Supplementary Material

Synthesis of bisphenol neolignans inspired by honokiol as antiproliferative agents

Nunzio Cardullo ^{1,*}, Vincenza Barresi ², Vera Muccilli ¹, Giorgia Spampinato ², Morgana D'Amico ² Daniele Filippo Condorelli ² and Corrado Tringali ^{1,*}

- ¹ Dipartimento di Scienze Chimiche, University of Catania, Viale A. Doria 6, 95125-Catania, Italy; <u>v.muccilli@unict.it</u> (V.M.)
- ² Department of Biomedical and Biotechnological Sciences, Section of Medical Biochemistry, University of Catania, Via Santa Sofia 97, 95123-Catania, Italy; <u>vincenza.barresi@unict.it</u> (V.B.), <u>giorgiaspampinato@unict.it</u> (G.S.), <u>morganadamico01@gmail.com</u> (M.D.), <u>daniele.condorelli@unict.it</u> (D.F.C.)
- * Correspondence: <u>ctringali@unict.it</u> (C.T.); <u>ncardullo@unict.it</u> (N.C.); tel: +39-095-7385025 (C.T.).

Preliminary experiments for bromination	1
Preliminary experiments for Suzuki Miyaura reaction	1
HRESIMS and NMR spectra of compound 6	2
HRESIMS and NMR spectra of compound 12a	3
HRESIMS and NMR spectra of compound 12b	6
HRESIMS and NMR spectra of compound 12c	8
HRESIMS and NMR spectra of compound 13a	11
HRESIMS and NMR spectra of compound 13b	14
HRESIMS and NMR spectra of compound 13c	17
HRESIMS and NMR spectra of compound 14a	21
HRESIMS and NMR spectra of compound 14b	23
HRESIMS and NMR spectra of compound 14c	26
HRESIMS and NMR spectra of compound 15a	29

Preliminary experiments for bromination

2-Methoxy-4-propylphenol (10a) has been subjected to preliminary reactions as reported:

1) compound **10a** (21 mg; 126 μ mol) was solubilized in CH₃CN (700 μ L) and treated with I₂ (7 mg; 20%) and *N*-bromosuccinimide (NBS; 31.5 mg; 175 μ mol) at rt;

2) compound **10a** (21 mg; 126 μ mol) was solubilized in CHCl₃ (700 μ L) and treated with I₂ (7 mg; 20%) and NBS (31.5 mg; 175 μ mol) at rt;

3) compound **10a** (21 mg; 126 μ mol) was solubilized in CH₃CN (700 μ L) and treated with AlCl₃ (7 mg; 40%) NBS (31 mg; 170 μ mol) at rt;

4) compound **10a** (21 mg; 126 μ mol) was solubilized in CHCl₃ (700 μ L) and treated with AlCl₃ (7 mg; 40%) and NBS (31.5 mg; 175 μ mol) at rt;

5) the phenol **10a** (21 mg; 126 μ mol) solubilized in CH₃CN (700 μ L) was mixed with AlCl₃ (7 mg; 40%) and Br₂ (10 μ L; 210 μ mol) at rt;

6) the phenol 10a (21 mg; 126 μmol) was solubilized in CHCl₃ (700 μL) and treated with Br₂ (10 μL ; 210 μmol) at rt;

7) the phenol **10a** (21 mg; 126 μ mol) was solubilized in CHCl₃ (700 μ L) and treated with Br₂ (10 μ L; 210 μ mol) at 0 °C;

8) the phenol **10a** (21 mg; 126 μ mol) was solubilized in acetone (500 μ L) and treated with NaBr (26.1 mg; 252 μ mol) and a solution of oxone (100.2 mg) in water (500 μ L) at -10 °C.

The mixtures were stirred at room temperature and monitored by TLC (85:15 *n*-hexane/acetone) for 6 h. Then each mixture was diluted with CH₂Cl₂ (1 mL) and partitioned with a saturated Na₂S₂O₃ solution. The organic layer of experiment 7 was purified on silica gel column chromatography (cyclohexane:EtOAc 98:2 \rightarrow cyclohexane:EtOAc 96:4) to give **11a**. The pure product was used to create a calibration curve via HPLC-UV, to determine the yield of other reactions (see Table 1).

Preliminary experiments for Suzuki-Miyaura cross-coupling

Preliminary experiments for S-M reaction were performed employing compound **11a** as starting material (8.3 mg, 50 μ mol) in presence of 4-hydroxyphenylboronic acid (10.3 mg, 75 μ mol), dppf (8.3 mg, 15 μ mol), Pd(OAc)₂ (1.1 mg, 5 μ mol) as catalyst and K₂CO₃ (34.6 mg, 250 μ mol). The solvent and temperature were varied as reported:

- 1) the reaction was carried out in THF (500 μ L) at 25 °C;
- 2) the reaction was carried out in THF (500 μ L) at 70 °C;
- 3) the mixture was stirred in THF:H₂O 10:1 (500 μ L and 50 μ L) at 70 °C;
- 4) the mixture was stirred in THF:H₂O 10:1 (910 μ L and 90 μ L) at 70 °C;
- 5) the reaction was carried out in 1,4-dioxane (500 μ L) at 70 °C;
- 6) the reaction was carried out in 1,4-dioxane (500 μ L) at 180 °C.

The course of the reactions was followed by TLC for 24h, then they were partitioned between H₂O:EtOAc ($3 \times 1 \text{ mL}$). The organic layer obtained from experiment 4) was purified on silica gel column chromatography (petroleum ether \rightarrow petroleum ether:acetone 92:8) to furnish the product **12a**. The pure bisphenol was used to create a calibration curve via HPLC-UV, to determine the yield of other reactions (see Table 2).

Figure S1. HRESIMS (+) spectrum of **6**.

Figure S2. ¹H NMR spectrum (500 MHz, CDCl₃) of 6.

Figure S3. ¹³C NMR spectrum (125 MHz, CDCl₃) of 6.

Figure S4. HRESIMS (-) spectrum of 12a.

Figure S5. ¹H NMR spectrum (500 MHz, CDCl₃) of **12a**.

Figure S6. ¹³C NMR spectrum (125 MHz, CDCl₃) of **12a**.

Figure S7. gHSQC spectrum of 12a.

Figure S8. gHMBC spectrum of 12a.

Figure S9. HRESIMS (-) spectrum of 12b.

Figure S10. ¹H NMR spectrum (500 MHz, (CD₃)₂CO) of 12b.

Figure S11. ¹³C NMR spectrum (125 MHz, (CD₃)₂CO) of 12b.

FigureS12. gCOSY spectrum of 12b.

FigureS13. gHMBC spectrum of 12b.

FigureS14. HRESIMS (-) spectrum of 12c.

Figure S15. ¹H NMR spectrum (500 MHz, (CD₃)₂CO) of 12c.

Figure S16. ¹³C NMR spectrum (125 MHz, (CD₃)₂CO) of 12c.

Figure S17. gCOSY spectrum of 12c.

Figure S18. gHSQC spectrum of 12c.

Figure S19. gHMBC spectrum of 12c.

Figure S20. HRESIMS (+) spectrum of 13a.

Figure S21. ¹H NMR spectrum (500 MHz, CDCl₃) of 13a.

Figure S22. ¹³C NMR spectrum (125 MHz, CDCl₃) of 13a.

Figure S23. gCOSY spectrum of 13a.

Figure S24 gHMBC spectrum of 13a.

Figure S25 HRESIMS (+) spectrum of 13b.

Figure S26. ¹H NMR spectrum (500 MHz, CDCl₃) of 13b.

Figure S27. ¹³C NMR spectrum (125MHz, CDCl₃) of 13b.

Figure S28. gCOSY spectrum of 13b.

Figure S29. gHSQC spectrum of 13b.

Figure S30. gHMBC spectrum of 13b.

Figure S31. HRESIMS (-) spectrum of 13c.

Figure S32. ¹H NMR spectrum (500 MHz, (CD₃)₂CO) of 13c.

Figure S33. ¹³C NMR spectrum (125 MHz, (CD₃)₂CO) of **13c**.

Figure S34. gCOSY spectrum of 13c.

Figure S35. gHSQC spectrum of 13c.

Figure S36. gHMBC spectrum of 13c.

Figure S37. HRESIMS (-) spectrum of 14a.

Figure S38. ¹H NMR spectrum (500 MHz, CDCl₃) of 14a.

Figure S39. ¹³C NMR spectrum (125 MHz, CDCl₃) of 14a.

Figure S40. gCOSY spectrum of 14a.

Figure S41. gHMBC spectrum of 14a.

Figure S42. HRESIMS (-) spectrum of 14b.

Figure S43. ¹H NMR spectrum (500 MHz, CDCl₃) of 14b.

Figure S44. ¹³C NMR spectrum (125 MHz, CDCl₃) of 14b.

Figure S45. gCOSY spectrum of 14b.

Figure S46. gHSQC spectrum of 14b.

Figure S47. gHMBC spectrum of 14b.

Figure S48. HRESIMS (-) spectrum of 14c.

Figure S49. ¹H NMR spectrum (500 MHz, (CD₃)₂CO) of 14c.

Figure S50. ¹³C NMR spectrum (125 MHz, (CD₃)₂CO) of 14c.

Figure S51. gCOSY spectrum of 14c.

Figure S52. gHSQC spectrum of 14c.

Figure S53. gHMBC spectrum of 14c.

Figure S54. HRESIMS (-) spectrum of 15a.

Figure S55. ¹H NMR spectrum (500 MHz, CDCl₃) of **15a**.

Figure S56. ¹³C NMR spectrum (125 MHz, CDCl₃) of 15a.

Figure S57. gCOSY spectrum of 15a.

Figure S58. gHMBC spectrum of 15a.