SUPPLEMENTARY INFORMATION

QSAR Model for Predicting the Cannabinoid Receptor 1 Binding Affinity and Dependence Potential of Synthetic Cannabinoids

Wonyoung Lee¹, So-Jung Park¹, Ji-Young Hwang¹, Kwang-Hyun Hur¹, Yong Sup Lee², Jongmin Kim³, Xiaodi Zhao¹, Aekyung Park⁴, Kyung Hoon Min³, Choon-Gon Jang ^{1,*} and Hyun-Ju Park ^{1,*}

- ¹ School of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Republic of Korea; wonyoung1007@naver.com (W.L.); sojung1024@gmail.com (S.-J. P.); innetjy@hotmail.com (J.-Y.H.); khh508@naver.com (K.-H. H.); zhaoxiaodi1019@gmail.com (X.Z.)
- ² Department of Pharmacy, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea; kyslee@khu.ac.kr
- ³ College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea; drugfriend2@gmail.com (J.K.); khmin@cau.ac.kr (K.H.M.)
- ⁴ College of Pharmacy, Sunchon National University, Suncheon 57922, Korea; parkak11@scnu.ac.kr
- * Correspondences: jang@skku.edu; Tel.: +82-31-2907780 (C.-G. J.); hyunju85@skku.edu; Tel.: + 82-31- 290 7719 (H.-J. P.)

Syntheses of Synthetic Cannabinoids

Synthesis of CRA13, CRA13-F, and CRA13-OH

The derivatives of CRA13, CRA13-F [1] and CRA13-OH [2] were synthesized as published previously.

CRA13 was synthesized starting from 1-naphthol and 1-naphthoyl chloride in 3steps sequence of reactions as described previously [3] and its structure and purity were confirmed by the following spectroscopic and HPLC analyses.

¹H NMR (400 MHz, CDCl3) δ 9.00 (d, J = 8.3 Hz, 1H), 8.39 (dd, J = 8.3 Hz, 0.9 Hz, 1H), 8.23 (dd, J = 8.3 Hz, 0.9 Hz, 1H), 7.97 (d, J = 8.3 Hz, 1H), 7.90 (dd, J = 7.8 Hz, 1.5 Hz, 1H), 7.66 (ddd, J = 8.31 Hz, 6.83 Hz, 1.48 Hz, 1H), 7.59–7.42 (m, 6H), 6.61(J = 8.3 Hz, 1H), 4.13 (t, J = 5.4 Hz, 2H), 1.97–1.88 (m, 2H), 1.59–1.49 (m, 2H), 1.47–1.37 (m, 2H), 0.97 (t, J = 7.3 Hz, 3H); 13C NMR (100 MHz, CDCl3) δ 199.1, 159.2, 139.1, 135.5, 134.0, 133.1, 131.5, 131.3, 129.0, 128.6, 128.5, 128.3, 127.5, 126.6, 126.3, 126.2 (2C), 126.2, 124.7, 122.7, 103.0, 68.8, 29.0, 28.6, 22.7, 14.3; HR-MS calcd for C26H25O2 [M+H]+ 369.1849, found 369.1863; HPLC purity = 99.06%, Luna (C18) 5 μ m (150 x 4.6 mm), mobile phase: 0.1% formic acid in water(A)/acetonitrile(B), 0–30 min (A/B = 10/90).

(a) ¹H-NMR Spectrum of CRA13 (400 MHz, CDCl3)

(c) High Resolution Mass spectrum of CRA13.

(d) High Performance Liquid Chromatography (HPLC) chromatogram of CRA13.

HPLC Condition

1

Luna (C18) 5 µm 150 x 4.6 mm	Mobile Phase A: 0.1% formic acid in water Mobile Phase B: 0.1% formic acid in acetonitrile 0–30 min; A/B = 10/90	210 nm	Concentration : 5 mg/ml in acetonitrile; 5 µl injection
---------------------------------	--	--------	---

Results: 99.06% purity

1 3.235 BB 0.0834 63.13132 0.1802 ? 2 3.679 BV 0.0902 4.26878e-1 1.218e-3 ? 3 3.835 VV 0.0778 2.30263 6.571e-3 ?	me
1 3.235 BB 0.0834 63.13132 0.1802 ? 2 3.679 BV 0.0902 4.26878e-1 1.218e-3 ? 3 3.835 VV 0.0778 2.30263 6.571e-3 ?	
2 3.679 BV 0.0902 4.26878e-1 1.218e-3 ? 3 3.835 VV 0.0778 2.30263 6.571e-3 ?	
3 3.835 VV 0.0778 2.30263 6.571e-3 ?	
4 3.968 VB 0.0946 9.23103 0.0263 ?	
5 4.478 BV 0.1196 58.67265 0.1674 ?	
6 4.754 VBA 0.0972 2.81685 8.039e-3 ?	
7 5.474 BV 0.1117 6.31314 0.0180 ?	
8 5.682 VB 0.1058 1.80776 5.159e-3 ?	
9 6.311 BV 0.1482 52.76944 0.1506 ?	
10 6.771 VB 0.1943 8.98942 0.0257 ?	
11 7.799 BV 0.1867 47.05533 0.1343 ?	
12 8.485 VB 0.1939 3.47119e4 99.0618 CB1	3
13 11.344 BB 0.2269 12.12432 0.0346 ?	
14 12.658 BB 0.3155 29.82164 0.0851 ?	
15 15.858 BB 0.3055 5.08271 0.0145 ?	
16 17.099 BB 0.3294 16.73203 0.0478 ?	

Synthesis of JWH-018

JWH-018 was synthesized by alkylation of indole with pentyl bromide followed by acylation of the resulting 1-pentylindole with 1-naphthoyl chloride as described [4].

(a)¹H-NMR spectrum of JWH-018.

(b) ¹³C-NMR spectrum of JWH-018.

(c) High Resolution Mass spectrum of JWH-018.

Synthesis of CP47,497 and its homologs (CP47,497-C6, C8, and C9)

CP47,497 and its homologs (CP47,497-C6, C8, and C9) were synthesized by the following procedure. The derivatives of 1-methoxy CP47,497 were prepared

according to the reported method [5]. Treatment of 1-methoxy CP47,497 derivatives with 1-propanthiol and n-butyllithium in HMPA gave the desired compounds (CP47,497-C6, C8, and C9).

2-((1S,3R)-3-hydroxycyclohexyl)-5-(2-methyloctan-2-yl)phenol (CP47,497)

¹H NMR (300 MHz, CDCl₃) δ 7.09 (d, J = 8.4 Hz, 1H), 6.87 (dd, J = 8.4 Hz, 2.1 Hz, 1H), 6.70 (d, J = 2.1 Hz, 1H), 3.69-3.86 (m, 1H), 2.79-2.99 (m, 1H), 2.13-2.27 (m, 2H), 1.98-2.13 (m, 2H), 1.80-1.98 (m, 2H), 1.49-1.75 (m, 4H), 1.26 (s, 6H), 1.01-1.30 (m, 8H), 0.79-0.94 (m, 3H) LRMS(EI) m/z 317.9

2-((1S,3R)-3-hydroxycyclohexyl)-5-(2-methylheptan-2-yl)phenol (CP47,497-C6)

1H NMR (300 MHz, CDCl3) : δ 7.08 (d, J = 7.8 Hz, 1H), 6.86 (dd, J = 7.8 Hz, 2.1 Hz, 1H), 6.70 (d, J = 2.1 Hz, 1H), 3.71-3.90 (m, 1H), 2.80-3.00 (m, 1H), 2.11-2.40 (m, 2H), 1.95-2.10 (m, 2H), 1.78-1.94 (m, 2H), 1.30-1.74 (m, 4H), 1.25 (s, 6H), 0.98-1.40 (m, 6H), 0.80-0.90 (m, 3H) ; HRMS(ESI) m/z calcd for C20H32O2 [M+1]+ : 304.2402, found 305.2479

2-((1S,3R)-3-hydroxycyclohexyl)-5-(2-methylnonan-2-yl)phenol (CP47,497-C8)

1H NMR (300 MHz, CDCl3) : δ 7.08 (d, J = 8.1 Hz, 1H), 6.86 (dd, J = 8.1 Hz, 1.8 Hz, 1H), 6.69 (d, J = 1.8 Hz, 1H), 3.70-3.83 (m, 1H), 2.81-2.94 (m, 1H), 2.12-2.41 (m, 2H), 1.95-2.13 (m, 2H), 1.78-1.96 (m, 2H), 1.37-1.63 (m, 4H), 1.25 (s, 6H), 0.98-1.38 (m, 10H), 0.80-0.98 (m, 3H) ; HRMS(ESI) m/z calcd for C22H36O2 [M+1]+ : 332.2715, found 333.2787

2-((1S,3R)-3-hydroxycyclohexyl)-5-(2-methyldecan-2-yl)phenol (CP47,497-C9)

1H NMR (300 MHz, CDCl3) : δ 7.08 (d, J = 8.1 Hz, 1H), 6.86 (dd, J = 8.1 Hz, 1.8 Hz, 1H), 6.69 (d, J = 1.8 Hz, 1H), 3.70-3.84 (m, 1H), 2.81-2.94 (m, 1H), 1.78-2.3 (m, 6H), 1.36-1.60 (m, 6H), 1.24 (s, 6H), 0.97-1.36 (m, 12H), 0.86 (t, J = 6.6 Hz, 3H) ; HRMS(ESI) m/z calcd for C23H38O2 [M+1]+ : 346.2872, found 347.2943

						J -																		
		THC			AM694	Į –	(CP47,49	7	CF	47,497	-C6	CP	47,497	-C8	CP	47,497	-C9	J	WH-01	18	J	WH-01	5
Μ		1			2			3			4			5		6			7			8		
10-4				169	0	124	71	-2	83	60	217	203												
10-5	49	0	0	337	55	56	293	250	588	650	579	736	0	0	0	0	0	0	0	0	24			
10-6	356	287	285	831	367	599	716	572	771	917	1018	1100	268	95	208	316	587	294	121	158	230	408	816	737
10-7	514	616	724	1098	740	717	1106	755	826	791	1108	1039	920	775	662	553	2601	916	130	394	433	656	1162	1060
10-8	981	961	1235	868	1056	897	923	1235	1164	848	1136	1031	1058	1225	739	1129	1249	979	972	966	854	899	968	1122
10-9	700	891	991	1184	1254	1172	875	1118	1317	868	623	998	1176	1554	776	1070	1338	896	615	572	1095	676	499	1312
10-10	532	570	837	1765	1174	884	552	1031	1173	738	604	1136	1033	1215	626	1159	1303	708	784	853	1634	987	919	755
10-11				1169	1131	1148	1237	962	1118							791	831	748				1190	1365	1006
Ki(M)	2	2.06E-0	7	2	2.83E-0	7	8	3.62E-0	7	' 1.18E-05		5	1	1.15E-0	7	4	4.81E-0	7	2	2.26E-0	8	0	0.00555	8
	J	WH-07	'3		RCS-4		JWH-081		J	WH-21	.0		CRA13	3	C	RA13-	·F	CI	RA13-0	ЭH				
М		9			10			11			12			13			14			15		1		
10-4				202	23	199							649	702	762	57	299	499	1025	-347	597			
10.2	43	-27	35	702	871	868	-143	245	170	-39	35	-3	729	761	644	454	205	1313	1067	1038	1363	1		
10-6	785	728	267	877	909	770	-19	358	60	-10	107	91	1189	1643	1165	1321	686	659	1327	1777	1321			
10-7	1429	1049	1179	801	971	1164	747	1041	810	319	571	646	1872	1516	1656	1540	1702	2137	1747	1929	1631			
10-8	1763	1647	1301	918	1068	861	1380	1776	1311	1018	1049	790	2211	2054	1450	1494	2873	2297	1651	1886	2226	1		
10-9	1414	1640	1417	1154	1323	1403	1606	1532	1748	1006	1475	1435	1880	2255	1602	2122	2491	2402	1514	1504	1972	1		
10-10	1670	1706	1320	1203	1203	1288	1218	1433	1030	1164	1403	1241	1462	2009	1796	3161	3175	2689				1		
10-11	1722	1707	1442	1174	1100	1107	1255	1500	1100	1160	1260	1260	1026	1656	1000	0110	2252	2419						
10.1	1/33	1/9/	1443	1174	1100	1187	1255	1588	1188	1162	1368	1209	1930	1050	1099	2118	2352	2418						
Ki(M)	2	2.28E-0	7	1	.16E-0	5	6	5.16E-0	8		2.20E-0	8	4	1.80E-0	7	6	3.00E-0	8	5	5.42E-0	6			

Table S1. CB1R-binding affinity raw data for 15 synthetic cannabinoids.

Table S2. L	list of descri	ptors	s used	for QS	AR models.

ſ

Descriptor Name	Descriptor Type	Descriptor class	Definition
XLogP	XLogP	Constitutional Descriptor	Prediction of logP based on the atom-type method called XLogP
VP.7	ChiPath	Topological Descriptor	Evaluates chi path descriptors Valence path orders 7
SPC.5	ChiPathCluster	Topological Descriptor	Evaluates chi path cluster descriptors, Simple path cluster, order 5
TopoPSA	TPSA	Topological Descriptor	Calculation of topological polar surface area based on fragment contributions (TPSA)
WTPT.4	WeightedPath	Topological Descriptor	Evaluates the weighted path descriptors.sum of path lengths starting from oxygens
Kier1	KappaShapeIndices	Topological Descriptor	Kier and Hall kappa molecular shape indices compare the molecular graph with minimal and maximal molecular graphs, First kappa shape index
MW	Weight	Constitutional Descriptor	Molecular weight

BCUTc.11	BCUT	Hybrid descriptor	Eigenvalue based descriptor noted for its utility in chemical diversity, nhigh lowest partial charge weighted BCUTS(nhigh : The number of highest eigenvalue)
MLogP	MannholdLogP	Constitutional descriptor	Prediction of logP based on the number of carbon and hetero atoms.
Wlambda3.un ity	WHIM	Hybrid descriptor	Holistic descriptors described by Todeschini et al (Todeschini, R. and Gramatica, P Persepectives in Drug Discovery and Design. 1998. null). Wlambda3 directional WHIM descriptors.
WPSA.1	CPSA	Electronic & geometrical descriptor	Calculates Charged Partial Surface Area (CPSA) sum of surface area on positive parts of molecule * total molecular surface area / 1000
FPSA.3	FPSA.3 CPSA		Calculates Charged Partial Surface Area (CPSA) Charge weighted partial positive surface area/ total molecular surface area
apol	APolDescriptor	Electronic descriptor	Sum of the atomic polarizabilities (including implicit hydrogens).
geomShape	PetitjeanShapeIndex	Topological descriptor	Evaluates the Petitjean shape indices, (geometric shape index)
nHBAcc	HBondAcceptorCou nt	Electronic descriptor	This descriptor calculates the number of hydrogen bond acceptors using a slightly simplified version of the PHACIR atom types.
ATSc4	AutocorrelationDes criptorCharge	Topological descriptor	Calculates the Autocorrelation of a Topological Structure autocorrelation descriptor, where the weight equal to the charges.

MLR Model number	Descriptor	R ²	Adjusted R ² _{adj}	Predicted R ² _{pred}	training set RMSE	test set RMSE	Q^2
1	XLogP	0.611	0.567	-0.857	0.558	1.071	0.527
2	VP.7	0.528	0.475	-0.776	0.614	1.047	0.463
3	SPC.5	0.376	0.307	0.008	0.706	0.783	0.25
4	WPSA.1	0.372	0.302	0.216	0.708	0.695	0.272
5	TopoPSA	0.319	0.244	0.539	0.737	0.533	0.224
6	apol	0.252	0.168	-0.755	0.773	1.041	0.037
7	WTPT.4	0.227	0.141	0.546	0.786	0.529	0.156
8	MLogP	0.203	0.114	0.117	0.798	0.738	-0.075
9	MW	0.17	0.078	-0.477	0.814	0.955	-0.033
10	Kier1	0.163	0.07	-0.793	0.818	1.052	-0.121
11	BCUTc.11	0.152	0.058	0.799	0.823	0.352	-0.043
12	geomShape	0.15	0.056	-0.3	0.824	0.896	-0.032
13	nHBAcc	0.14	0.044	-0.247	0.829	0.877	-0.005
14	FPSA.3	0.132	0.035	0.556	0.833	0.524	-0.092
15	Wlambda3.unity	0.107	0.008	-0.983	0.844	1.106	-0.188
16	ATSc4	0.097	-0.003	0.466	0.849	0.574	-0.078
17	VP.7, XLogP	0.696	0.621	-0.607	0.492	0.996	0.546
18	SPC.5, XLogP	0.679	0.599	0.097	0.506	0.746	0.52
19	WPSA.1, XLogP	0.655	0.569	-0.334	0.525	0.907	0.468
20	TopoPSA, XLogP	0.714	0.643	0.098	0.478	0.746	0.59
21	apol, XLogP	0.625	0.532	-0.635	0.547	1.005	0.455
22	WTPT.4, XLogP	0.738	0.672	-0.378	0.458	0.922	0.656
23	MLogP, XLogP	0.615	0.518	-0.965	0.555	1.101	0.439
24	MW, XLogP	0.647	0.559	-0.986	0.531	1.107	0.515
25	Kier1, XLogP	0.616	0.519	-0.718	0.554	1.03	0.41
26	BCUTc.11, XLogP	0.686	0.607	0.049	0.501	0.766	0.556
27	geomShape, XLogP	0.694	0.618	-0.374	0.494	0.921	0.544
28	nHBAcc, XLogP	0.636	0.544	-0.402	0.539	0.93	0.503
29	FPSA.3, XLogP	0.618	0.522	-1.123	0.553	1.145	0.217
30	Wlambda3.unity, XLogP	0.619	0.524	-1.23	0.551	1.173	0.358
31	ATSc4, XLogP	0.812	0.765	0.133	0.387	0.732	0.698
32	VP.7, ATSc4, XLogP	0.838	0.768	0.04	0.36	0.77	0.613
33	SPC.5, ATSc4, XLogP	0.834	0.762	0.465	0.364	0.575	0.664
34	WPSA.1, ATSc4, XLogP	0.834	0.762	0.42	0.365	0.598	0.655
35	TopoPSA, ATSc4, XLogP	0.813	0.733	0.083	0.387	0.752	0.531
36	apol, ATSc4, XLogP	0.829	0.756	0.039	0.369	0.77	0.559
37	WTPT.4, ATSc4, XLogP	0.82	0.743	0.13	0.379	0.733	0.609
38	MLogP, ATSc4, XLogP	0.818	0.74	0.269	0.382	0.672	0.649
39	MW, ATSc4, XLogP	0.821	0.744	0.098	0.378	0.746	0.646
40	Kier1, ATSc4, XLogP	0.844	0.777	0.09	0.353	0.75	0.658
41	BCUTc.11, ATSc4, XLogP	0.817	0.739	0.28	0.382	0.667	0.618
42	geomShape, ATSc4, XLogP	0.813	0.732	0.157	0.387	0.721	0.599
43	nHBAcc, ATSc4, XLogP	0.816	0.737	0.029	0.383	0.774	0.648
44	FPSA.3, ATSc4, XLogP	0.838	0.769	-0.158	0.359	0.846	0.54
45	Wlambda3.unity, ATSc4, XLogP	0.829	0.756	-0.153	0.369	0.843	0.628

Table S3. Statistical Analysis of MLR models.

(R²: coefficient of determination data set, R_{adj}^2 : adjusted R², R_{pred}^2 : R² for external test set, RMSE: root mean squared Error, Q^2 : cross-validated coefficient of determination (Leave-One-Out method))

Figure S1. Q-Q plot of the residuals from MLR model 31 showing a normal distribution.

Figure S2. Q-Q plot of the residuals from PLSR model showing a normal distribution.

Figure S3. Y-Randomization analysis of the generated PLSR model. Black dots indicate Y-randomization models, and a red dot indicates the PLSR model.

Table S4. CB1R-binding affinity (pKi) of JWH-series compounds predicted by the PLSR model.

Compound Name	Rı	R2	R₃	R4	R₅	R6	pKi value of literature	Predicted pKi	¹ Residual	Eclidean Distance (APD= 4.753)
*JWH-007	C5H11	CH₃	Н	Н	Н	Н	8.022	7.490	0.532	2.036
JWH-015	C3H7	CH₃	Н	Н	Н	Н	6.785	6.436	0.349	3.540
JWH-016	C4H9	CH₃	Н	Н	Н	Н	7.658	7.323	0.335	3.186
*JWH-019	C6H13	Н	Н	Н	Н	Н	8.009	7.962	0.047	4.280
JWH-043	C2H5	CH₃	Н	Н	Н	Н	5.928	6.049	-0.121	4.233
JWH-046	C ₃ H ₇	CH₃	Н	Н	Н	CH3	6.465	6.750	-0.285	3.762
JWH-047	C4H9	CH₃	Н	Н	Н	CH3	7.231	7.349	-0.118	2.930
JWH-048	C5H11	CH₃	Н	Н	Н	CH3	7.971	7.924	0.047	2.231

JWH-049	C6H13	CH₃	Н	Н	Н	CH₃	7.259	8.679	-1.420	4.466
JWH-071	C2H5	Н	Н	Н	Н	Н	5.873	5.594	0.279	4.171
JWH-072	C ₃ H ₇	Н	Н	Н	Н	Н	5.979	6.167	-0.188	2.057
JWH-076	C ₃ H ₇	Н	Н	Н	Н	CH₃	6.67	6.471	0.199	2.099
JWH-078	C2H5	Н	Н	OCH ₃	Н	Н	6.088	5.595	0.493	4.180
JWH-079	C3H7	Н	Н	OCH ₃	Н	Н	7.201	6.211	0.990	3.933
JWH-080	C4H9	Н	Н	OCH3	Н	Н	8.252	6.528	1.724	2.163
JWH-082	C6H13	Н	Н	OCH ₃	Н	Н	8.276	7.689	0.587	4.130
JWH-094	C ₃ H ₇	CH ₃	Н	OCH ₃	Н	Н	6.322	6.294	0.028	3.614
JWH-096	C4H9	CH3	Н	OCH ₃	Н	Н	7.472	7.344	0.128	2.852
*JWH-098	C5H11	CH ₃	Н	OCH ₃	Н	Н	8.347	8.300	0.047	2.864
JWH-120	C ₃ H ₇	Н	Н	CH ₃	Н	Н	5.977	6.398	-0.421	3.388
*JWH-122	C5H11	Н	Н	CH₃	Н	Н	9.161	7.966	1.195	4.015
JWH-148	C ₃ H ₇	CH₃	Н	CH₃	Н	Н	6.91	6.620	0.290	4.447
JWH-149	C5H11	CH₃	Н	CH₃	Н	Н	8.301	7.778	0.523	2.802
JWH-153	C5H11	CH₃	Н	Н	OCH ₃	Н	6.602	7.614	-1.012	3.537
JWH-159	C5H11	CH₃	Н	Н	Н	OCH ₃	7.347	7.433	-0.086	2.755
JWH-160	C ₃ H ₇	CH3	Н	Н	Н	OCH ₃	5.805	6.242	-0.437	3.744
JWH-163	C ₃ H ₇	Н	Н	Н	OCH ₃	Н	5.627	5.977	-0.350	3.440
JWH-164	C5H11	Н	Н	Н	Н	OCH ₃	8.18	7.565	0.615	1.360
JWH-165	C ₃ H ₇	Н	Н	Н	Н	OCH ₃	6.69	6.222	0.468	3.965
*JWH-166	C5H11	Н	Н	Н	OCH ₃	Н	7.357	7.085	0.272	1.677
JWH-180	C ₃ H ₇	Н	Н	C3H7	Н	Н	7.585	7.519	0.066	3.776
JWH-181	C5H11	CH3	Н	C3H7	Н	Н	8.886	8.971	-0.085	3.569
JWH-182	C5H11	Н	Н	C3H7	Н	Н	9.187	9.191	-0.004	2.851
JWH-189	C3H7	CH ₃	Н	C3H7	Н	Н	7.284	7.753	-0.469	3.236
JWH-211	C3H7	CH ₃	Н	C2H5	Н	Н	7.155	7.295	-0.140	3.935
JWH-212	C ₃ H ₇	Н	Н	C2H5	Н	Н	7.481	7.223	0.258	2.837
JWH-213	C5H11	CH₃	Н	C2H5	Н	Н	8.824	8.408	0.416	2.396
JWH-234	C5H11	Н	Н	Н	Н	C ₂ H ₅	8.076	8.077	-0.001	2.626
JWH-235	C ₃ H ₇	Н	Н	Н	Н	C ₂ H ₅	6.471	6.998	-0.527	2.291
JWH-236	C ₃ H ₇	CH₃	Н	Н	Н	C ₂ H ₅	5.869	7.282	-1.413	4.504
JWH-239	C3H7	Н	Н	C4H9	Н	Н	6.466	8.009	-1.543	3.599
JWH-240	C5H11	Н	Н	C4H9	Н	Н	7.854	9.132	-1.278	4.054
JWH-241	C3H7	CH3	Н	C4H9	Н	Н	6.833	8.301	-1.468	2.507
JWH-258	C5H11	Н	Н	OC ₂ H ₅	Н	Н	8.337	8.234	0.103	2.784
JWH-259	C ₃ H ₇	Н	Н	OC ₂ H ₅	Н	Н	6.658	6.423	0.235	2.435
JWH-260	C5H11	CH ₃	Н	OC ₂ H ₅	Н	Н	7.538	8.028	-0.490	4.556

JWH-261	C3H7	CH ₃	Н	OC ₂ H ₅	Н	Н	6.115	6.796	-0.681	2.617
JWH-262	C5H11	CH ₃	Н	Н	Н	C ₂ H ₅	7.553	8.485	-0.932	3.254
JWH-267	C5H11	Н	OCH ₃	Н	Н	Н	6.419	7.256	-0.837	3.240
JWH-268	C5H11	CH3	OCH ₃	Н	Н	Н	5.86	7.838	-1.978	4.255

(* Compound currently in US schedule I; 1Residual: difference between the observed and predicted pKi values.)

References

[1] Hassan, A.H., Park, K.T., Kim, H.J., Lee, H.J., Kwon, Y.H., Hwang, J.Y., et al. Fluorinated CRA13 analogues: Synthesis, in vitro evaluation, radiosynthesis, in silico and in vivo PET study. Bioorganic Chemistry. 2020, 103834.

[2] Hassan, A.H., Cho, M.C., Kim, H.I., Yang, J.S., Park, K.T., Hwang, J.Y., et al. Synthesis of oxidative metabolites of CRA13 and their analogs: Identificatio n of CRA13 active metabolites and analogs thereof with selective CB2R affinity . Bioorganic & medicinal chemistry. 2018, 26, 5069-78.

[3] Dziadulewicz, E.K., Bevan, S.J., Brain, C.T., Coote, P.R., Culshaw, A.J., Davi s, A.J., et al. Naphthalen-1-yl-(4-pentyloxynaphthalen-1-yl) methanone: a potent, orally bioavailable human CB1/CB2 dual agonist with antihyperalgesic propert ies and restricted central nervous system penetration. Journal of medicinal che mistry. 2007, 50, 3851-6.

[4] Appendino, G., Minassi, A., Taglialatela-Scafati, O. Recreational drug discov ery: natural products as lead structures for the synthesis of smart drugs. Natu ral product reports. 2014, 31, 880-904.

[5] Huffman, J.W., Hepburn, S.A., Reggio, P.H., Hurst, D.P., Wiley, J.L., Martin , B.R. Synthesis and pharmacology of 1-methoxy analogs of CP-47,497. Bioorga nic & medicinal chemistry. 2010, 18, 5475-82.