Supplementary Materials

Synthetic Route to Glycosyl β-1C-(phosphino)phosphonates as Unprecedented Stable Glycosyl Diphosphate Analogs and Their Preliminary Biological Evaluation

Michaël Bosco ¹, Su-Jin Paik ², Patricia Busca ¹, Stuart E. H. Moore ² and Christine Gravier-Pelletier ^{1,*}

Academic Editor: László Somsák

Received: 2 October 2020; Accepted: 26 October 2020; Published: 26 October 2020

Experimental procedures for compounds 11, 12, 13	S2
NMR Spectra of compound 11	S4
NMR Spectra of compound 12	S 5
NMR Spectra of compound 13	S6
NMR Spectra of compound 14	S7
NMR Spectra of compound 15	S8
NMR Spectra of compound 16	S10
NMR Spectra of compound 17	S11
NMR Spectra of compound 18	S13
NMR Spectra of compound 19	S14
NMR Spectra of compound 20	S16
NMR Spectra of compound 21	S17
NMR Spectra of compound 22	S18
NMR Spectra of compound 23	S20
NMR Spectra of compound 24	S21
NMR Spectra of compound 25	S23
NMR Spectra of compound 26	S25
NMR Spectra of compound 27	S27

¹ Université de Paris, Faculté des Sciences, Campus Saint-Germain-des-Prés, UMR CNRS 8601, LCBPT, 45 rue des Saints Pères, F-75006 Paris, France; michael.bosco@u-paris.fr (M.B.); patricia.busca@u-paris.fr (P.B.)

² Université de Paris, Faculté de Médecine Xavier Bichat, INSERM U1149, CRI, 16 rue Henri Huchard, F-75018 Paris, France; su-jin.paik@inserm.fr (S.-J.P.), stuart.moore@inserm.fr (S.E.H.M.)

^{*} Correspondence: christine.gravier-pelletier@u-paris.fr; Tel.: +33-176-534-228

NMR Spectra of compound 28

NMR Spectra of compound 29

S29 S31 Preparation of lactones **11**, **12**, **13** was realized by oxidation of lactols by iodine inspired by the methodology developed by Fusaro *et al* [1].

2,3,4,5-tetra-O-benzyl-D-mannono-1,5-lactone 11

To a solution of 2,3,4,5-tetra-*O*-benzyl-D-*manno*-pyrannose **6** (5.67 g, 10.5 mmol) in anhydrous dichloromethane (106 mL) were added potassium carbonate (4.35 g, 31.5 mmol) and iodine (8 g, 31.5 mmol). After stirring for 14 h, the reaction was stopped by addition of 100 mL of an aqueous solution of sodium thiosulfate (10% in weight). The solution was extracted with dichloromethane (3 x 100 mL). The combined organic layers were washed with brine (400 mL), dried over sodium sulfate anhydrous, filtered and concentrated under reduced pressure. Purification of the residue by column chromatography (silica gel 300 mL, EtOAc/cyclohexane, 7/3, v/v) afforded the product **11** (4.15 g, 7.7 mmol, 73%) as a white solid.

NMR spectra were in accordance with previously published data [2].

¹H NMR (500 MHz, CDCl₃) δ 7.44 – 7.27 (m, 18H, H aromatic), 7.14 – 7.09 (m, 2H, H aromatic), 5.07 (d, *J* = 12.0 Hz, 1H, OCH₂Ph), 4.85 (d, *J* = 12.2 Hz, 1H, OCH₂Ph), 4.65 (d, *J* = 12.2 Hz, 1H, OCH₂Ph), 4.61 (d, *J* = 12.0 Hz, 1H, OCH₂Ph), 4.56 (d, *J* = 12.0 Hz, 1H, OCH₂Ph), 4.53 (d, *J* = 12.0 Hz, 1H, OCH₂Ph), 4.37 (d, *J* = 2.8 Hz, 1H, H-2), 4.35 (d, *J* = 12.0 Hz, 1H, CH₂ benz), 4.27 (d, *J* = 12.0 Hz, 1H, CH₂ benz), 4.25 (dt, *J* = 7.1, 4.6 Hz, 1H, H-5), 4.06 (dd, *J* = 2.8, 1.6 Hz, 1H, H-3), 3.80 (dd, *J* = 7.1, 1.6 Hz, 1H, H-4), 3.65 (d, *J* = 4.6 Hz, 2H, H-6, H-6');

¹³C NMR (126 MHz, CDCl₃) δ 169.5 (C-1), 137.88, 137.86, 137.4, 137.0 (4C, Cq aromatic), 128.65, 128.63, 128.54, 128.53, 128.31, 128.30, 128.11, 128.08, 128.05, 128.01, 127.96, 127.9 (20C, CH aromatic), 78.8 (C-5), 76.9 (C-3), 76.3 (C-4), 75.7 (C-2), 73.7, 73.12, 73.10, 72.03 (4C, OCH₂Ph), 69.4 (C-6).

2,3,4,5-tetra-O-benzyl-D-glucono-1,5-lactone 12

To a solution of 2,3,4,5-tetra-*O*-benzyl-D-*gluco*-pyrannose **6** (7.22 g, 13.35 mmol) in anhydrous dichloromethane (135 mL) were added potassium carbonate (5.53 g, 40.1 mmol) and iodine (10.2 g, 40.2 mmol). After stirring for 16 h, the reaction was stopped by addition of 200 mL of an aqueous solution of sodium thiosulfate (10% in weight). The solution was extracted with dichloromethane (3 x 100 mL). The combined organic layers were washed with brine (400 mL), dried over sodium sulfate anhydrous, filtered and concentrated under reduced pressure. Purification of the residue by column chromatography (silica gel 400 mL, EtOAc/cyclohexane, 7/3, v/v) afforded the product **11** (4.82 g, 8.94 mmol, 67%) as a white solid.

NMR spectra were in accordance with previously published data [1].

¹H NMR (500 MHz, CDCl₃) δ 7.55 – 7.03 (m, 20H, H aromatic), 5.01 (d, *J* = 11.4 Hz, 1H, OCH₂Ph), 4.75 (d, *J* = 11.7 Hz, 1H, OCH₂Ph), 4.73 (d, *J* = 11.6 Hz, 1H, OCH₂Ph), 4.66 (d, *J* = 11.4 Hz, 1H, OCH₂Ph), 4.61 (d, *J* = 11.7 Hz, 1H, OCH₂Ph), 4.58 (d, *J* = 12.0 Hz, 1H, OCH₂Ph), 4.54 (d, *J* = 11.6 Hz, 1H, OCH₂Ph), 4.50

¹ M. B. Fusaro, V. Chagnault, S. Josse, D. Postel, Metal-free oxidative lactonization of carbohydrates using molecular iodine, Tetrahedron 69 (2013), 5880-5883.

² Xie J., Molina A., Czernecki S., Alkylidenation of sugar lactones and further transformation to C-glycosides, J. Carbohydr. Chem. 18 (1999), 481-498.

(d, *J* = 12.0 Hz, 1H, OCH₂Ph), 4.48 (ddd, *J* = 8.2, 3.3, 2.4 Hz, 1H), 4.14 (d, *J* = 6.5 Hz, 1H, H-2), 3.97 (dd, *J* = 8.2, 6.5 Hz, 1H, H-4), 3.93 (t, *J* = 6.5 Hz, 1H, H-3), 3.75 (dd, *J* = 11.0, 2.4 Hz, 1H, H-6), 3.69 (dd, *J* = 11.0, 3.3 Hz, 1H, H-6');

¹³C NMR (126 MHz, CDCl₃) δ 169.4 (C-1), 137.8, 137.68, 137.66, 137.1 (4C, Cq aromatic), 128.61, 128.58, 128.5, 128.2, 128.14, 128.11, 128.10, 128.07, 128.0 (20C, CH aromatic), 81.1 (C-3), 78.3 (C-5), 77.6 (C-2), 76.2 (C-4), 74.1, 73.85, 73.84, 73.7 (4C, OCH₂Ph), 68.4 (C-6).

2-Acetamido-3,4,5-tetra-O-benzyl-2-deoxy-D-glucono-1,5-lactone 13

To a solution of 2-acetamido-3,4,5-tetra-*O*-benzyl-2-deoxy-D-*manno*-pyrannose **6** (1.925 g, 3.91 mmol) in anhydrous dichloromethane (120 mL) were added potassium carbonate (1.62 g, 11.8 mmol) and iodine (2.98 g, 11.8 mmol). After stirring for 16 h, the reaction was stopped by addition of 100 mL of an aqueous solution of sodium thiosulfate (10% in weight). The solution was extracted with dichloromethane (100 mL). The combined organic layers were brine dried over sodium sulfate anhydrous, filtered and concentrated under reduced pressure. Recrystallization from diethyl ether gave the desired product **13** (701 mg, 1.43 mmol, 36%) as a white solid.

NMR spectra were in accordance with previously published data [3].

¹H NMR (500 MHz, CDCl₃) δ 7.42 – 7.14 (m, 15H, H aromatic), 5.98 (d, *J* = 7.0 Hz, 1H, NHAc), 4.82 (d, *J* = 11.8 Hz, 1H, OCH₂Ph), 4.81 (d, *J* = 11.1 Hz, 1H, OCH₂Ph), 4.67 (d, *J* = 11.1 Hz, 1H, OCH₂Ph), 4.62 (d, *J* = 12.1 Hz, 1H, OCH₂Ph), 4.59 (d, *J* = 12.1 Hz, 1H, OCH₂Ph), 4.50 (d, *J* = 11.8 Hz, 1H, OCH₂Ph), 4.47 – 4.42 (m, 1H, H-5), 4.07 – 3.96 (m, 3H, H-2, H-4, H-3), 3.79 (dd, *J* = 11.0, 2.8 Hz, 1H, H-6), 3.76 (dd, *J* = 11.0, 2.7 Hz, 1H, H-6'), 1.85 (s, 3H, COCH₃);

¹³C NMR (126 MHz, CDCl₃) δ 170.5 (C-1), 168.7 (COCH₃), 138.1, 137.72, 137.69 (3C, Cq aromatic), 128.72, 128.67, 128.6, 128.4, 128.22, 128.18, 128.1, 128.04, 128.02 (15C, CH aromatic), 79.8 (C-3), 78.8 (C-5), 76.3 (C-4), 74.7 (2C, OCH₂Ph), 73.8 (OCH₂Ph), 68.0 (C-6), 55.6 (C-2), 22.8 (COCH₃).

³ Granier T., Vasella A., Synthesis and Some Transformations of 2-Acetamido-5-amino-3,4,6-tri-O-benzyl-2,5-dideoxy-D-glucono-1,5-lactam, Helv. Chim. Acta 81 (1998), 865-880.

S5

¹³C NMR, 125 MHz (CDCl₃), compound 12

¹H NMR, 500 MHz (CDCl₃), compound 14

180 . 170 . 160 . 150 . 140 . 130 . 120 110 100 90 80 , 70 , 60 . 50 . 40 20 10

. 30

S8

0

.

$^{\rm 13}C$ NMR, 125 MHz (CDCl₃), compound 15

³¹P NMR, 202 MHz (CDCl₃), compound 15

60

S_{10} S										
55 50 45 40 35 30 25 20 15 10 \mathfrak{D}	10 \$ 10 0	15	20	25	30	35	40	45	50	55

¹H NMR, 500 MHz (CDCl₃), compound 16

¹³C NMR, 125 MHz (CDCl₃), compound 16

³¹P NMR, 202 MHz (CDCl₃), compound 16

³¹P NMR, 202 MHz (CDCl₃), compound 17

 $<^{48.26}_{48.20}$ $<^{46.52}_{46.52}$

 $\sum_{\substack{19.41\\19.11\\19.10}}$

¹H NMR, 500 MHz (CDCl₃), compound 18

³¹P NMR, 202 MHz (CDCl₃), compound 18

$$\begin{array}{c}
\uparrow & 31.07 \\
31.06 \\
\uparrow & 30.46 \\
\uparrow & 30.43 \\
\uparrow & 30.43 \\
\hline
\uparrow & 30.43 \\
20.55 \\
\uparrow & 20.55 \\
\uparrow & 20.55 \\
\hline
\uparrow & 20.55 \\
\uparrow & 20.48 \\
\hline
\downarrow & 20.48 \\
\downarrow & 20.48 \\
\hline
\downarrow & 20.48 \\
\downarrow & 20.48$$

 55
 50
 45
 40
 35
 30
 25
 20
 15
 10

60

0

\$16

¹H NMR, 500 MHz (CDCl₃), compound **20**

¹H NMR, 500 MHz (CD₃OD), compound **21**

 $^1\mathrm{H}$ NMR, 500 MHz (CD3OD), compound **22**

 $^{\rm 13}C$ NMR, 125 MHz (CD₃OD), compound 22

S21

COSY and NOESY NMR, 500 MHz (CDCl₃), compound 24 with a pure stereogenic phosphorus

³¹P NMR, 202 MHz (CDCl₃), compound 24

COSY and NOESY NMR, 500 MHz (CDCl₃), compound 25

S25

³¹P NMR, 202 MHz (CDCl₃), compound 25

¹³C NMR, 125 MHz (CDCl₃), compound 26

 $^1\!H$ NMR, 500 MHz (D2O), compound 27

³¹P NMR non decoupled, 202 MHz (D₂O), compound **27**

 $^1\mathrm{H}$ NMR, 500 MHz (D2O), compound $\mathbf{28}$

S30

1 1							· ·	· ·				'	· · ·			· ·	· · · ·
150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-10	-20
																S31	

 ^1H NMR, 500 MHz (D2O), compound $\mathbf{29}$

³¹P NMR, 202 MHz (D₂O), compound **29**

S33