exhibited high selectivity and sensitivity for the detection
of trace amounts of picric acid that are present in water and soil [129]. Polyacrylonitrile-CQD composite
nanofibers were produced by electrospinning and were characterized. And these composites could
have possible future applications in wide areas of research such as smart clothing, high-performance
aircrafts, sensors, photochemical reactions, biological imaging, and optoelectronic devices [130]. Most
of the prepared polymer membranes based on 0D carbon forms are spherical dot-like, agglomerated or
sheets and are in the form of TFC (with nanocomposite substrate) and TFN (with porous substrates or
surface-coated TFC). Few researchers have prepared TFC on hollow fiber membranes. Efficient polymer
membranes are prepared using nanofibrous GQDs. Reports show that by incorporating CDs the
membranes form finger-like structural morphology with a smooth surface, and even porous fingerlike
macrovoid structural membranes are reported using GoQDs sheets. C18-CQDs that have a knitted
structure were used to prepare TFN membranes with a substrate composed of fibers. C60(OH)24–28

with TFN showed a membrane surface with leaf-like structures. Precisely, incorporation of nano-sized
CDs, irrespective of their shape, into the polymeric matrix to form membrane enhances the membrane
properties which are mostly the mechanical strength and antifouling property.

5. 0D Carbon-Incorporated Polymer Nanocomposite Membranes for Wastewater Treatment

Carbon-polymer nanocomposite membranes are prepared by incorporating various forms of
nano-carbon (filler) into a polymer matrix [131,132]. The carbon-polymer nanocomposite membranes
are used in broad application areas for desalination, antibacterial applications, and removing inorganic
contaminants, dyes, natural organic matter, separation of nano-matter, water flux oil rejection,
and emerging contaminants of concern. Mainly, these 0D carbon nano-forms incorporated into
polymer matrices have demonstrated immense capability and potential for eliminating various water
pollutants such as pathogens, heavy-metal ions, and recalcitrant organic compounds [133–135]. Thereby,
desired efficient water-treatment technologies such as 0D carbon-polymer nanocomposite membranes
can act as supplements or substitutes for the traditional ones in the future.

5.1. Fullerene-Based Polymer-Nanocomposite Membranes

In studies by Brunet et al. hydrophilic functionalized C60 species were prepared and by utilizing
the photocatalytic property of C60 they could be used to kill pathogenic microorganisms that are
present in water [105], thus showing the benefits of C60 for water treatment. Further, sorption is one of
the methods to get rid of heavy metals such as cadmium, lead, zinc, nickel, cobalt, copper, arsenic,
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and mercury, etc., from wastewater effluents. The sorption capacity of metals is usually associated with
surface defects and the lattice structure of the material used [136,137]. Conventional materials have
low metal sorption capacity and low metal removal efficiency while treating wastewater. By using C60,

a porous structure was developed with an increase in the hydrophobicity of the prepared adsorbents
and the results showed an improvement in metal sorption capacity. For instance, using 0.001–0.004%
of the C60 in activated carbon, the sorption capacity for heavy metals such as lead (II) and copper
(II) increased by 1.5–2.5 times [138]. Additionally the electronic properties of C60-based composite
materials could be utilized as they have been reported to show higher specific capacitance of 135.36 Fg−1,
and better retention time [139]. Alekseeva et al. reported that a C60-based nanocomposite-PS film which
had better efficiency for the removal of Cu2+ ions, following a Langmuir model [140]. The fabrication
of C60-based polymer film increases its hydrophobicity, which makes them better in adsorption and
easier in recycling [141]. Asymmetric UF membranes based on poly(phenylene isophtalamide)-C60

composite membranes were prepared by a phase inversion technique [96]. The phosphate buffer flux
reduced recovery was estimated by static sorption tests. For the static sorption tests, the membranes
were immersed in a protein solution for 20 h. The results showed that with an increase in C60

content, the protein adsorption decreases on the membrane surface and shows better values of flux
reduced recovery rates. Dmitrenko et al., studied the transport properties of dense polyphenylene
isophthalamide membranes modified by C60 and its derivatives, and tested the PV separation of
methanol/toluene mixtures, including azeotropic compositions [100]. The results showed an improved
permeation flux of 0.084–0.214 kg/(m2h) and a high level of selectivity. Antibacterial membranes
prepared by grafting C60 with PVP showing the safety of using C60 have been reported for water
disinfection. C60s act as nano-adsorbents in the membranes and improve the membranes’ adsorption
efficiency. Hydrophobic PPO membranes incorporated with various compositions of C60 were studied
for removal and adsorption behaviors of the natural hormone estrone. The results showed the
importance of membrane pore size and internal structure [142]. C60 incorporation in hydrophobic
polymers improved 8-fold the permeate flux compared to pristine polymer membranes. For long term
filtration, 10 wt% C60-PPO nanocomposite membranes showed good removal performance of at least
95% of permeate, attributed to C60

′s adsorption capabilities and steric hindrance effects. Plisko et al.
fabricated novel polyamide-C60(OH)22–24 TFN hollow fiber membranes [143]. C60(OH)22–24 was
incorporated via an aqueous phase in triethylenetetramine onto the polysulfone substrate during IP.
The TFN membrane containing 0.5 wt% of C60(OH)22–24 demonstrated the best antifouling performance
for removal of the organic matter. Perera et al. fabricated C60(OH)24–28 incorporated TFC membranes
for forward osmosis by IP process, showing improved specific desalination performances [144].
Superior desalination performances such as water flux, reverse salt flux, antifouling propensity,
water permeability and salt permeability of the fabricated C60(OH)24–28 based TFN membranes were
presented. Introduction of various C60(OH)24–28 loading on the polyamide topmost surface yielded an
increase of pure water flux, decreased salt rejection, and superior antifouling performance. With a
loading of 400 ppm C60(OH)24–28, a water flux of 26.1 L/m2h, higher than that of the pure TFC membrane
was reported. Shen et al. developed a novel TFN membrane by loading fullerenol via IP. With 0.01%
(w/v) fullerenol, the membrane revealed excellent antifouling ability, stable and high efficiency in
Mg2+/Li+ separation with a high separation factor of 13.1. These membranes formed were suggested
to have great potential in the recovery of Li+ from seawater [145]. Liu et al. reported C60 grafted
graphene oxide membranes with a fixed interlayer spacing around ∼12.5 Å [146]. Figure 8 shows the
fabrication process, the water desalination setup and the schematic representation of blockage of anions
and cations through the membrane. The membranes were reported to obtain a high water flux up to
10.85 L/m2hbar (which is high enough for brackish water desalination), and 0.1883 mol/m2hbar ion
permeation rate at an applied pressure of 5 bar. Although C60 has great potential for water adsorption
application, the cost of production into large quantities is high, which restricts their convenience in
utilization. Thus, there are very few reports on C60 for wastewater treatments so far.
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Figure 8. Fabrication process and water desalination setup using C60 grafted graphene oxide membranes.
The photograph shows (a) graphene oxide membrane without C60, (b) C60 grafted graphene oxide
membrane, (c) is the optical micrograph of the cross-sectional area with scale bar 100µm. The micrograph
shows 148 µm thick graphene oxide laminates (red arrow) embedded in 81 µm thick epoxy (black
arrow). Epoxy and graphene oxide-C60 layers are labeled in the figure. (d) graphene oxide-C60

membrane encapsulated with epoxy and glued into a rectangular slot within a plastic disk of 47 mm
in diameter, (e) graphene oxide-C60 membrane inside the water desalination setup, (f) and (g) are
schematic setup of flat membrane made of graphene oxide and C60 hybrid for water desalination.
C60 was grafted between the laminates of graphene oxide. The pressure is applied from the top and
when the water passes through the membrane the anion and cation are blocked. Reproduced with
permission from [146]. Copyright© 2020, American Chemical Society.

5.2. Carbon Dot-Based Polymer-Nanocomposite Membranes

CDs can be used as adsorbents to remove contaminants from wastewater [147]. Wang et al.,
reported the formation of periodic mesoporous organosilica embedded with CDs and adopted them as
an adsorbent for the removal of toxic organic pollutants (2, 4-dichlorophenol) and inorganic metal
ions (mercury (II), copper (II) and lead (II)). The adsorptions followed Langmuir and Freundlich
models and obeyed pseudo-second-order kinetics [147]. CQDs have high-performance efficiency in
water treatment membranes as they are hydrophilic by excellence, have desirable size, tunable surface
functional properties, and favorable polymer affinity. It is shown that the separation performance of
the CQD-based polymer membranes can be effectively modulated by tuning the functional groups
on the surface of CQDs [117]. A 5 nm CQD with tunable functional surface groups i.e., low and
high carbonation degree, was easily synthesized and embedded into a polyethyleneimine matrix,
and then dip-coated on a polyacrylonitrile support to prepare composite membranes. The prepared
CQD-based NF membranes were fabricated for separation of organic solvents. Solvent resistance,
solvent flux, and solute rejection were evaluated. It was observed that low carbonated CQD slightly
suppresses the uptake and permeation for non-polar solvents. Conversely it enhances permeation
for polar solvents. The membranes which were prepared with highly carbonated CQD acting as a
non-polar solvent accelerator through their hydrophobic domains, and shows that the permeation
of polar solvents is blocked [114]. CQD-based NF membranes have been proven efficient for biogas
slurry valorization to reduce the environmental pollution [148]. The membranes prepared for biogas
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slurry valorization consisted of hydrophilic CQDs interlayered between the substrate and selective
TFC NF membrane layers. CQDs as interlayers resulted in an enhanced water permeation of the
NF membranes as they provided channels for fast water and ion transport, thus demonstrating a
fantastic separation performance. CQDs as excellent membrane modifier for the desalination and
wastewater treatment have been reported by Koulivand et al. [149]. For modifying the membrane
properties, CQDs were synthesized by a pyrolysis method and were added to the polyether sulfone
casting solution using a non-solvent induced phase inversion technique. Addition of CQD into the
polyether sulfone membrane matrix, resulted in improved membrane morphology, porosity, surface
charge, permeability (76.5 kg/m2h), and enhanced fouling resistance of the membrane. The fouling
resistance was enhanced due to the decreased water contact angle and increasing surface hydrophilicity
provided by the incorporation of CQDs. In addition, separation tests of reactive red 198 dye and
salts (Na2SO4, MgSO4, and NaCl) showed higher retention performance due to the presence of CQDs
in membranes. Super hydrophilic 6.8 nm CQDs (0.02 wt%) were incorporated into the selective
layer of polyamide TFN reverse osmosis membrane [116]. The CQD-polyamide TFN membrane
exhibited promising desalination performance with a water flux of 87.1 L/m2h, salt rejection of
98.8% for long durations. Zhao and co-workers reported 3.2 nm-sized CQDs immobilized onto the
polydopamine layer which is grafted on the surface of poly(ether sulfone) substrate were prepared for
pressure retarded osmotic power generation and waste water treatments. Due to the immobilization
of CQDs, the membranes possessed high power density, enhanced antibacterial and anti-biofouling
activity [32]. Na+ functionalized CQDs have been preferred in the forward osmosis membranes as
it is reported that the presence of CQDs draw solutes and attain the highest water flux for seawater
desalination [127]. A comparative study was carried by Gai et al. where three kinds of CQDs
(i.e., original, Na+ functionalized at pH 5 and pH 9) were synthesized and then embedded into
polyamide layers as pressure-retarded osmosis membranes [115]. It was demonstrated that the
Na+ functionalized CQDs with pH 9 exhibited the highest water flux of 53.54 L/m2h and a power
density of 34.20 W/m2. Na+ functionalized CQD nanofillers were used to develop TFN hollow
fiber membranes via IP for brackish water desalination. Water and salt permeability, water flux
and solute rejection using the prepared membranes were carried out. The water flux and salt
rejection were increased to 53.54 L/m2h and 98.6% with the loading of Na+ functionalized CQDs
as nanofillers. Although precise measures to design of a polymer-CQD nanocomposite are lacking,
it may reveal a huge potential in water treatments [150]. Moreover, He et al. reported the influence
of Na+ modified on CQDs for the formation of polyamide TFN membranes. The surface structure
and hydrophilicity of the formed TFN membrane were improved due to the uniform dispersion
of CQDs possible due to Na+ functionalization [128]. The influence of Na+ modified on CQDs
(0.05 wt%) showed water permeability of 10.4 L/m2hbar and impressive rejections of 97.5%, 98.2%,
and 99.5% towards SeO3

2-, SeO4
2- and HAsO4

2-, with a superior antifouling property and robust
long-term stability. The formed membranes due to functionalization of Na+ are anticipated to show
improved separation performances of selenium and arsenate ion contaminations in surface and
ground water. Lei et al. functionalized superior hydrophobic C18-CQDs by grafting CQDs with
octadecylamine [151]. Superior hydrophobicity was achieved by cross-linking C18-CQDs with cotton
textile using tolylene-2,4-diisocyanate. These hydrophobic C18-CQDs membranes were prepared for
the separation of oil-water (99%) and exhibited unique selectivity, feasible for water desalination.
Owing to the photocatalytic properties of CQDs, NF CQDs-polydopamine membranes are fabricated
as durable self-cleaning membranes (the fabrication process is shown in Figure 9) [152]. The insertion
of the polydopamine–photoactive CQDs sandwich can degrade organic molecules adsorbed on the
surface of the membrane under visible light, and show it is promising for low-cost fouling remediation
and for self-cleaning.
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Punrat et al. prepared polyaniline-GQD nanocomposite membranes to assess Cr (VI) levels in
mineral drinking water and in deteriorated Cr-plating samples. The recovery rate was 80.3–106% [153].
Bi et al. [122] prepared GQDs-polyamide TFN-NF membranes which are reported to have a maximal
water permeance of 510 L/m2hMPa. This water permeance is nearly 6.8 times higher than that of the
pristine polyamide membrane and it has good antifouling performance. In another report, Bi et al. [154]
reported a GQDs incorporated in NF membranes that exhibited an ultrafast water permeance of
244.7 L/m2hbar, about 5–6 times higher compared to previous reports, with a rejection of 92.9% and
98.8% for Alcian blue and Congo red. Wu et al. fabricated a GQDs-based solvent resistant NF membrane
via IP on hydrolyzed polyacrylonitrile support and the acetonitrile and hexane permeances reached
469 and 508 L/m/2hMPa, respectively [155]. Li et al. [156] prepared GQDs-polyimide TFN membranes
with improved solvent resistance and achieved higher ethanol permeances. The membranes had a
sandwich-like structure using low concentrations of m-phenylenediamine and trimesoyl chloride
during IP. Due to the incorporation of GQDs the membrane thickness (about 25 nm) was reduced
and exhibited ultra-low surface roughness (average less than 2 nm) Further, the GQDs incorporated
membranes showed an increased Rhodamine B rejection (from 87.4% to 98.7%) and an increased
ethanol permeance (from 33.5 to 40.3 L/m2h MPa − 1). In addition, the prepared membranes have
superior solvent resistance, antifouling properties for long durations. GQDs functionalized with
amino groups to form TFN membranes for solvent resistant NF membranes are reported [157].
The membranes exhibited excellent solvent resistance in strong polar solvents at high temperatures.
Seyedpour et al. [158] incorporated nano-sized bactericidal GQDs in the active layer of forward
osmosis membranes. The membranes’ antimicrobial activity was improved and better forward
osmosis performance was achieved. Xu et al., reported GQD-polyethyleneimine TFC membranes for
forward osmosis desalination [159]. The covalent bonds formed between GQDs and polyethyleneimine
helped to improve the stability of the membranes during filtration and hydraulic cleaning processes.
The membrane loaded with 0.050 wt% GQDs had a hydrophilic and neutrally charged membrane
surface, exhibiting enhanced water flux of 12.9 L/m2h, and good anti-fouling performances. Thus,
GQDs-based polymer nanocomposite membranes present great potential in applications such as
desalination, purification and wastewater treatments.

Further, GoQDs have a particular size, shape, and edge structure and an excellent dispersion into
the polymer matrix, which is desirable for separation and permeation applications, although few reports
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exist for water purification membranes using GoQDs. Song et al. were the first to incorporate GoQDs as
nanofillers to form TFN reverse osmosis membranes. The membranes showed improved antifouling and
chlorine resistance for desalination and water reclamation applications [160]. Fathizadeh et al. [119]
fabricated nitrogen-doped GoQDs polyamide TFN membranes via IP. The membranes’ water permeance
was 2-fold more than that of the membranes without GoQDs with 93% salt rejection. Zeng et al.
reported covalently bonded GoQDs onto amino-modified polyvinylidene fluoride TFN membranes.
Due to the unique structure and uniform dispersion of GoQDs in the membranes, the UF membranes
had enhanced bactericidal, anti-biofouling performances, long-term stability and durability [125].
The water flux permeation increased from around 500 L/m2hbar to >3800 L/m2hbar. The membrane’s
hydrophilicity was improved with a decrease in water contact angle. Zhang et al., fabricated a
low-pressure GoQDs based tannic acid film TFN NF membrane by IP [161]. The Congo red and
methylene blue rejections were 99.8% and 97.6%, with a water flux of 23.33 L/m2h, due to the improved
hydrophilicity, smooth, and negatively charged surface of the formed membranes. Nitrogen-doped
GoQDs (0.02 wt%)-based polyamide TFN membranes were prepared which showed a drastic change
in the water flux, with preserved high salt rejection due to a superior thermal stability, improved
hydrophilicity, and a higher effective surface area [119]. GoQDs have been integrated into poly(vinyl
alcohol) and evenly cast on a polysulfone support membrane for PV. By integrating GOQDs on the
membrane, the separation performance was changed with excellent dehydration of alcohol/water
mixtures [162].

In Table 2, the average quantum size of all the 0D carbon nanofillers mentioned above used in
polymer membrane technology is in the range between 1 nm to 20 nm. When the nanofillers are
functionalized or surface-modified, the size of the 0D carbon forms increases. The resulting membrane
pore size or thickness changes and is dependent on the concentration of the nanofillers. For a particular
case, blockage of the pores due to the presence of nanocarbons is also mentioned. From Table 2,
a comparative study shows that the permeation flux is higher when using GQDs and GoQDs as
nanofillers in polymer nanocomposite membranes and the solvent rejection is on average mostly above
90% for all kinds of nanocomposite 0D carbon fillers.

Table 2. Various types of 0D carbon fillers used for water purification. The table includes the quantum
sizes of nanofillers. And after incorporation of nano-carbon in polymer membranes, their resultant
membrane pore sizes and their permeation fluxes.

Nanofiller Size of Fillers (nm) Resulting Membrane Pore Size Filteration Ranges
(L/m2h.bar)/ LMH.bar Ref.

C60 0.14 - - [140]

C60 - Bigger pore size with inclusion
of C60

- [142]

C60 - 17 nm - [96]

C60 0.375 - - [32]

C60 (aggregates,
hydroxylated coated) 4.4–122 - - [105]

C60 and derivatives 9–15 - 0.084–0.214 kg/(m2h)
(5 wt% fullerenol)

[100]

Polyhydroxylated C60 - 0.639 nm 6.7 LMH.bar [145]

C60(OH)24–28 ~1 0.86 to 0.59 nm (thickness) 26.1 LMH [144]

C60(OH)22–24 14–59 33–34 nm to 53–55 nm
(thickness) [143]

GO laminates by
grafting C60molecules ~10 - 10.85 LMH.bar [146]

CDs 2–5 ~10 nm pore size improves with
high content 76.5 (kg/m2h) [149]

CDs 6.79 ± 1.65 Pores are blocked 88.7 LMH [116]
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Table 2. Cont.

Nanofiller Size of Fillers (nm) Resulting Membrane Pore Size Filteration Ranges
(L/m2h.bar)/ LMH.bar Ref.

CDs 2–5 >100 nm 42.6 LMH [114]

mesoporous
organosilica embedded

with CDs
~1 ~5.50 nm - [147]

CQD 6 <2 nm 3.6 to 9.72 LMH.bar [148]

CQDs 3.3–3.4 - 42.1 LMH [117]

CQD 4–6

pores of CQDs-TFC become
larger while the pores of

PDA-CQDs-TFC becomes
smaller than that of TFC (0.2–0.8

nm)

14.6 LMH.bar [152]

CQD and Na+ - CQD 3 and 9 - 53 LMH at 23 bar [115]

CQD and Na+ - CQD 2 and 6 - 57.65 LMH [150]

Na+ - CQD avg. 3.5 0.5 nm 29.8 LMH [127]

Na+ - CQD 2.5 to 4 0.5 (high composition)
−0.66 nm (low composition)

10.4 LMH.bar [128]

C18-CQDs 38.5 ± 11.7 avg. 200 µm
(>600 L/m2

·min1)
and water vapor
(>145 kg/m2

·h1).
[151]

GQD 2 <1.5 nm increases with GQD
content (0 to 0.39 wt%) 15 to102 LMH (0.2 Mpa) [122]

GQDs - Fiber diameter decreases with
GQDs to 279.81 ± 84.1 nm 10.8 and 13.6 kg/m2h [126]

GQDs 1.9
From 0.77 to 0.67 nm with

increase of GQDs (smaller pores
and narrower pores)

18.3 LMH.MPa [156]

GQDs 3.4–8.8 thickness decreases 3.35±0.18 LMH.bar [158]

GQDs 2.19 pore size decreases with GQDs 12.9 LMH [159]

GQD flakes ~1.86 0.2 wt% and 0.4 wt% GQDs
conc. were 2.42 and 2.64 nm

244.7 LMH.bar
5–6 times higher [154]

Amino functionalized
GQDs nanosheets ~1.6 0.74 to 0.66 nm pore size

decreases with GQDS 41 LMH.MPa [157]

GoQDs ~5.5 - - [125]

GoQDs 7.5–21 - 37.5 LMH.bar [160]

Nitrogen-doped GoQD 3–8 >10 and 30 nm at interface
500 to >3800 LMH while

improving
antibacterial properties

[119]

GoQDs sheets 15–20 - Decreased to
436.2 ± 27.4 g/m2h [162]

Furthermore, the 0D carbon nano-forms are preferred over other types of fillers as they are
ecofriendly, have easy fabrication processes, reduce the environmental pollution and enhance the
economic profit. From the above mentioned 0D carbon fillers for polymer membrane fabrication,
the resulting membranes opt to show good antifouling and anti-biofouling properties, more compact
and stable structures, durability for long operating times (even at higher temperatures), superior
resistance to chemical reagents, desirable surface hydrophilicity/hydrophobicity, enhanced membrane
density, low toxicity, and long-term organic solvent stability. These membranes are mostly fabricated
for separation (biomolecules, oil-saltwater, selenium and arsenic, metals), self-cleaning, desalination,
purification and wastewater treatments.

6. Conclusions and Future Outlook

The review presents the fabrication of 0D carbon nanomaterials such as C60 and CDs used as
nanofillers to incorporate them into polymers to form nanocomposite membranes. These carbon
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nanomaterials possess extraordinary properties, biocompatibility, and ease of fabrication, that have
proved to be a leap forward in opportunities to revolutionize their potential for desalination and
separation processes for wastewater purification. The astonishing performance of C60 or CDs
-incorporated into a variety or polymers to form nanocomposite membranes and several approaches
adopted to improve the membrane performances is revealed herewith. Numerous efforts have
been focused on improving the nanofiller-polymer membrane properties (particularly their water
permeability, separation efficiency, and antifouling performances), searching how to efficiently blend
these nanofillers into polymers, surface modifications, cost-effectiveness and their long-term stability.
It is established that properties of polymer membranes modified by carbon nanomaterials as nanofillers
differ markedly from the pristine polymer membranes. To widen the applications, attention must be
taken to enhance the polymer nanocomposite membrane stability and separation efficiency, specifically
in aggressive and adverse environments, by controlling the loading of carbon nanomaterials, interaction
between polymer-carbon nanomaterials, their dispersibility, and other minor parameters are still
needed to solve the current problems.
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Abbreviations

0D zero-dimensional
µF microfiltration
UF ultrafiltration
NF nanofiltration
IP interfacial polymerization
TFC thin-film composite
TFN thin-film nanocomposite
C60 spherical fullerene (buckyball)
nC60 aggregate spherical fullerene (buckyball)
C60(OH)n fullerenol (hydroxylated C60)
CDs carbon dots
CnDs carbon nano dots
CQDs carbon quantum dots
GQDs graphene quantum dots
GoQDs graphene oxide quantum dots
CPDs carbonized polymer dots
PV pervaporation
THF-C tetrahydrofuran (control without carbon)
PPO polymer-poly (2, 6-dimethyl-1,4-phenylene oxide)
PVP poly (vinylpyrrolidone)
PS polystyrene
PVF poly (vinylidene fluoride)
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