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The search for new natural antioxidants is a growing area of research due to the broad spectrum of
their biological properties, which are associated with the prevention of chronic diseases that originate
in oxidative stress. In this context, the fact that they promote a health capacity is noteworthy and has
determined a marked trend towards the supplementation of food products with natural antioxidants.
This Special Issue of Molecules contains a collection of 28 research works and 4 reviews, overall covering
distinct aspects related to natural antioxidants.

Several authors highlighted the relevance of specific structural features of natural compounds in
their antioxidant capacities. In this context, the comparison made by Ouyang et al. [1] between galangin
and 3,5,7-trihydroxychromone (characterized by the presence or absence of a null B-ring) allowed
the authors to elucidate that, regardless of it not affecting the antioxidant pathways, the presence of
the null B-ring in flavonols improves the antioxidant levels, since the π–π conjugation can provide
more resonance forms and bonding sites. Moreover, Li and coworkers [2] showed that the presence of
3,8”-dimerization on flavonoids could enhance the antioxidant capacity through the electron-transfer
pathway, possibly by allowing a partial π–π conjugation. Relevance was also given to the influence of
substituents on the modulation of the antioxidant activity. In particular, when comparing the antioxidant
potential of scutellarein and scutellarin (scutellarein-7-O-glucuronide), Liu and coworkers [3] revealed
that the glucuronidation of pyrogallol-type phytophenol antioxidants caused a dual effect by
decreasing the antiradical potential towards several radicals such as 1,1-diphenyl-2-picrylhydrazyl,
2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid), 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl
3-oxide radicals and the ability for radical adduct formation, and by in turn enhancing the Fe2+-chelating
potentials. Also worth noting, the work performed by Liang et al. [4] with the two chalcones echinatin
and licochalcone A allowed them to conclude that the 1,1-dimethyl-2-propenyl substituent increased
its antioxidant potential, which in aqueous solutions may occur through an electron transfer and
proton transfer mechanism and, in addition, in an alcoholic solution through hydrogen atom transfer
preferentially at 4-OH.

Another research direction in focus in this special edition aims to elucidate the mechanisms of
protection of natural compounds and/or to explore new sources of health-promoting compounds.
Among the published works, phenolic compounds or derivatives were spotlit because of their
antioxidant abilities, albeit other potential bioactivities such as cytoprotective, antiproliferative and
cytotoxic ones were also investigated. Notably, Das and coworkers [5] elucidated multiple protective
mechanisms involving the phenolic (catecholic) diterpene carnosic acid against cadmium-provoked
nephrotoxicity. As for the natural sources rich in phenolic compounds, these included distinct parts of
plants (the root, xylem, phloem, petiole, leaves and bud of Boehmeria nivea L. [6]), with emphasis on
medicinal plants (aerial parts of Salvia africana, Salvia officinalis ‘Icterina’ and Salvia mexicana [7], leaves
of Sorbus domestica [8], leaves of Cotoneaster zabelii, Cotoneaster bullatus and Cotoneaster integerrimus [9],
leaves of Mahonia bealei (Fort.) Carr [10], leaves of Vaccinium vitis-idaea L. [11], flowers of
Astragalus membranaceus var. mongholicus [12], rhizomes of Reynoutria japonica, Reynoutria sachalinensis
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and Reynoutria x bohemica [13], fruits of Lycium barbarum L. [14]), the pericarp of Dimocarpus longan
Lour. [15], the resin of the tree species Croton lechleri (Müll. Arg) [16] and a herbal standardized
product containing an extract of persimmon leaves [17]. In parallel, nonphenolic compounds, including
monoterpes and their derivatives from three mentha species [18], alkaloids from Uncaria tomentosa [19],
polysaccharides from white ginseng [20] and protein hydrolysates from walnut meal [21], were also
demonstrated to hold the potential to be used as natural antioxidants and/or to fight oxidative stress
related disorders.

Attention was also given to the impact of distinct factors on the levels of relevant natural
compounds, including bioactive components of plants/vegetables. For example, the work of
Liu et al. [22] demonstrated that sunny hours and temperature were the main drivers affecting the
accumulation of Cyclocarya paliurus phenolics and their antioxidant properties. In addition, Guan and
coworkers [23] concluded that the combination of methyl jasmonate treatment with wounding stress
could stimulate phenolic accumulation in broccoli. Moreover, Pereira et al. [24] described the variable
effects of commercial biostimulants and irrigation regimes on the chemical composition and bioactive
properties of two spinach genotypes, alerting one to the need for further research in order to make
solid conclusions on the effects of the use of biostimulants under water stress conditions.

The application of natural compounds as ingredients in novel products to emphasize
specific characteristics or new strategies to improve the quality and antioxidant properties of
health-promoting natural products/bioactive compounds were also addressed by some contributing
authors. This included the formulation of a novel fermented glutinous rice product with the
supplementation of Fu brick tea (i.e., a beverage processed through the postfermentation of
Camellia sinensis L.) to increase its sensorial features, the levels of phenolics, and its antioxidant
and DNA protective activities [25]; the supplementation of pasta flour with salmon fish powder to
manipulate the glycaemic index, protein digestibility, release of phenolic compounds and antioxidant
capacity of the digested pasta [26]; and the use of cold saponification on commercial natural soaps
manufactured from plant oils and additives in order to retain unsaponified fatty acids, phenolic
compounds and antioxidant activities in the final products [27]. In addition, Wu et al. [28] explored
a new strategy for ameliorating the stability and enhancing the stability, solubility and safety of
resveratrol through the preparation of novel resveratrol transfersomes.

Campos et al. [29] provided an overview on the valorization of fruit byproducts from
food-processing industries in order to overcome a global problem, highlighting the application
of sustainable and green methodologies for the conversion of fruit waste into high-value products
with a significant biological activity. Santos and Silva [30] summarized different prenylation patterns
of natural and synthetic flavonoids that have been focused on in the past two decades, aiming at the
elucidation of structure-antioxidant activity relationships and the development of efficient routes for
the synthesis of natural derivatives. All of the studies published over the last decade on the relationship
between moderate alcohol consumption and coronary heart disease were revised by Castaldo et al. [31],
who summarized the various red wine components and the putative mechanisms that influence
their activity. Cione et al. [32] described four polyphenols used as nutritional supplements: quercetin,
epigallocatechin gallate, curcumin and resveratrol, summarizing the current knowledge about them,
ranging from dietary sources to human microRNA modulation.
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