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Abstract: Tea is rich in catechins and aluminum. In this study, the process of catechin photolysis
was applied as a model for examining the effects of aluminum chloride (AlCl3) on the structural
changes of catechin and the alteration of aluminum complexes under blue light irradiation (BLI) at
pH 8 using liquid chromatography and mass spectrometry techniques. Additionally, the effects of
anions on catechin upon the addition of AlCl3 and treatment with BLI were also studied. In this
study, when 1 mM catechin was treated with BLI, a superoxide anion radical (O•−2 ) was generated
in an air-saturated aqueous solution, in addition to forming a dimeric catechin (proanthocyanidin)
via a photon-induced redox reaction. The relative percentage of catechin was found to be 59.0 and
95.7 for catechin treated with BLI and catechin upon the addition of 1 mM AlCl3 treated with BLI,
respectively. It suggested that catechin treated with BLI could be suppressed by AlCl3, while AlCl3
did not form a complex with catechin in the photolytic system. However, under the same conditions,
it was also found that the addition of AlCl3 inhibited the photolytic formation of O•−2 , and reduced
the generation of proanthocyanidin, suggesting that the disconnection of proanthocyanidin was
achieved by AlCl3 acting as a catalyst under treatment with BLI. The influence of 1 mM fluoride
(F−) and 1 mM oxalate (C2O2−

4 ) ions on the photolysis of 1 mM catechin upon the addition of 1 mM
AlCl3 and treatment with BLI was found to be insignificant, implying that, during the photolysis
of catechin, the Al species were either neutral or negatively charged and the aluminum species
did not form a complex with anions in the photolytic system. Therefore, aluminum, which is an
amphoteric species, has an inherent potential to stabilize the photolysis of catechin in an alkaline
conditions, while suppressing the O•−2 and proanthocyanidin generation via aluminum ion catalysis
in the catechin/Al system under treatment with BLI.

Keywords: aluminum chloride; blue light; catechin; proanthocyanidin; superoxide anion radical

Molecules 2020, 25, 5985; doi:10.3390/molecules25245985 www.mdpi.com/journal/molecules

http://www.mdpi.com/journal/molecules
http://www.mdpi.com
https://orcid.org/0000-0002-8953-8928
https://orcid.org/0000-0002-4266-6447
http://www.mdpi.com/1420-3049/25/24/5985?type=check_update&version=1
http://dx.doi.org/10.3390/molecules25245985
http://www.mdpi.com/journal/molecules


Molecules 2020, 25, 5985 2 of 17

1. Introduction

Phenolic compounds defined as polyhydroxylated compounds are plant secondary metabolites.
With the attachment of an aromatic ring to one or more hydroxyl groups, the structure of polyphenols
includes a phenolic framework associated with other functional groups [1]. Catechins, which belong
to polyphenols of plants, have been most frequently observed within chocolate, grapes, and green
tea; green tea leaves are particularly rich in polyphenols, i.e., they represent about 10–30% of the
leaf dry weight [2]. It has been reported that the primary ingredients in tea leaves are catechins
showing advantageous properties, such as anti-oxidation, anti-radiation, anti-aging, and antimicrobial
activities [3–5].

However, instability could be one of the major drawbacks of catechins [6]. It has been shown that
catechins are not stable in aqueous solutions and thus can be readily oxidized [6]. Under oxidative
processes, catechins might lose hydrogen atoms, leading to oxidized quinone products and semiquinone
radical species [7,8]. It has been stated that the illumination, temperature, and pH value are important
factors for the non-enzymatic browning of catechin-containing products [4,9]. In addition, it was
previously reported that green tea catechins were very unstable and degraded almost completely in
a few minutes in alkaline solutions (pH > 8), but were quite stable in acid solutions (pH < 4) [10].
Therefore, the oxidation of catechins under different circumstances is a major issue in the tea industry.

Catechin is a flavan-3-ol with five hydroxyl groups attached to the main frame, as depicted in
Figure 1. Catechin is stable in acidic conditions, while unstable under alkaline or neutral conditions
during heat treatment [11]. Furthermore, catechin is unstable under ultraviolet (UV) light irradiation.
Catechin and epicatechin (EC) are sensitive to UVB, as shown by the yellow photoproducts generated
via UVB treatment [4]. The photolysis of catechin and EC leads to opening of the C ring of flavan-3-ols,
while the epimerization of catechin can be attained via UV light irradiation [12,13]. The degradation of
catechin was observed under blue light irradiation (BLI) at pH 8 [5,14]. Recently, it has been reported
that dimeric catechin (proanthocyanidin) can be generated via an electron-transfer mechanism induced
by catechin with BLI treatment, as evidenced by liquid chromatography and mass spectrometry, with its
characteristic ion fragment being m/z 577 [5,14]. In addition, a superoxide anion radical (O•−2 ) can be
produced upon the treatment of catechin with BLI [5,14]. The catechin or EC photolytic process can be
inhibited by the addition of ascorbic acid or gallic acid during BLI, suggesting that these acids impede
the electron-transfer mechanism in a photochemical reaction [5,15]. Catechin belonging to naturally
occurring polyphenols is also unstable when treated with metal ions. Using spectroscopic and pulse
radiolysis methods, Torreggiani et al. studied the interactions of catechin treated with Cu2+ or Zn2+ at
pH 8 for 2–6 days and indicated that a great amount of yellowish auto-oxidation product was noticed
via the polymerization of catechin and catechin may also act as a bidentate ligand through the catechol
moiety on its B ring, thus forming a catechin–metal complex [16].
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An aluminum ion (Al3+), which is a triply charged metal ion, possesses a relatively small ionic
radius, belonging to the group of hard ions. Al is non-essential and Al3+ is highly reactive and toxic
in biological systems [17], primarily due to its high charge density. The chemistry of Al in biological
systems is dominated by its ligation to oxygen-containing functional groups mainly via substitution for



Molecules 2020, 25, 5985 3 of 17

other essential metal ions, with magnesium (Mg2+) being the most significant one [18,19]. Moreover,
Al administration to animals causes neurotoxicity that is accompanied by neurofibrillary tangle
formation [20].

The morphology of Al species notably varies due to the pH alteration from acidic to alkaline
conditions. In aqueous solutions, Al3+ is amphoteric. Mujika et al. concluded that various hydrolyses
of Al3+ species are dominant at different pHs, e.g., [Al(H2O)6]

3+ for pH < 5.0, and [Al(OH)(H2O)5]
2+,

trans–[Al(OH)2(H2O)4]
+, and trans–[Al(OH)3(H2O)3]

0 for pH levels ranging from 5 to 6.2 [21].
The interaction of catechin treated with aluminum may generate Al–catechin complexes in acidic
conditions. Chen et al. reported catechin in the presence of aluminum chloride (AlCl3) at pH 5.5
when aged for 30 days, and chemical analyses and spectroscopic studies indicated that Al reacts with
the B ring of catechin, forming a 1:1-type complex [22]. Tang et al., after analyzing UV–vis spectral
data, inferred that the stoichiometric ratio of Al3+ to catechin exceeds 2 and the polymerization of
Al–catechin complexes begins at pH 6.2, suggesting that Al–catechin complex formation might decrease
aluminum absorption during tea intake [23].

The Al species can be trans–[Al(OH)3(H2O)3]
0 and/or [Al(OH)4]

−, which are intermediates in
weak alkaline solutions [21]. Previous studies show that the primary aluminum hydroxide species at
the pH of the human intestine is predominately soluble [Al(OH)4]

− that is formed in the absence of
other ligands [24,25]. According to a Geochem model employed to calculate the chemical components
of green tea infusions, Liang et al. reported that the Al species at pH 7.5 are 85.16% solid with OH−

[Al(OH)3] [26]. Catechin is not stable in alkaline conditions treated with BLI [5,14]. It is therefore of
interest to use catechin photolysis as a model for investigating the effects of AlCl3 on the changes of
catechin and the alternation of aluminum under treatment with BLI in alkaline conditions. It is also
crucial to inspect the mechanisms of catechin photolysis in the presence of AlCl3 with or without BLI
treatment. Whether the coordination of complex formation is either a peroxidation reaction or a proton
donation remains to be investigated.

Ferric ions (Fe3+) are similar to Al3+ in terms of their positive charges and ionic radii, with values
of 60 and 53 pm, respectively [27]. The chelation of Fe3+ by catechin leads to three types of ferric
complexes [28]. In aqueous solutions, however, Al3+ is amphoteric, while Fe3+ is not. It is therefore
of interest to compare the effects of ferric chloride (FeCl3) and AlCl3 on catechin treated with BLI,
as carried out in this study.

An aluminum ion (Al3+) can be complexed with anionic ligands, e.g., oxalate, phosphate, fluoride
(F−), and so forth, which are also known to influence the toxicity caused by Al [29]. Tea leaves
accumulate ions, such as aluminum, fluorine (F), and oxalate (Ox) [30,31]. Liang et al. reported
that the aluminum species in green tea infusions are primarily oxalate–Al species, while oxalate–Al
and fluoro–Al are the major aluminum species in green tea infusions at pH 2.0, as shown by an ion
chromatography method [32]. For solutions of catechin in the presence of AlCl3 with either NaF or
oxalic acid under treatment with BLI in alkaline conditions, Al3+ might be complexed with anions,
with the polymerization of catechin being achieved via photolysis and BLI treatment. It would be of
interest to examine the influence exerted by fluoride (F−) and oxalate (C2O2−

4 ) ions on the photolysis of
catechin upon the addition of AlCl3 and treatment with BLI in alkaline conditions.

Collectively called reactive oxygen species (ROS), comprising hydrogen peroxide, hydroxyl
radicals, peroxyl radicals, and superoxide anion radicals (O•−2 ), ROS are highly reactive in general [5,11].
Previous results show that O•−2 can be produced from catechin treated with BLI, which simultaneously
inactivates Acinetobacter baumannii (A. baumanni) [5]. Catechin is an antioxidant, while O•−2 can be
generated by the treatment of catechin with BLI [14]. Given the toxicity caused by ROS in biological
systems, it is of critical importance to investigate the production of O•−2 that leads to structural changes
of catechin, due to light excitation, upon the addition of AlCl3 and treatment with BLI.

For the gallic acid ester that occurs at the C3 position of catechins, two major types of catechins
comprise about 80% of the polyphenolic compounds in green tea, with one belonging to the
non-gallate-type catechins (catechin and epicatechin) and the others being gallate-type ones (epicatechin
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gallate (ECG) and epigallocatechin gallate (EGCG)) [33]. The compound (+)-catechin, which was used
throughout this study, was purchased from a supplier, instead of being extracted from tea leaves,
mainly owing to its commercial availability. Moreover, additional steps of the extraction, isolation,
and purification of monomeric (+)-catechin from its numerous structural analogs and even multimers
within tea leaves can be inefficient from research perspectives.

Catechin is unstable in alkaline conditions under treatment with BLI [4,12]. Aluminum ions are
highly reactive in biological systems. The process of catechin photolysis was used as a model for
investigating the influences of AlCl3 on the transformation of catechin and change of aluminum species
under treatment with BLI in this study. In addition, the effects of F− (or oxalate) on catechin upon
the addition of AlCl3 and treatment with BLI were also studied. Specifically, the detection of O•−2 and
catechin dimer formation were used as indicators to examine the efficiency of AlCl3 in the photolysis
of catechin.

2. Results

2.1. Effects of AlCl3 on Catechin Photolysis

The effects of AlCl3 on catechin based on the color and spectral changes upon photolysis were
investigated. As shown in Figure 2A, 1 mM catechin treated with BLI at 20 W/m2 for 120 min became
reddish and this implied that the color alteration of catechin aqueous solution was caused by a
photo-chemical reaction, while catechin irradiated with green and red lights displayed insignificant
changes in color, as shown previously [14]. In Figure 2B, when 1 mM catechin was treated with BLI
in the presence of 1 mM of AlCl3, the solution turned transparent. It has been reported that 1 mM
catechin upon the addition of 0.05 mM ascorbic acid treated with BLI at 20 W/m2 for 120 min led
to insignificant changes, suggesting that ascorbic acid can suppress the photosensitive oxidation of
catechin via its strong reducing power [5].
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Figure 2. Color changes of 1 mM catechin treated (A) without aluminum chloride (AlCl3) and (B) with
1 mM AlCl3 under blue light irradiation (BLI) at 20 W/m2 for 120 min, and 1 mM catechin treated
(C) without AlCl3 and (D) with 1 mM AlCl3 in the dark.

Figure 3 shows the spectra of catechin treated with or without AlCl3 at pH 8 after BLI. The results
indicate that the catechin solution exhibited two absorption peaks at 232 and 278 nm, as shown in
Figure 3C (black line), while, for the catechin treated with BLI, there were three absorption peaks
noticed at 232, 278, and 432 nm (Figure 3A, blue line). The area under the curve peak at 432 nm was
significantly increased by catechin treated with BLI. The absorption spectrum of 1 mM AlCl3 per se
under BLI is shown in Figure 3F (red line). In Figure 3B, by adding 1 mM AlCl3, the BLI-treated
catechin exhibited an almost complete disappearance in the area under the curve peak at 432 nm,
in addition to enhanced absorption appearing in the UV region. The enhanced UV absorption of
samples in the presence of AlCl3 is likely due the ligand-to-metal charge transfer within Al(OH)−4
species at an alkaline pH (Figure 3F) [34]. There was no significant change in the absorption bands
in the visible light range for 1 mM catechin in the dark or catechin upon the addition of 1 mM AlCl3
under BLI treatment, suggesting that a chromogenic species was generated by a photolytic reaction of
catechin, which can be diminished by AlCl3, as shown in the current study.
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Figure 3. The absorption spectra of 1 mM catechin treated (A) without and (B) with 1 mM AlCl3 under
BLI at 20 W/m2 for 120 min, and those of 1 mM catechin treated (C) without and (D) with 1 mM AlCl3
in the dark. The absorption spectra of the solution containing 1 mM AlCl3 treated (E) without or (F)
with BLI at 20 W/m2 for 120 min. The wavelengths for scanning reaction solutions were set in the
region of 200–800 nm.

2.2. HPLC–MS Assay of Catechin upon the Addition of AlCl3 Treated with BLI

Analyses of catechin and its polymerization were undertaken in this study. The total ion
chromatograms obtained by HPLC–MS analysis for catechin treated with or without AlCl3 at pH 8
after BLI at 20 W/m2 for 120 min are shown in Figure 4. From Figure 4A, the total ion chromatogram of
the catechin solution (pH 8) was established at 17.63 min. Hence, catechin was eluted at 17.63 min and
verified by its mass spectrum, with the fragmented ion species appearing at m/z 288.9, as shown in
Figure 5A. In Figure 4B, it can be observed that the total ion chromatogram of catechin was significantly
reduced and the photoreaction product from the catechin (PP-C) at 15.08 min was generated after the
solution containing catechin was treated with BLI. The PP-C could be identified at 15.08 min, with its
characteristic ion fragment being m/z 576.7, as shown in Figure 5B. The molecular weight of catechin
and the PP-C were 290 and 578 g/mol, respectively.Molecules 2020, 25, x FOR PEER REVIEW 6 of 17 
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According to a previous report, it was proposed that PP-C is a catechin dimer, which is a dimeric
B-type proanthocyanidin [5,14]. The total ion chromatogram of blue light-treated 1 mM catechin
upon the addition of 1 mM AlCl3 at pH 8 exhibited a major elution peak at 17.63 min, as shown in
Figure 4C. The catechin in the solution eluted at 17.63 min was verified by its MS spectrum, and a
major ion peak was observed at m/z 288.9. Mass spectroscopic signals were determined according to
the quasimolecular anions [M − H]−.

The different levels of catechin and catechin with AlCl3 treated with BLI at 20 W/m2 for 120 min
were obtained by the relative percentage of the peaks from the HPLC–MS assay. The relative percentage
of catechin was found to be 59.0 and 95.7 for 1 mM catechin and 1 mM catechin with 1 mM AlCl3 treated
with BLI, respectively (Figure 6A). The relative percentage of the catechin dimer (proanthocyanidin)
was found to be 100 and 7.68 for catechin and catechin with 1 mM AlCl3 treated with BLI, respectively
(Figure 6B). The results indicate that catechin treated with BLI could be suppressed by AlCl3.

2.3. Effects of FeCl3 on Catechin Treated with BLI

The effects of FeCl3 on catechin upon photolysis were investigated based on the spectral changes.
The spectra of catechin treated with or without FeCl3 at pH 8 under BLI at 20 W/m2 for 120 min
are shown in Figure 7. In the solution of catechin, two absorption peaks were observed at 232 and
278 nm, as shown in Figure 3C. In Figure 3A, for catechin treated with BLI, three absorption peaks
were noticed at 232, 278, and 432 nm, while, for catechin treated with or without BLI in the presence of
1 mM FeCl3 (pH 8), their distinct curves were noticed in the respective absorption spectra (Figure 7),
very unlike catechin treated with BLI alone. This suggests that treatment with BLI at 20 W/m2 for
120 min has little effect on catechin in the presence of 1 mM FeCl3. As for the spectra between 200
and 350 nm, the samples of catechin treated with or without BLI in the presence of FeCl3 (Figure 7)
exhibited absorption well beyond the detection limits of the instrument. However, after a ten-fold
dilution, their whole absorption profiles remained essentially the same (data not shown).
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Figure 6. The relative components of (A) catechin and (B) proanthocyanidin remaining after 1 mM
catechin was treated with or without 1 mM AlCl3 under BLI at 20 W/m2 for 120 min. PP-C:
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Figure 7. The absorption spectra of 1 mM catechin upon the addition of 1 mM ferric chloride (FeCl3)
treated with or without BLI at 20 W/m2 for 120 min at pH 8.

2.4. Effects of Sodium Fluoride (NaF) or Oxalic Acid on Catechin upon the Addition of AlCl3 Treated with BLI

The effects of NaF or oxalic acid on catechin in the presence of AlCl3 treated with BLI at 20 W/m2

for 120 min were investigated. As shown in Figure 2D, the catechin treated with BLI at 20 W/m2 for
120 min became reddish in color. For catechin in the solution, the absorption peak at 432 nm was
significantly increased following BLI. There were three absorption bands at 232, 278, and 432 nm
exhibited by catechin solution treated with BLI, as shown in Figure 8(A). For solutions of catechin
in 1 mM in the presence of AlCl3 with either 1 mM NaF or 1 mM oxalic acid under treatment with
BLI, the reaction solution became transparent and the absorption band only appeared in the UV light
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range, which was attributed to the absence of catechin absorption bands in visible light, as shown in
Figure 8(B)–(D). There was no significant change in the absorption bands in the visible light range for
catechin in the dark and catechin in 1 mM in the presence of AlCl3 with either 1 mM NaF or 1 mM
oxalic acid under treatment with BLI.
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Figure 8. The absorption spectra of 1 mM catechin treated (A) without AlCl3, (B) with 1 mM AlCl3,
(C) with 1 mM AlCl3 upon the addition of 1 mM oxalic acid, (D) with 1 mM AlCl3 upon the addition
of 1 mM sodium fluoride (NaF) treated with BLI at 20 W/m2 for 120 min at pH 8 and (E) in the dark.
The wavelengths for scanning the reaction solutions were set in the region of 200–800 nm.

2.5. Detection of O•−2 in Catechin upon the Addition of AlCl3 Treated with BLI

The generation of O•−2 from catechin illuminated with blue light was studied by the nitrotetrazolium
blue chloride (NBT) reduction method [5,35]. The generated O•−2 can reduce NBT to form formazan,
which can be detected at 560 nm. It has also been reported that catechin hydrate or epicatechin treated
with BLI at 20 W/m2 for 0–60 min generates O•−2 by the NBT reduction method [5,15]. The effects of
AlCl3 on the generation of O•−2 from the photolytic process of catechin were investigated in this study.

As shown in Figure 9, the photochemical effect of the NBT reduction in catechin was increased
in a time-dependent manner of 0–60 min under BLI at 20 W/m2, suggesting that O•−2 was produced
from catechin under BLI at a pH of 7.8 in this study. The slopes of the NBT reaction curve of the
O•−2 production for catechin and catechin with AlCl3 at the same conditions were 0.0028 and 0.0004,
respectively, as shown in Figure 9, suggesting that AlCl3 might inhibit O•−2 generation via the photolytic
process of catechin in the catechin/NBT system.
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3. Discussion

The effects of AlCl3 on the photooxidation and polymerization of catechin and the alteration of
aluminum complexes in the catechin/Al system treated with BLI in alkaline conditions were examined
in this study.

Catechin treated with BLI under alkaline conditions was able generate a chromogenic catechin
dimer, as shown in Figures 2 and 3. In addition, under BLI and alkaline conditions, catechin generated
O•−2 by photosensitize oxidation via a photo-oxidative process (Figure 9), and a B-type proanthocyanidin
was formed and identified by its characteristic ion fragment of m/z 576.7 due to a condensation reaction,
as shown in Figures 4–6. Our previous study showed that a B-type proanthocyanidin was generated
from the photooxidation of catechin upon treatment with BLI [5]. Based on the results of this study,
we propose a catechin photolytic reaction mechanism under the influence of AlCl3 and under alkaline
conditions, as shown in Figure 10. In our previous study, two pathways were proposed regarding the
photooxidation of catechin upon treatment with BLI [5]. Wilhelm-Mouton et al. examined the catechin
and epicatechin irradiated by UV in MeOH and found the structural change of the catechin molecule
which was carried out to open the heterocyclic ring (C ring) of flavan-3-ols via photolytic cleavage of
the ether bond [13]. Shi et al. also reported that the catechin/epicatechin molecule was excited at two
positions under UV irradiation, i.e., the –OH bond and heterocyclic ring. Excitation of the –OH bond
led to the generation of a quinone compound, while the heterocyclic ring of catechin/epicatechin was
preferentially opened via photolytic cleavage at the C–O ether linkage with low bond dissociation
energies, which resulted in the generation of free radicals at m/z 289 [4]. As shown in Figure 10B,
the heterocyclic ring C of catechin was photolytically and exclusively broken via cleavage of the ether
bond, achieved by low bond dissociation energies, with a free radical species being generated at m/z
289 [4,13]. The radical species thus formed could be further ionized in a polar solvent via an electron
transfer process to produce a transient catechin phenolate carbocation, as shown in Figure 10C [36].
Catechin oxidation caused by BLI involves the loss of an electron from its B ring, accompanied by the
generation of O•−2 from molecular oxygen. The –OH bond of the B ring was excited via photosensitive
oxidation by forming a quinone compound observed at m/z 287, as shown in Figure 10F. It has also been
reported that the quinone compound formed during the process as the primary product is unstable
and may undergo further reactions. Additionally, the quinone compound can spontaneously combine
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with a catechin carbocation due to their high affinity, and in the process, the resultant dimer or polymer
may rearrange their structures through an enol-like conversion reaction by trapping two hydrogen
atoms and form new diphenols [37]. Ojwang et al. investigated the proanthocyanidin composition
and detected the major MS/MS fragment ions m/z 287 and 289, derived from B-type proanthocyanidin
at m/z 577, suggesting that the compound is a 4→8 linked procyanidin dimer, according to the
analyses by liquid chromatography and mass spectrometry [38]. Moreover, in Figure 10G, a B-type
proanthocyanidin was noticed, formed by an additional proton transfer and condensation of the
quinone compound with the catechin phenolate carbocation intermediate [5,38–40]. Simultaneously,
the semi-quinone radical was quenched by photo-induced electron transfer, forming an o-quinone
intermediate, as shown in Figure 10I,J [5]. Then, the conversion of compounds, from Figure 10J to
Figure 10A, was achieved via cyclization and protonation.

Phenolic compounds containing aromatic hydroxyl groups can form complex compounds with
metal ions [41]. Kumamoto et al. applied an apparent acid dissociation constant (pKa1) to examine
the binding of metal ions to epicatechin. The pKa1 of epicatechin was measured in the presence of
Al3+, Cu2+, Fe2+, and Fe3+. The results showed that the pKa1 of epicatechin (8.68) was significantly
decreased by Cu2+ (6.84), Fe2+ (6.28), and Fe3+ (6.33), but was only slightly changed when Al3+ (8.33)
was present, suggesting that Cu2+, Fe2+, and Fe3+ preferentially bind to epicatechin [42]. The color
of 1 mM catechin upon the addition of 1 mM FeCl3 treated with or without BLI turned black in
this study and exhibited distinct degrees of absorption spectra of catechin under BLI, as shown in
Figure 7. As shown in Figure 6A, the average relative percentage of catechin was found to be 100 and
95.7 for catechin in the dark and catechin treated with BLI in the presence of 1 mM AlCl3 at pH 8,
respectively, with no statistically significant difference (p > 0.05) being noticed between these two
treatments. Despite the fact that both aluminum and ferric ions bear the same positive charge (3+),
the effects of AlCl3 and FeCl3 on the photooxidation stability of catechin treated with BLI at pH 8 were
found to be quite different, according to this study.
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Figure 10. Proposed mechanism for the photolytic reaction of catechin upon the addition of
AlCl3. (A): catechin, (B): free radicals at m/z 289, (C): phenolate carbocation, (D): phenoxyl radical,
(E): phenoxyl diradical, (F): o-quinone at m/z 287, (G): B-type proanthocyanidin, (H): catechin carbocation,
(I): semi-quinone radical, and (J): o-quinone hydroxylate.
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Al3+ is reactive, primarily due to its high charge density. Torreggiani et al. reported that catechin,
when treated with Cu2+ or Zn2+ at pH 8, acts as a bidentate ligand through the catechol moiety on
the B ring in the catechin–metal complex reaction [16]. Tang et al. suggested that the polymerization
of Al–catechin can occur via the hydroxyl group of the C ring of catechin connected with Al3+ by
chelation at pH 6.2, and that the Al–catechin complex might reduce aluminum absorption in the
intestine [23]. As such, the generation of an Al–catechin complex likely significantly decreases
the content of catechin. In this study, the average relative percentage of catechin was found to be
100 and 94.9 for catechin and catechin treated with 1 mM AlCl3 in the dark at pH 8 based on the
HPLC–MS assay, respectively, and no statistically significant difference (p > 0.05) was noticed between
these two treatments. In addition, it was observed that the spectroscopic changes of catechin in
the dark and catechin upon the addition of AlCl3 treated with or without F− (C2O2−

4 ) under BLI
were not significant, as shown in Figure 8. AlCl3 is an amphoteric compound, as the Al species
can be trans− [Al(OH)3(H2O)3]

0 and/or [Al(OH)4]
−, which are the intermediates in a weak alkaline

solution [21]. Both F− and C2O2−
4 had little influence on AlCl3 upon the addition of catechin under BLI

in this study, implying that the aluminum hydroxide species in catechin photolysis at pH 8 was either
neutral or negatively charged, and that the aluminum hydroxide species does not react with catechin
to generate an Al–catechin complex at pH 8, as observed in this study.

Under BLI and alkaline conditions, the photooxidation of catechin occurred and generated
proanthocyanidin and O•−2 , but both proanthocyanidin and O•−2 were reduced by catechin upon the
addition of AlCl3 during the photolytic process, as shown in Figures 2–4, Figures 6 and 9. When catechin
was treated with BLI, the percentage of catechin was decreased by 41.0, while between catechin left
in the dark and that treated with BLI in the presence of AlCl3, the difference of the average catechin
content was statistically insignificant (p > 0.05), as shown in Figure 6A. Based on the results of this
study, we can explain the catechin photolytic reaction under the influence of AlCl3 and under alkaline
conditions as follows.

Exley reported that O•−2 bound to Al3+ forms a putative aluminum superoxide semi-reduced

radical ion—
(
Al3+O•2

)−
—by which the complex not only explains the pro-oxidant activity of aluminum,

but also connects the catalytic activity of the non-redox-active Al3+ with superoxide-driven oxidation,
as shown in Equation (1) [43]:

O•−2 + Al3+ ↔
(
Al3+O•2

)−
(1)

Mujika et al. indicated that the formation analysis of an aluminum superoxide complex in aqueous
solution should take into account the capacity of superoxide to displace one of the water/hydroxide
ligands within the first coordination shell surrounding the Al3+ cation [21]. According to the free
energy calculation regarding the displacement of water/hydroxide ligands by superoxide, the Al3+

superoxide complex was formed via displacement of a water molecule from the first solvation shell of
Al3+ in an aqueous solution [21]. Mujika et al. also reported the Al3+ superoxide complex formation
is pH-dependent in aqueous solutions, as aluminum shows an intrinsic high potential to stabilize
a superoxide anion as a linear relationship of interactions between a metal ion and a superoxide
anion is established [21]. The Al species can be trans–[Al(OH)3(H2O)3]

0 and/or [Al(OH)4]
−, which

are intermediates in weak alkaline solutions, and the equations for the substitution reactions of one
OH−/H2O ligand by O•−2 are shown in Equations (2) and (3) [21]:

[Al(OH)3(H2O)3]
0 + O•−2 → [Al

(
O•2
)
(OH)3(H2O)2]

−

+ H2O

→ [Al
(

O•2
)
(OH)2(H2O)3]

0
+ OH−

(2)

[Al(OH)4]
− + O•−2 → [Al

(
O•2
)
(OH)3]

−

+ OH− (3)

Redox-inactive metal ions can both act as a Lewis acid and play a pivotal role in promoting
various reactions [44]. Previous studies have shown that the binding of ionic metal species with
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radical anions plays an important role in mediating the electron-transfer reactivity of the substrate [45].
The complexation of O•−2 to metal ions can be achieved by photo-induced electron transfer from
the excited state of a dimeric organic compound, in which the catalytic process acts as a unique
two-electron donor and then yields two monomeric cations along with two O•−2 –metal ion complex
radical ions [44,46]. Mujika et al. reported the finding that Al3+ superoxide complex formation can
promote the effects of electron-transfer processes, while leading to important pro-oxidant activity
through a superoxide formation mechanism and the generation of an Al3+ superoxide complex,
suggesting a plausible pathway of aluminum-mediated oxidative catalysis [21].

Achilonu et al. reported that the procyanidin B-3-type dimer can be generated via
the oxidative formation of tetra-O-methyl-3-oxo-catechin [47]. The intermediates of the
tetra-O-methyl-3-oxo-catechin radical cation and the tetra-O-methyl-3-oxo-carbocation can form
through single electron transfer by Ag+ acting as a catalyst in the process of synthesizing procyanidin
B-3-type dimer derivatives [47]. Ma et al. also reported that proanthocyanidin can be cleaved into a
flavan-3-ol C-4 carbocation intermediate and flavan-3-ol in diluted mineral acids [48]. In this study,
the disconnection of the dimeric structure of a B-type proanthocyanidin (BtPA) could be achieved by
Al3+ acting as a catalyst under treatment with BLI. The BtPA was oxidized by outer-sphere electron
transfer, forming the semi-oxidized (BtPA•)+ and the semi-reduced (O•2 · · ·Al3+)

−
radical species

simultaneously in Equation (4). Then, C-4 carbocation of catechin and catechin•+ were produced
by the C–C bond cleavage in an additional proton transfer process in Equation (5). The catechin•+,
which is an A-ring radical cation, generates the resonance-stabilized benzylic radical species via losing
a proton in Equation (6). The benzylic intermediate carbocation and (O•2 · · ·Al3+)

−
radical anion were

generated via Al3+ catalysis, followed by secondary electron oxidation, as shown in Equation (7).
The depolymerization of BtPA via photooxidation in total chemical reactions by aluminum ion catalysis
is represented in Equation (8) [46,49]. Subsequently, the carbocation (Figure 10H) can be reduced to
generate catechin at m/z 289 (Figure 10A) [5,15,48].

BtPA + O2
hv, Al3+
−→

e− transfer
BtPA•+ + (O •

2 ···Al3+)
−

(4)

BtPA•+
hv, H+

−→
bond cleavage

carbocation + catechin•+ (5)

catechin•+ hv
→
−H+

catechin• (6)

catechin• + O2
hv, Al3+
−→

e− transfer
carbocation + (O •

2 ···Al3+)
−

(7)

Therefore, Equations (6)–(9) can be integrated into:

BtPA + 2 O2
hv, 2Al3+
−→

2 e− transfer
2 carbocation + 2 (O •−

2 ···Al3+) (8)

The formation of superoxide–Al3+ metal ion complexes and the electron transfer catalysis described
above, where BtPA•+ is a B-type proanthocyanidin radical cation, i.e., (O•2 · · ·Al3+)

−
, is characteristic

of an aluminum-superoxide radical anion. Catechin• is a catechin radical and, by electron transfer
catalysis, it turns into catechin+, which is also called an intermediate C-4 carbocation of catechin,
catechin•+, which is a catechin radical cation. The dotted line (· · · ) indicates a substitution reaction of
OH2/OH− by O•−2 at the first coordination shell of the hydrolytic Al3+ species.
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4. Materials and Methods

4.1. Chemicals

Aluminum chloride (AlCl3), ferric chloride (FeCl3), methanol, oxalic acid, and sodium fluoride
(NaF) were obtained from Sigma-Aldrich (St. Louis, MO, USA). (+)-Catechin was obtained from
Toronto Research Chemicals Inc. (Toronto, ON, Canada). Nitrotetrazolium blue chloride (NBT) was
purchased from Bio Basic, Inc. (Markham, ON, Canada). Deionized water was made by the Milli-Q
system, which was used for preparing the solutions during this research.

4.2. Photolytic System

The photolytic system was composed of a power supply and a radiation unit made of opaque
plastic, as described previously [35,50]. A glass tube containing the test solution was fixed to the upper
end of the photolytic system; six 5050 SMD LED strip lights (vitaLED Tech. Co., Tainan, Taiwan)
were placed inside the cup. The blue light irradiance was kept at 20 W/m2 and maintained by a solar
power meter (TM-207, Tenmars Electronics, Taipei, Taiwan), and the temperature of the photolytic
system was maintained at 25 ± 3 ◦C, monitored by an infrared thermometer (MT 4, Raytek, CA, USA),
and controlled by an air conditioner and electric fan during the irradiation experiments. The emission
spectra (λmax = 465 nm) of the blue light spectrum were measured using a UV–vis miniature fiber optic
spectrometer (USB4000, Ocean Optics, Dunedin, FL, USA), with the peak width at half height (W1/2)
being 26 nm. The experimental setup of the photoreaction system is shown in Figure 11.

4.3. The Effect of AlCl3 on Catechin Treated with BLI

Blue light was applied as a light source in the catechin-photosensitized reaction. In our previous
study, treatment of a photoreaction involving 1 mM catechin at pH 8 inhibited the growth of A. baumanni
by 5–6 logs under BLI at 20 W/m2 for 120 min [5]. Catechin is unstable in alkaline conditions under
treatment with BLI [5,14]. Accordingly, we modified and controlled the pH at 8.0 in this experiment to
investigate the effects of AlCl3 on catechin treated with BLI. Briefly, 1 mM catechin in H2O at pH 8 left
in the dark was used as a control, while 1 mM catechin in water at pH 8 treated with BLI at 20 W/m2 for
120 min and catechin (1 mM) upon the addition of 1 mM AlCl3 treated with BLI at 20 W/m2 for 120 min
were used for the treatment conditions. The pH of the reaction solution was kept at 8 by adding either
1 N NaOH or HCl. The reaction solutions were detected in the absorbance range of 250–750 nm via an
ELISA microplate reader (Thermo Fisher Scientific Multiskan spectrophotometer, Waltham, MA, USA).
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4.4. The Effect of FeCl3 on Catechin Treated with BLI

The effects of FeCl3 on catechin treated with BLI were also investigated in this study. Briefly,
catechin (1 mM) in H2O at pH 8 left in the dark was utilized as a control and catechin (1 mM) treated
without FeCl3 and with 1 mM FeCl3 under BLI at 20 W/m2 for 120 min were used for the treatment
conditions. The absorbance of each reaction solution was detected by an ELISA reader in the range of
250–750 nm.

4.5. The Effect of NaF or Oxalic Acid on Catechin Treated with BLI in the Presence of AlCl3

The effects of NaF or oxalic acid on catechin upon the addition of AlCl3 treated with BLI were also
investigated in this study. Briefly, catechin (1 mM) in H2O at pH 8 left in the dark was utilized as a
control, while catechin (1 mM) treated with BLI, catechin (1 mM) upon the addition of 1 mM AlCl3
treated with BLI at 20 W/m2 for 120 min, catechin (1 mM) upon the addition of 1 mM AlCl3 and 1 mM
NaF treated with BLI at 20 W/m2 for 120 min, and catechin (1 mM) upon the addition of 1 mM AlCl3
and 1 mM oxalic acid treated with BLI at 20 W/m2 for 120 min were used as the treatment conditions.
The absorbance of each reaction solution was detected by an ELISA reader in the range of 250–750 nm.

4.6. HPLC–MS Assay of Catechin upon the Addition of AlCl3 Treated with BLI

The effects due to BLI on the changes of catechin were studied by HPLC–MS analysis, as described
by previous results [5,15]. The reactants were prepared as described in Section 4.3. The samples were
analyzed by the Agilent 1200 Series HPLC System and the 6410B triple quadrupole tandem MS system
(Agilent Technologies, Palo Alto, CA, USA), with the electrospray ionization (ESI) technique as the
ionizing source. MS analysis in this study was conducted in a negative ion mode. The parameters of
the instrument were set as follows: Drying gas (N2) temperature and flow were 350 ◦C and 11 mL/min,
respectively; the nebulizer gas pressure was 50 psi; and the capillary voltage and temperature were
3700 V and 280 ◦C, respectively. A complete scan for data ranging from 100 to 1000 atomic mass unit
(amu) was conducted. Data acquisition and analyses were performed with the Agilent Mass Hunter
Workstation software (version B.06.00., Agilent Technologies, Palo Alto, CA, USA).

The solutions of all of the reactions were eluted via an EC-C18 column (Poroshell 120; particle size
2.7 µm, inner diameter 4.6 mm, length 150 mm; Agilent Technologies, Palo Alto, CA, USA) at 40 ◦C.
All of the reaction solutions were prepared as depicted in Section 4.3 and the solutions were filtered by
a 0.45 µm filter (Millipore, Brighton, MA, USA) prior to each analysis.

The separation of catechin and its photoproducts was accomplished with a mobile phase
comprising both methanol as solvent A and 0.1% methanoic acid as solvent B. The gradient elution
performed in this study can be described as follows: The linear gradient of solvent A was started
within 0–3 min, 1–10%; 3–10 min, 10–20%; 10–16.5 min, 20–75%; 16.5–20 min, 75–50%; and 20–23 min,
50–1%. Each sample of 5 µL was injected into the chamber and the flow rate of the elution was set to
400 µL/min.

4.7. Assay of O•−2

Previously, the effects of the catechin hydrate photoreaction on the generation of O•−2 were
investigated [5]. The NBT reduction method was applied to evidence O•−2 production, modified from
the method of the riboflavin photoreaction, as described earlier [51]. The influence of AlCl3 on O•−2
generation in the catechin photolytic process was therefore evaluated by the NBT reduction method.
All of the fresh reaction solutions were ready prior to each experiment. Firstly, 0.11 g L-methionine was
added to 73.3 mL of deionized water. Then, 10 mg NBT powder and 8 mL 10 mM catechin (treated
with or without 5 mM AlCl3) were added to the solution. The final concentrations of catechin (AlCl3),
methionine, and NBT were 1 (0.5), 9, and 0.15 mM in the reactant, respectively. The reactant was kept
at pH 7.8 by adding either NaOH or HCl. The reaction solutions were illuminated with blue light at 20
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W/m2 for 0–60 min. After the photochemical reaction, the proceeding O•−2 reduced NBT during the
process to form formazan, which was estimated at 560 nm.

4.8. Statistics

The determination of significant differences in each experiment performed in triplicate was
achieved via the one-way analysis of variance (ANOVA) method. The unpaired Student’s t-test was
used when statistical differences were indicated. The results are expressed as the mean ± standard
deviation (SD) of each test. The optimum level set for statistical significance was a p-value of less
than 0.05.

5. Conclusions

Catechin is sensitive to blue light and forms a proanthocyanidin by photooxidation under BLI
and alkaline conditions. A ferric ion is similar to an aluminum ion in terms of charges and ionic
radii. However, an aluminum ion is amphoteric, while a ferric ion is not. Upon the addition of
FeCl3, catechin turned black via chelation to a ferric ion with or without BLI treatment. In this
study, under BLI and alkaline conditions, the addition of AlCl3 to catechin inhibited the formation
of O•−2 , and therefore decreased the generation of proanthocyanidin, suggesting that the aluminum
superoxide complex was generated via water displacement from the solvated Al3+ in an alkaline
solution, and the aluminum superoxide complex can enhance electron-transfer processes, leading to
proanthocyanidin disconnection. Therefore, as an amphoteric species, aluminum exhibits an inherent
potential to stabilize O•−2 , therefore suppressing catechin photolysis under treatment with BLI in
alkaline conditions. Citric acid may enhance the absorption of aluminum in antacids. Lemon tea is a
popular beverage, rich in aluminum, catechins, and citric acid. For solutions of catechin in the presence
of AlCl3 with a large amount of citric acid under treatment with BLI, citrate might compete with
molecules containing OH− groups or O•−2 from an aluminum superoxide complex. It is therefore of
interest to use catechin photolysis as a model for investigating the effects of citric acid on the structural
changes of catechin and the alternation of aluminum species under treatment with BLI.
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