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Abstract: A series of D–π–A diketopyrrolopyrrole(DPP)-based small molecules were designed for
organic light-emitting diode(OLEDs) and organic solar cell(OSCs) applications. Applying the
PBE0/6-31G(d,p) method, the ground state geometry and relevant electronic properties were
investigated. The first excited singlet state geometry and the absorption and fluorescent spectra were
simulated at the TD-PBE0/6-31G(d,p) level. The calculated results revealed that the photophysical
properties were affected through the introduction of different end groups. Furthermore, the electronic
transitions corresponding to absorption and emission exhibited an intramolecular charge transfer
feature. Our results suggest that the designed molecules acted not only as luminescent for OLEDs,
but also as donor materials in OSCs. Moreover, they can also be used as potential electron transfer
materials for OLEDs and OSCs.

Keywords: diketopyrrolopyrrole(DPP)-based molecules; photophysical properties;
Charge transporting property; organic light-emitting diodes(OLEDs); organic solar cells(OSCs)

1. Introduction

Organic semiconductors have attracted considerable interest in recent years due to their advantages
over their inorganic counterparts, such as low-cost, lightweight, and flexible electronic devices [1–5].
In particular, small-molecule-based organic semiconductors are expected to open new possibilities
in terms of optoelectronic applications in organic electronic devices including organic light-emitting
diodes (OLEDs), organic solar cells (OSCs), and field effect transistors (FETs). Small-molecule-based
organic semiconductors exhibit strong absorption and emission, high fluorescence quantum yields,
and good charge carrier mobility [6]. Nevertheless, the lower efficiency of OLEDs and OSCs has
seriously restricted their commercialization. The development of new small molecular materials
with highly desirable properties remains a major challenge. Therefore, it is critically important to
design and synthesize efficient multifunctional materials. These materials can serve as efficient light
emitters in OLEDs, donor material for OSCs, and, simultaneously, charge transport materials [7,8].
In order to achieve high performance and enhance the power conversion efficiency (PCE) of OSCs,
the frontier molecular orbitals (FMOs) energy levels of donors should match the typical acceptors.
A deep HOMO (highest occupied molecular orbital) energy provides a high open circuit voltage
(Voc). A relatively high LUMO (lowest unoccupied molecular orbital) energy ensures efficient charge
separation. [9,10] Additionally, a lower HOMO–LUMO gap (Eg)and strong absorption are required
for effective harvesting of the solar photons. High charge-carrier mobility is also demanded for
fast charge-carrier transport to maximize the short-circuit current (Jsc). Furthermore, another key
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parameter is the downhill energetic driving force (∆EL-L), which is strongly related to the efficient
charge transfer. The ∆EL-L can be estimated by the energy difference between the LUMO of donor and
acceptor, which should amount to at least 0.3 eV [11,12]. Normally, the fullerene derivatives PC61BM
([6,6]-phenyl-C61-butyric acid methyl ester), bisPC61BM, and PC71BM are employed as acceptors in
OSCs [13,14]. Nowadays, one of the most efficient strategies for optoelectronic materials is to design
and synthesize donor–acceptor molecular systems containing a π-bridged(D–π–A) framework [15–18].
The electronic energy levels, absorption and emission spectra, intermolecular stacking, and film
morphology can be tuned effectively through chemical modification of the acceptor, donor, andπ-bridge
fragments [19–21]. Amongst various small molecular material building blocks, such as benzofuran [22],
triphenylamine (TPA) units [23], tetraphenylethylene (TPE) [24], selenophene [25], phenanthrene [26],
pyrene [27], and diketopyrrolopyrrole (DPP) derivative, DPP derivatives have attracted much interest
owing to their outstanding performance in OSCs, OLEDs, and FETs [28–31]. DPP-containing materials
possess promising features such as strong absorption and emission in the visible region, excellent thermal
and photo-stability, large Stokes shift, and straightforward synthetic modification [32–36]. The DPP
unit is a widely recognized electron acceptor owing to its strong electron-withdrawing nature [37,38].
In the D–π−A molecular systems containing DPP as core, the introduction of aromatic blocks at
the 2,5 position of the DPP core can tune the optical properties via π–πintermolecular interactions.
Furthermore, the introduction of various end-capping groups onto the aromatic blocks can further tune
the molecular properties. Recently, it has been reported that some multifunctional DPP derivatives
exhibit good optical properties [39].

In the present work, we designed several D–π–A–π–D-structured DPP-based small molecules
for OSC and OLED applications. These molecules consist of the electron deficient DPP as the core
(acceptor), different planar electron-rich aromatic groups as end groups (donor), and benzene asπ-bridge
(Scheme 1). Via the density functional theory (DFT) and time-dependent DFT (TD-DFT) computational
approach, the photophysical and charge transfer properties were systematically investigated. The FMO
energies (EHOMO and ELUMO), Eg, ∆EL-L, reorganization energy (λ), and absorption and fluorescent
spectra were predicted.

Scheme 1. Molecular structures of the investigated molecules.
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2. Results and Discussion

2.1. Frontier Molecular Orbitals

To gain insight into the influence of the FMO energies on the optical and electronic properties,
we examined the HOMO and LUMO contour plots of the designed molecules, as shown in Figure 1.
On the basis of Mulliken population analysis, we also investigated the distribution patterns of FMOs
using percentage contributions from DPP, π-bridge(BB), and end group(EG) moieties by means of
partial density of states (PDOS) (see Table 1). The EHOMO, ELUMO, and Eg of 1–8 are plotted in Figure 2.
Obviously, the FMOs exhibited π-orbital and strong delocalization features for 1–8, as shown in Figure 2.
It was quite obvious that, comparing the contributions of DPP, BB, and EG fragments to the LUMOs
with HOMOs, the DPP fragment contributions to LUMOs were smaller than those to HOMOs for 1–4
and 6–8, respectively. In contrast, the contribution of DPP fragment to LUMO was larger than that
to HOMO for 5.For the contributions of BB fragments, the contributions to LUMOs were larger than
those to HOMOs for 1–5, 7, and 8, respectively. The contribution to LUMO was smaller than that to
HOMO for 6. For EG fragments, the contributions to LUMOs were larger those to HOMOs for 2, 3,
and 6 respectively. However, the contributions to LUMOs were smaller than those to HOMOs for 1, 4,
5, 7, and 8, respectively.

Figure 1. The electronic density contours of the frontier orbital for the studied compounds at the
PBE0/6-31G (d,p) level.

Table 1. The highest occupied molecular orbit (HOMO) and lowest unoccupied molecular orbit (LUMO)
contributions of individual fragments (in%) to the frontier molecular orbitals (FMOs) of 1–8 at the
PBE0/6-31G (d,p) level.

Species
HOMOs LUMOs

DPP a CB b Ar c DPP CB Ar

1 71.0 19.2 9.8 66.1 28.5 5.4
2 75.3 19.0 5.7 33.9 21.1 45.0
3 75.5 19.4 5.1 60.2 30.3 9.5
4 73.1 19.0 7.9 64.3 30.2 5.6
5 47.3 19.7 33.0 54.8 29.8 15.5
6 63.9 21.3 14.9 28.3 21.1 50.6
7 61.2 22.6 16.3 58.2 30.4 11.5
8 61.3 21.0 17.7 56.3 31.1 12.5

a DPP: diketopyrrolopyrrole fragment; b CB: conjugate bridge moieties; c Ar: aromatic groups.

Inspection of the results displayed in Table 1 revealed clearly that the excitation of the electron
from the HOMOs to LUMOs led the electronic density to flow mainly from the DPP and AR fragments
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to CB fragments for 1, 4, 7 and 8.For 2, 3, and 6, the electronic densities mainly flowed from DPP
fragments to AR and CB fragments. However, the electronic density mainly flowed from the AR
fragments to DPP and CB fragment for 5. This suggests that the different AR groups had obvious
effects on the distribution of FMOs for the designed compounds. The percentages of charge transfer
from DPP and AR fragments to CB fragments were 9.3%, 11.2%, 7.8%, and 10.1%for 1, 4, 7, and 8,
respectively. For 2, 3, and 6, the percentages of charge transfer from DPP fragments to AR and
CB fragments were 41.4%, 15.3%, and 35.6%, respectively. The percentage of charge transfer from
AR to DPP and BB fragment for 5 was 35.6%. Therefore, the order of the electron-donor ability of
end groups for the studied compounds was benzo[c]thiophene (5) > thieno [3,2-b]thiophene (8) >

2,3-dihydrothieno[3,4-b][1,4]dioxine (7) > naphthalene (4) > butoxybenzene (1) > benzo[d]thiazole
(3) > benzo[c][1,2,5]thiadiazole (2) > thieno[3,4-b]pyrazine (6). These results revealed that the DPP
and AR fragments served as donors and CB fragments served as acceptors for 1, 4, 7, and 8. The DPP
fragments served as donors and the AR and CB fragments served as acceptors for 2, 3, and 6. For 5,
the DPP and CB fragments served as acceptors and AR fragment served as donors. Clearly, the vertical
S0→S1 transitions for the current system possessed an intramolecular charge transfer (ICT) nature.
The end groups affected the distributions of FMOs for the D–π–A–π–D molecules.

Figure 2. Evaluation of calculated FMO energies for investigated molecules as well as FMO energies
for PC61BM, bisPC61BM, and PC71BM at the PBE0/6-31G (d,p) level.

From the results displayed in Figure 2, it can be seen that the trends of EHOMO and ELUMO

were 7 > 1 > 5 > 3 > 6 > 8 > 4 > 2 and 1 > 7 > 3 > 4 > 5 > 8 > 2 > 6, respectively. This suggests
that molecules 2–6 and 8 were able to decrease the EHOMO and ELUMO compared with molecule 1.
However, molecule 7 could increase/decrease the EHOMO/ELUMO compared with that of molecule 1.
Furthermore, the predicted Eg sequence was 4 > 1 > 3 > 7 > 8 > 2 > 5 > 6. Obviously, molecules 2, 3,
and 5–8 could narrow, whereas molecule 4 could decrease the Eg compared with that of molecule 1.
Obviously, the introduction of benzo[c][1,2,5]thiadiazole (2), benzo[d]thiazole (3), benzo[c]thiophene
(5), thieno[3,4-b]pyrazine (6), 2,3-dihydrothieno[3,4-b][1,4]dioxine (7), and thieno[3,2-b]thiophene (8)
end groups led to narrower Eg values compared to molecules with a butoxybenzene (1)end group.
However, the introduction of a naphthalene (4) end group decreased the Eg compared with that of
molecule 1. This implied that the introduction of different AR fragments (donor groups) to the DPP
led to the change of the EHOMO, ELUMO, and Eg values for its derivatives. These results indicated that
these D–π–A molecules can lower the band gap and extend the absorption spectrum towards longer
wavelengths. The absorption and fluorescence spectra can be tuned by donor groups. Consequently,
the designed molecules except for 4 may possess longer absorption and fluorescence wavelengths
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compared with those of molecule 1. Therefore, it can be concluded that the EHOMO, ELUMO, and Eg of
the designed D–π–A–π–D molecules can be tuned via different end groups.

2.2. Match between Donor and Acceptor Material

It is worth noting that the match between donor and acceptor is crucial for OSC devices. Namely,
donor materials should possess suitable FMO energy levels. Firstly, with the aim of efficient electron
transfer, the ELUMO of the donor should be higher than that of the acceptor. Additionally, the ∆EL-L

should be larger than the binding energy (0.2−1.0 eV) [40,41], and should reach at least 0.3 eV. Secondly,
in order to improve the performance of OSCs, donor materials should exhibit higher Jsc and Voc values
and efficient charge transfer. Therefore, lower Egs are required for ensuring the successful harvesting
of sunlight and to enhance the Jsc. A large difference between the EHOMO of the donor and the ELUMO

of the acceptor is favorable for enhancing the Voc and efficient exciton dissociation [42–45].
We took PC61BM, bisPC61BM, and PC71BM as acceptors for the current system (see Figure 2).

We calculated the ∆EL-L of 1–8 (see Table 2). As visualized in Figure 2, the ELUMOs of 1–8 were
positioned above those of PC61BM, bisPC61BM, and PC71BM, respectively. When PC61BM, bisPC61BM,
and PC71BM were taken as acceptors, the predicted ∆EL-L of 1–8 was 0.428–0.968, 0.321–0.861,
and 0.396–0.963 eV, respectively. Obviously, they are all exceeded 0.3 eV. As a consequence, the electron
transfer to acceptors was efficient for these molecules. On the other hand, the EHOMO of the designed
molecules was lower by 1.916, 2.023, and 1.9481 eV than the ELUMO of PC61BM, bisPC61BM, and PC71BM,
respectively. With the above considerations, the designed molecules possess suitable FMO energies to
match those of the three typical fullerene acceptors. Therefore, the FMOs of these molecules can be tuned
via planar electron-rich aromatic end groups to match PC61BM, bisPC61BM, and PC71BM acceptors.

Table 2. The calculated ∆EL-L values for 1–8 at the PBE0/6-31G (d,p).

Species ∆EL-L
a ∆EL-L

b ∆EL-L
c

1 0.968 0.861 0.936
2 0.517 0.410 0.485
3 0.834 0.727 0.802
4 0.792 0.685 0.760
5 0.688 0.581 0.656
6 0.428 0.321 0.396
7 0.906 0.799 0.874
8 0.645 0.538 0.613

a ∆EL-L for PC61BM as acceptor; b ∆EL-L for bisPC61BM as acceptor; c ∆EL-L for PC71BM as acceptor.

2.3. Absorption and Fluorescent Properties

Tables 3 and 4 collect the predicted properties of the absorption and fluorescence spectra of the
designed molecules, respectively. The simulated absorption and fluorescence spectra of 1–8 are shown
in Figures 3 and 4. For the absorption spectra, clearly, they were mainly derived from HOMO →
LUMO transitions with 71% contributions for 1–8. The longest wavelengths of absorption (λabs) of
molecules 2, 3, and 5–8 showed bathochromic shifts 43.4, 5.4, 52.1, 93.7, 29, and 36.1 nm, respectively,
whereas molecule 4 exhibited a hypsochromic shift of 2.3 nm compared with molecule 1. At the same
time, the λabs was in the order of 6 > 5 > 2 > 8> 7 >3 > 1 > 4, which was in excellent agreement with
the corresponding reverse order of Eg values. Moreover, it was noted that molecules 6–8 had larger f
value than that of 1, while the while the corresponding f values of 2–5 were slightly less than that of 1,
respectively. Generally, a larger f value corresponds to a larger experimental absorption coefficient or
stronger fluorescence intensity. This suggests that molecules 2, 3, and 5–8 were able to increase the
λabs values compared with molecule 1. On the other hand, molecule 4 did not significantly affect the
λabs compared with molecule 1. Therefore, the designed molecules can be used as donor materials for
OSC applications.
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Table 3. Predicted longest wavelengths of absorption, corresponding oscillator strength f, and main
assignment of 1–8 at the TD- PBE0/6-31G (d,p)//PBE0/6-31G (d,p) level.

Species λabs (nm) f Assignment

1 478.2 0.93 HOMO→ LUMO (0.71)
2 521.6 0.74 HOMO→ LUMO (0.70)
3 483.6 0.90 HOMO→ LUMO(0.71)
4 475.9 0.82 HOMO→ LUMO(0.71)
5 530.3 1.25 HOMO→ LUMO (0.71)
6 571.9 0.96 HOMO→ LUMO(0.70)
7 507.2 1.14 HOMO→ LUMO(0.71)
8 514.3 1.28 HOMO→ LUMO(0.70)

Exp a 494
a Experimental data for 1 were taken from Reference [39].

Table 4. Predicted longest wavelengths of fluorescence, corresponding oscillator strength f, and main
assignment of 1–8 at the TD-PBE0/6-31G (d,p)//TD-PBE0/6-31G (d,p) level.

Species λflu f Assignment

1 565.6 1.08 HOMO← LUMO (0.71)
2 627.9 0.83 HOMO← LUMO (0.71)
3 572.4 1.03 HOMO← LUMO(0.71)
4 560.3 0.95 HOMO← LUMO(0.71)
5 685.5 1.01 HOMO← LUMO (0.71)
6 617.1 1.46 HOMO← LUMO(0.71)
7 587.6 1.23 HOMO← LUMO(0.71)
8 603.5 1.44 HOMO← LUMO(0.71)

Exp a 562
a Experimental data for 1 were taken from Reference [39].

Figure 3. The calculated absorption spectra of the investigated molecules (value of full width at half
maximum was 3000 cm−1). (a) Molecules 1–4; (b) Molecules 5–8.

The longest wavelengths of fluorescence (λflu) of 1–8 mainly originated from the LUMO→HOMO
excitations, as shown in Table 4. Similar to those absorption spectra, the λflu of molecules 2, 3, and
5–8 showed bathochromic shifts 62.3, 6.8, 119.9, 51.5, 22, and 37.9 nm compared with molecule 1,
respectively. In contrast, molecule 4 exhibited a hypsochromic shift of 5.3 nm compared with that of 1.
The λflu values were in the sequence 5 > 2 > 6 > 8 > 7 > 3 > 1 > 4. Furthermore, the f values of 2–5
were slightly less than that of 1 and the corresponding values of molecules 6–8 were larger than that
of molecules 1, respectively. Therefore, the designed molecules had high fluorescent intensity. As a
consequence, they can be used as luminescent materials for OLEDs, particularly for 6–8.
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Figure 4. The calculated fluorescence spectra of the investigated molecules (value of full width at half
maximum was 3000 cm−1). (a) Molecules 1–4;(b) Molecules 5–8.

The results displayed in Tables 2 and 3 revealed that the absorption and fluorescence spectra of the
designed molecules could be affected significantly by end groups. The designed molecules exhibited
larger absorption coefficient and stronger fluorescence intensity. It suggests that these molecules could
serve not only as luminescent for OLEDs, but also as donor materials in OSCs.

2.4. Reorganization Energies and Stabilities

The predicted λe and λh values of 1–8 are listed in Table 5. It was quite clear that the λh values of
1–8 were larger than those of λe, respectively. This suggested that rates of electron transfer may have
been higher than rates of hole transfer for 1–8. Interestingly, molecule 1 possessed both the largest λe

and λh values, indicating that the introduction of different end groups could lower the λe and λh for
the designed molecules. Furthermore, molecules 5 and 6 exhibited the smallest λh and λe, respectively.
From these results, it can be seen that the introduction of different end groups was favorable for hole
and electron transfer. They may act as electron transport materials in OLEDs and OSCs.

Table 5. Calculated λe, λh, and η values (all in eV) of 1–8 at the PBE0/6-31G (d,p) level.

Species λh λe η

1 0.401 0.343 2.284
2 0.374 0.240 2.174
3 0.386 0.322 2.277
4 0.364 0.315 2.305
5 0.325 0.260 2.104
6 0.356 0.222 2.017
7 0.392 0.278 2.180
8 0.380 0.263 2.145

Usually, the stability of materials can be predicted by means of the η value. As shown in Table 5,
the η value of molecule 4 was larger than the value of molecule 1. However, as expected, molecules 2,
3, and 5–8 possessed slightly smaller than that of molecule 1. Compared with molecule 1, the stabilities
of 2, 3 and 5–8 decreased slightly because of their steric hindrances. This suggested that the end groups
had a little effect on the stability of molecules.

Another way to evaluate the stability of material is to analyze their electrostatic surface potentials.
Therefore, the electrostatic surface potentials of the designed molecules were calculated and are plotted
in Figure 5. The high negative charges of 1–8 resided at the two oxygen atoms of DPP moieties,
as visualized in Figure 5. The reason for this may be the presence lone pairs on oxygen atoms.
In contrast, partial positive charges were found on the aromatic end groups. It was observed that
molecules 1–8 had similar positive and negative potential distributions, implying that they possessed
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the same magnitude of photostability. Apparently, these results also revealed that the introduction of
different end groups lightly affected on the stability of the molecules.

Figure 5. Electrostatic surface potentials for designed molecules. Regions of higher and lower electron
density are shown in red and blue, respectively (values in atomic units).

3. Materials and Methods

Computational Methods

All the calculations were carried out using the Gaussian 09 suite of programs [46]. The DFT
was employed to perform the geometry optimization and frequency calculations of the molecules in
ground states (S0). The frequency analysis characterized that the optimized structures are true minima.
The equilibrium geometries of the molecules in the first excited singlet state (S1) were optimized by
mean of TD-DFT method. On the basis of the optimized structures in S0 and S1, the absorption and
fluorescent spectra were simulated by TD-DFT method, respectively. With the aim of choosing a
choose reasonable method, different functionals were taken to optimize the geometry of 1 in S0 and
S1. These functionals contained, for example, B3LYP [47], PBE0 [48], CAM-B3LYP [49], M062X [50],
MPW1PW91 [51], and ωB97XD [52]. Under the optimized structures in S0 and S1, the absorption and
fluorescent spectra of molecule 1 were predicted using the TD-DFT method. The λabs and λflu values
are plotted in Figure 6. The tested results revealed that the λabs and λflu (478.2 and 565.6 nm) using the
PBE0 (583 nm) method were well able to reproduce the experimental results (494 and 562 nm) [39],
and the deviations were 15.8 and 3.6 nm, respectively. The Stokes shift was 87.4 nm, which was
comparable to the experimental 68 nm. As a consequence, the PBE0 method was the best choice with
which to investigate our system. The PBE0 method was also used to optimize the acceptors PC61BM,
bisPC61BM, and PC71BM. The 6-31G (d,p) basis set was used for all calculations.

Figure 6. Calculated absorption and fluorescence wavelengths (λabs and λflu) of molecule 1 using
various functionals, together with the experimental result.
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It is commonly known that reorganization energy (λ) is a key parameter for charge transfer
rates [53,54]. Lower electron (λe) and hole (λh) reorganization energies are beneficial for the higher
electron and hole transfer rates, respectively. In this work, we only considered the internal λ, ignoring
any environmental relaxation and changes. The λe and λh values were predicted at the PBE0/6-31G
(d,p) level on the basis of the single-point energy. The λe and λh values were evaluated via the
following equations [55]:

λe =
(
E−0 − E−−

)
+

(
E0
− − E0

0

)
(1)

λh =
(
E+

0 − E+
+

)
+

(
E0
+ − E0

0

)
(2)

where E±0 is the energy of cation/anion structure based on the optimized neutral structure. Conversely,
E0
±

represents the energy of the neutral structure based on optimized cation/anion structure. Similarly,
E±
±

is the energy of cation/anion structure based on the optimized cation/anion structure, while E0
0 is

the energy of the neutral molecule at ground state.
It was critically important to evaluate the stability of the material in OSC and OLED devices.

The absolute hardness (η) of materials can be used as useful criterion with which to investigate the
stability of the material. The η values can be predicted using the following equation [56,57]:

η =
1
2

(
∂µ

∂N

)
=

1
2

(
∂2E
∂N2

)
=

AIP−AEA
2

(3)

where µ and N are the chemical potential and total electron number, respectively. AIP and AEA
correspond to the adiabatic ionization potential and adiabatic electron affinity, respectively.

The AIP is the energy difference between the cation radical and its neutral species, while the AEA
represents the energy difference between the neutral and its anion radical molecules. The PBE0/6-31G
(d,p) method was applied to calculate the AIP and AEA values of the molecules. The electrostatic
surface potentials can also be used to estimate the stability properties of molecules [58–60]. Therefore,
we calculated the electrostatic surface potentials of molecules at the PBE0/6-31G (d,p) level.

4. Conclusions

Several D–π–A-type DPP-based small molecules were designed for OLED and OSC applications.
Their photophysical and charge transfer properties were investigated using DFT and TD-DFT
computational approaches. The calculated results revealed that the photophysical properties were
affected through the introduction of different end groups. Furthermore, the electronic transitions
corresponding to absorption and emission exhibited an intramolecular charge transfer feature.
Additionally, the designed molecules possessed suitable FMO energies to match those of three typical
fullerene acceptors, PC61BM, bisPC61BM, and PC71BM. It was disclosed that the designed molecules
acted not only as luminescent for OLEDs, but also as donor materials in OSCs. Moreover, they could
also be used as potential electron transfer materials for OLEDs and OSCs.

Author Contributions: R.J. conceived and designed the calculations; X.Z. contributed to the performance
and analysis of the frontier molecular orbitals and absorption and fluorescent spectra; W.X. performed the
reorganization energies and transport properties; X.Z. helped with results interpretation. R.J. wrote the paper.
All authors have read and agreed to the published version of the manuscript.

Funding: Financial supports from the NSFC (No. 21563002) are gratefully acknowledged.

Conflicts of Interest: The authors declare that they have no conflict of interest.

Abbreviations

OSCs Organic solar cells
OLEDs Organic light-emitting diodes
FETs Field effect transistors
∆EL-L Downhill energetic driving force
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DPP Diketopyrrolopyrrole
ICT Intramolecular charge transfer
DFT Density function theory
TD-DFT Time dependent density function theory
FMOs Frontier molecular orbital energies
HOMO Highest occupied molecular orbital
LUMO Lowest unoccupied molecular orbital
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