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Abstract: In this study cytotoxicity of organotin(IV) compounds with 1,2,4-triazolo[1,5-a]pyrimidines,
Me;Sn(5tpO) (1), n-BusSn(5tpO) (2), MesSn(mtpO) (3), n-BusSn(mtpO) (4), n-BusSn(HtpO,) (5),
Ph3Sn(HtpO;) (6) where 5HtpO = 4,5-dihydro-5-oxo-[1,2,4]triazolo-[1,5-a]pyrimidine, HmtpO =
4,7-dihydro-5-methyl-7-oxo-[1,2,4]triazolo-[1,5-a]pyrimidine, and HatpO; = 4,5,6,7-tetrahydro-5,7-
dioxo-[1,2,4]triazolo-[1,5-a]-pyrimidine, was assessed on three different human tumor cell lines:
HCT-116 (colorectal carcinoma), HepG2 (hepatocarcinoma) and MCE-7 (breast cancer). While 1 and
3 were inactive, compounds 2, 4, 5 and 6 inhibited the growth of the three tumor cell lines with
ICsg values in the submicromolar range and showed high selectivity indexes towards the tumor
cells (SI > 90). The mechanism of cell death triggered by the organotin(IV) derivatives, investigated
on HCT-116 cells, was apoptotic, as evident from the externalization of phosphatidylserine to the
cell surface, and occurred via the intrinsic pathway with fall of mitochondrial inner membrane
potential and production of reactive oxygen species. While compound 6 arrested the cell progression
in the G2/M cell cycle phase and increased p53 and p21 levels, compounds 2, 4 and 5 blocked cell
duplication in the G1 phase without affecting the expression of either of the two tumor suppressor
proteins. Compounds 1 and 2 were also investigated using single crystal X-ray diffraction and
found to be, in both cases, coordination polymers forming 1 D chains based on metal-ligand
interactions. Interestingly, for n-BusSn(5tpO)(2) H-bonding interactions between 5tpO~ ligands
belonging to adjacent chains were also detected that resemble the “base-pairing” assembly and could
be responsible for the higher biological activity compared to compound 1. In addition, they are the
first example of bidentate N(3), O coordination for the 5HtpO ligand on two adjacent metal atoms.

Keywords: triazolopyrimidine; organotin(IV); apoptosis; in vitro anticancer activity; crystal
structure; metallodrugs

1. Introduction

Organotin (IV) compounds have been receiving increasing attention over the past years [1-6]
due to their possible use as biologically active non-platinum chemotherapeutic agents, that might
have lower toxicity, better excretion properties and fewer side effects than platinum based drugs [7-9].
These compounds, even at low doses, present high anti-proliferative activity which, in some cases,
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is higher than that of cisplatin. Organotin compounds induce apoptosis by binding to DNA at external
phosphate groups and by altering the intracellular metabolism of the phospholipids. Investigations
have been carried out to test their antitumor activity and it has been observed that several triorganotin
derivatives show very promising in vitro antitumor properties against a wide panel of tumor cell lines
of human origin unlike di- and mono-organotin (IV) analogs, due to their ability to bind proteins [10].

1,2,4-triazolo[1,5-a] pyrimidine derivatives have been used as model systems to mimic the reactivity
between purines and several metal ions [11] due to their ability to coordinate through different nitrogen
atoms with accessible electron pairs in their basic skeleton. Furthermore, their versatility can be
increased by changing the number of exocyclic substituents on the triazolopyrimidine rings. Most of
the significant investigations with coordination compounds have been directed to the development
of anti-tumor compounds of different metals [12] that could show improved therapeutic indexes
and wider activity spectra. Such derivatives are interesting for their many biological effects such as
antimicrobial [13,14], antitumor [15-19] and antiparasitic [20-22] activity.

The ligand 4,5-dihydro-5-oxo-[1,2,4]triazolo-[1,5-a] pyrimidine (5HtpO), the structures of which
were described by Abul Haj et al. [23], is a triazolopyrimidine containing exocyclic oxygen atoms and
is an isomer of the purine base hypoxanthine. Various studies have shown that the use of additional
positions of coordination for oxygen with complexing capacity and the presence of a metal ion improve
the antiparasitic [24] and antibacterial [25] activities.

The 4,7-dihydro-5-methyl-7-oxo0[1,2,4]triazolo[1,5-a] pyrimidine (HmtpO) can also be considered
an analogue of the natural occurring nucleobase hypoxanthine [26].  The structure of
the ligand raises substantial interest due to its unique biological and medical potential.
In cis—trans-[PtCl,(OH),(NH3)(HmtpO)], the HmtpO is coordinated through the N3 nitrogen atom in a
monodentate fashion [27]. Moreover, cis—trans-[PtCl,(OH), (NH3)(HmtpO)] showed highly promising
cytotoxicity in vitro against human acute promyelocytic leukemia (HL60). In the monomeric complex
[Cu(HmtpO),(H,0)3] (ClOy4),-H,O, the heterocyclic ligands show both N3 monodentate and N1, 071
bidentate modes of coordination. However, in the bidimensional compound {[Cu(HmtpO),(H,0);]
(ClO4)2-2HmtpOl}y, a unique N3, O71 bidentate bridging coordination mode of the HmtpO ligands
was observed. A third interesting tridentate bridging coordination pattern of HmtpO by the nitrogen
atoms N1 and N3 and the oxygen atom O71 was observed in 1D chains of {[Co(HmtpO)(H,O);3]
(ClO4)2-2H, 0}y [28].

The other triazolopyrimidine containing exocyclic oxygen atoms is
4,5,6,7-tetrahydro-5,7-dioxo[1,2,4]-triazolo[1,5-a] pyrimidine (H,tpO;), described by Orihuela
et al. [29], which is also an isomer of xanthine. Only a few complexes of this ligand are reported in the
literature, such as those with the divalent transition metals of the first transition series from Mn to
Zn [30].

To further explore the influence of triazolopyrimidine with exocyclic oxygen atoms and possible
structure-activity relationships, we decided to study the biological properties of organotin(IV)
coordination compounds with 5HtpO, HmtpO and H,tpO,. Scheme 1 displays the oxo-derivatives
indicating the International Union of Pure and Applied Chemistry (IUPAC) numbering scheme used
for these heterocycles. In a previous article [25], we reported the synthesis and the characterization
of the triazolopyrimidine tin(IV) derivatives Me3Sn(5tpO) (1), n-BusSn(5tpO) (2), Me3Sn(mtpO) (3),
n-BuzSn(mtpO) (4), n-BuzSn(HtpOy,) (5), PhySn(HtpO;) (6), which were also preliminarily tested
in vitro for antimicrobial activity. As a continuation of our work, in this study we present the crystal
structures of compounds Me3Sn(5tpO) 1 and n-BusSn(5tpO) 2 and assess the cytotoxic activity of the
compounds 1-6 on a number of human carcinoma cell lines to evaluate the influence of the substituents
connected to the triazolopyrimidine ring on the antitumor activity. All compounds were evaluated for
their in vitro anti-proliferative activity against HCT-116 (human colorectal carcinoma), HepG2 (human
hepatocellular cancer) and MCF-7 (human breast cancer) cells, while selective anti-tumor activity
was estimated on intestinal normal-like differentiated Caco-2 (human colorectal carcinoma) cells and
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human bronchial epithelial cells (16-HBE). The cytotoxic mechanism of the more active compounds
was investigated on HCT-116 cells.

H
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Scheme 1. The chemical structures of the ligands employed and the atom numbering scheme [25].

2. Results and Discussion

2.1. Crystal Structure of Me3Sn(5tpO), 1 and n-BuzSn(5tp0O), 2

Despite several attempts under different crystallization conditions, only compounds Me3Sn(5tpO)
1 and n-BuzSn(5tpO) 2 gave suitable crystals for single crystal X-ray diffraction, SCXRD, investigations.
Their crystal structures are given in Figures 1 and 2, respectively, together with their crystallographic
numbering. Both compounds feature a pentacoordinated tin metal in a distorted trigonal bypyramid
geometry (see Scheme 2) formed by two crystallographically equivalent oxo-tp ligands occupying
the apical positions and by the methyl groups in 1 and the n-butyl ones in 2 occupying the trigonal
plane. Apical positions are invariably held by the tp N(3) atom on one side and the exocyclic
O atom, belonging to the symmetry-related oxo-tp ligand, on the other side, [N(3)-Sn-O angles
= 176.7 (4) ave. for 1 and 176.9(1)° for 2], thus generating a one-dimensional polymeric chain
along the b-axis direction, in agreement with previous Mossbauer data [25]. This kind of bidentate
bridging N, O coordination is, to the best of our knowledge, quite unusual for this oxo-ligand;
actually, the crystal structures of only few coordination compounds of this ligand with transition
metals are known. One of them shows monodentate coordination through N(3) for the octahedral
Ni atom, as for the unsubstituted tp ligand, in trans-diaqua-bis(4,5-dihydro-1,2,4-triazolo[2,3-a]
pyrimidin-5-one-N3)-bis-isothiocyanato)-nickel(Il) [31]. Bidentation at N(3), N(4) is used, on the
other hand, in homo-dinuclear compounds where they function as a bridge on two metal atoms,
such as Ag, in bis(u2—4,5,dihydro—5—oxo[1,2,4]triazolo[1,5—{1]pyrimidine—di—silver(I)dinitrato and
bis(p2—4,5,dihydro—5—oxo[1,2,4]triazolo[1,5—11]pyrimidine—di—sﬂver(i)diperchlorate dehydrate [32],
as Pd, in bis(u2—4,5,dihydro—5—oxo[1,2,4]triazolo[1,5—apyrimidine—5—one—N,N ’-(1-10-phenantroline)
palladium(Il) dinitrate tetrahydrate [33], or Cu, in bis (uz—[1,2,4]triazolo[1,5-a]pyrimidine-5—onato)-bis
(m2-hydrogensuccinato)-diaqua-di-copper(ll) [31] compounds. In the polynuclear
[Cdy(u-5tpO)a(na-suc)(HO)2]n [34], on the other hand, due to the eptacoordination of the
metal, three out of the four possible electron-donor groups, i.e., N(3), N(4) and O, of the 5tpO~ ligand
are used in a tridentate ligand coordination bridging on two adjacent metal atoms, making it the first
example of involvement in metal ligation of the O atom belonging to the oxo moiety. Our compounds
are then the first examples of bidentate N(3), O coordination bridging two adjacent metal atoms in
homo-polymeric Sn catena compounds.

Compound 1 exhibits two molecules, A and B, in the asymmetric unit. The two molecules
each form a metal coordination polymer, and 7-m stacking interactions link the polymers into a
three-dimensional network (with contacts ranging around 3.4 A, Figure 1b,c). The Sn--Sn interactions
are slightly shorter in A (5.70 A) than in B molecules (5.74 A), suggesting closer ligands packing
for the less encumbered tin ligands with respect to compound 2. Compound 2, as well, features a
polymeric chain with Sn-Sn interactions of 6 A, but differently from compound 1, it is characterized
by “base-pairing like” inter-strands double H-bond interactions from C(2)-H(2) to N(1) and, vice versa,
from the triazole moieties of symmetry-related molecules (Figure 2b,c). With a donor-acceptor distance
of 3.18 A and D-H-A angle of 130°, this DNA-mimicking behavior between adjacent chains, somewhat



Molecules 2020, 25, 859 40f 16

predicted for nucleobase analogues such as our oxo-tp ligands but not so commonly shown, seems to
dictate the molecular packing of 2. Actually, no aromatic interactions take place. Selected geometric
parameters (A, °) for 2 are summarized in Table 1.

Figure 1. (a) The asymmetric unit for 1, showing the atomic crystallographic numbering scheme;
displacement ellipsoids are drawn at the 50% probability level. (b) View of the 1D chains. (c) -7t
stacking interactions detected between ligands belonging to adjacent chains.

(c)

Figure 2. (a) The asymmetric unit for 2, showing the atomic crystallographic numbering scheme;
displacement ellipsoids are drawn at the 50% probability level. (b) View of two adjacent 1D chains.
(c) Detail of the “base-pairing like” inter-catena H-bond interaction.
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Scheme 2. Coordination environment of pentacoordinated Sn (IV) in Me3Sn(5tpO) 1 and n-BuzSn(5tpO) 2.

Table 1. Selected bond distances (A) and angles (°) around the Sn(IV) ion.

Me;3Sn(5tpO) 1 n-Buz Sn(5tpO) 2

Sn1--01 (A)  2.230(1)/2.310(1) 2.210(2)
Sn1--N3(A)  2.370(8)/2.348(8) 2.445(3)
Sn1-C(A)  20603)-2.17(2)  2.141(5)-2.152(5)
C=0 (A) 1.210(2)/1.241(2) 1.282(5)
O-Sn-N (°)  174.5(4)/178.9(5) 176.9(1)
Sn1-N3(A)  1132(1)-129.1(1)  115.1(2)-123.3(2)
Sn1-C(A)  84.3(6)-97.2(5) 91.7(1)-95.1(1)
C=0 (A) 86.8(7)-91.5(6) 83.7(1)-88.1(1)

2.2. Biology

2.2.1. Cytotoxicity Assay

Cytotoxicity of the organotin(IV) compounds 1-6, characterized by three different ligands 5HtpO,
HmtpO and HytpO,, was studied on human tumor cell lines HCT-116, HepG2 and MCF-7 using a
MTT test. The viability of cellular monolayers after 24 h of treatment with the compounds and their
ligands, tested in the 0.01-1 uM range, is reported in Figure 3. While all the ligands and the compounds
MesSn(5tpO) 1 and Me3Sn(mtpO) 3 had no influence on cell growth under the conditions used,
compounds n-BuzSn(5tpO) 2, n-BusSn(mtpO) 4, n-BusSn(HtpO,) 5 and Ph3Sn(HtpOy) 6 effectively
inhibited cell viability in a dose-dependent manner. Based on the ICsj values, the cytotoxicity of the
compounds on HCT-116 and HepG2 cells followed the order 4 > 6 > 2 > 5, while on MCF-7 cells the
compounds appeared less cytotoxic following the order 6 > 4 > 2 > 5 (Table 2). Moreover, complexes 2,
4, 5 showed a different cytotoxic activity related to their ligands being HmtpO > 5HtpO > HtpOs,.
Ph3Sn(HtpO,) 6 appeared more effective against the growth of all the cell lines than n-BusSn(HtpO;) 5,
which has the same ligand. Interestingly, the compounds were more cytotoxic than cisplatin, used for
comparison as gold standard (Table 2).

Selective cytotoxicity is a pivotal requirement for anticancer drugs, and activity of the compounds
on intestinal normal-like differentiated Caco-2 cells and human bronchial epithelial cells (16-HBE) was
assessed in additional experiments. While a reduction of the cell survival was detected after treatment
with the 2, 4 and 5 derivatives in the 1-10 uM range on both the cell lines, compound 6 did not affect the
cell viability at any assayed concentration (Figure 4). However, as the calculated selectivity index (SI,
Table 3) greatly exceeds the value accepted as threshold for antitumor drugs (SI = 2.0) [35], potential
use of all the synthesized complexes as antiproliferative agents could be considered.
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Table 2. Calculated ICs, values of organotin(IV) compounds against the proliferation of different tumor

cell lines.
IC50 (nM + SD)
Compounds
HCT-116 HepG2 MCE-7
(1) Me3Sn(5tpO) >1000 >1000 >1000
(2) n-BuzSn(5tpO) 70+ 8 70+ 6 233 +21
(3) Me3Sn(mtpO) >1000 >1000 >1000
(4) n-BuzSn(mtpO) 34+3 53+6 118 £ 10
(5) n-BuzSn(HtpO,) 101 +11 117 £10 487 + 47
(6) Ph3Sn(HtpO,) 60+5 63+5 102 +9
Cisplatin 46x10% £3x10°  65x103+2x10°  10x10% +1x 10
Values are the mean + SD of three separate experiments in triplicate.
HCT-116 HEPG2 MCF-7
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Figure 3. Effect of 1-6 and their ligands on the viability of HCT-116 (human colorectal carcinoma),
HepG2 (human hepatocellular cancer) and MCF-7 (human breast cancer) cells after 24 h treatment.
Cells were treated with compounds 1-6 and cell survival was measured using MTT assay in comparison
to cells treated with vehicles alone (control), as reported in methods. Values are the mean + SD of three
separate experiments carried out in triplicate.

Table 3. Cytotoxic activity and selectivity index (SI) of the synthesized compounds against HCT-116

cancer cell line.

Normal-Like Intestinal Cells SI 16-HBE Cells SI
LCsp (M) LCsp (M)
2 6+04 91 17 +1 240
4 5+04 118 11+1 323
5 12+1 116 22 +1 217
6 184 +9 >1000 580 + 22 >1000

Values are the mean =+ SD of three separate experiments in triplicate. LCsy concentration, which is lethal to 50% of
the normal cells, compared to untreated controls.
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Figure 4. Effect of compounds 2, 4, 5 and 6 on the viability of human intestinal normal-like differentiated

Caco-2 (human colorectal carcinoma) (A) or 16-HBE (human bronchial epithelial) cells (B). Cells were

treated with the compounds and cell viability was measured after 24 h using MTT assay in comparison

to cells treated with vehicle alone (control). Values are the mean + SD of three separate experiments

in triplicate.

2.2.2. Cell Death

In order to analyze the mode of cell death induced by the active organotin compounds, HCT-116
were treated with the individual compounds at 0.1 uM concentration for 24 h before double-staining
with AnnexinV/PI. Cisplatin, one of the most widely used chemotherapy drugs, was used as positive
control. The results showed that all tested compounds increased the number of early apoptotic dead
HCT-116 cells without causing any necrotic damage, generally accompanied in vivo by inflammatory

processes (Figure 5).
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Figure 5. Flow cytometric analysis for the quantification, using AnnexinV/PI double staining, of 2,

4, 5 and 6 induced apoptosis in HCT-116 cells. Cell monolayers were incubated for 24 h in the

absence (control) or in the presence of the individual compounds or cisplatin and submitted to double
staining with Annexin V/PI as reported in Methods. CO3, viable cells (AnnexinV—/PI-); CO4, cells in
early apoptosis (AnnexinV+/PI-); CO2, cells in late apoptosis (AnnexinV+/PI+); CO1, necrotic cells

(AnnexinV—/PI+). Representative images of three experiments with comparable results.

2.2.3. Mitochondrial Dysfunction

In many systems, apoptosis is associated with the loss of mitochondrial inner membrane

potential (Aym), which is responsible for the release of some pro-apoptotic factors from the

organelle. We investigated the involvement of mitochondria in apoptosis induced by the organotin
compounds using the lipophilic cationic fluorochrome DiOC6, a fluorescent mitochondria-specific and
voltage-dependent dye. Measurements of A{m using flow cytometry analysis showed that compounds
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2,4,5and 6 at 0.1 pM induced in HCT-116 cells, after 24 h of treatment, a significant decrease in DiOC6(3)
uptake, indicating induction of mitochondrial dysfunction (Figure 6). Mitochondrial permeability
dysfunction appeared comparable to that produced by 20 uM cisplatin (Figure 6).

Control

FL1L06G

40

10°

10" 102

Cisplatin (20 M) r1 106

10°

49

10° 101 10?2 A0

2(0.1)M) Fuios

5(0.1pM) Fuiros

a1

10° 107

4(0.1pM)  Fuios

10° 10!

6(0.1uN) FL1Lo6

Figure 6. Effects of 2, 4, 5 and 6 on dissipation of mitochondrial transmembrane potential (Ajpm)
in HCT-116 cells. After treatment with the compounds for 24 h, cells were stained with the
lipophilic cationic fluorochrome DiOC6(3) and flow cytometry analysis was carried out as reported in
Methods. Cisplatin was used as positive control. Representative images of three experiments with
comparable results.

Since the mitochondrial dysfunction may be related to intracellular redox unbalance and induction
of apoptosis in various cell types, we explored whether the organotin(IV) complexes could stimulate
ROS generation in HCT-116 cells. As shown in Figure 7, compounds 2, 4, 5 and 6 after 24 h of treatment
induced, when compared to control, an increase in ROS production, cytofluorimetrically detected by
the fluorescent dye DCFH-DA. Cisplatin, at 20 uM, produced a similar effect.

73
48
a7

AY
27.3%

AY AY
1.9% 22.5%

100 10!

4(0.1pM)

10° 10! 102 10 10°
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a8

10°

6(0.1;M)

10° 10! 102 10 107

5 (O-Uml) FL1LOG FL1LOG

Cisplatin 20 pM FL1Lo6

Figure 7. Effect of compounds 2, 4, 5 and 6 on the production of ROS in HCT-116 cells. ROS were detected
using fluorescence intensity of 2,7’-dichlorofluorescin diacetate-stained cells, as determined using flow
cytometry after 24 h treatment with the compounds. Control, cells treated with vehicle. Cisplatin was
used as positive control. Representative images of three experiments with comparable results.
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2.2.4. Cell Cycle Analysis

A disturbance of the cellular redox state could induce apoptosis triggering a ROS-dependent
signaling pathway leading to block of the cell cycle. The effects of active 2, 4, 5 and 6 complexes on
HCT-116 cell cycle distribution were determined using flow cytometric analysis after staining of DNA
with propidium iodide (PI). As shown in Figure 8, compounds 2, 4 and 5 after 24 h of treatment induced
a block of cell duplication in the GO/G1 phase, whereas compound 6 caused a cell cycle arrest in phase
G2/M. Although compounds 5 and 6 share the same ligand (H,tpO;), they caused proliferation arrest
at different phases of the cell cycle, underlining the relevance of the organotin moieties in the biological
mechanism of the complexes. In the end, all compounds caused an increase of the percentage of cells
in the sub-G1 phase, which is representative of cells with fragmented DNA, confirming that the cells
were carried through apoptosis.

g G0/G1: 73% P § 1 GO/GL: 2% P
1 8:7% 61.1% S: 8% 57.4%
G2/M: 20% G2/M: 20%

287
o

Q 2 (0.1pM) FL3LOG 4(0.1uM) FL3L0G

s 1 Go/G1:76% P 2 | GO/G1:36% P
S: 6% 60.2% 1 S:12% 23.8%
G2/M: 18% G2/M: 52%

Control FL3LOG

5(0.1uM)  F3L06 6(0.1uM)  FL3LOG

Figure 8. Effect of compounds 2, 4, 5 and 6 on cell cycle distribution of HCT-116 cells. Flow cytometric
analysis of propidium iodide-stained cells after 24 h treatment with the compounds. The percentage of
cells in the different phases of the cycle was calculated using Expo32 software. Percentage of viable
cells in the different phases are given in each picture. Representative images of three experiments with
comparable results.

2.2.5. p53-p21WAF1 Protein Levels

P53, a major tumor suppressor protein, orchestrates various biological events including cell
cycle arrest, cellular senescence and DNA repair, in addition to apoptosis [36]. Functionally, p53 is a
transcription factor forming a homo-tetramer to activate nearly 500 target genes [37]. In mammalian
cells, p53 induces a large number of genes involved in various steps of apoptosis signaling and
execution [38]. These include BH3 domain-only proapoptotic proteins, death receptors and apoptosis
execution factors. In addition, p53 promotes the transcriptional activation of p21WAF! that, binding to
several cyclins, causes arrest of the cell cycle at different phases [39,40]. To assess the involvement of
p53-p21WAFL signaling pathway in the apoptosis triggered by the organotin compounds, we investigated
the compounds’ influence on the expression of both the proteins by immunoblotting. While 24 h
treatment of HCT 116 cells with 2, 4, 5 did not vary the level of p53 or p21, incubation with compound
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6 resulted in a net increment (about 1, 5fold) of the levels of both the tumor suppressor proteins
(Figure 9).

3/actin

ps
arbitrary units

Control 2 4 5 6

p21

actin

p2l/actin

arbitrary units

Control 2 (0.1uM) 4 (0.1pM) S(0.1pM) 6 (0. 1pM)

Conirol 2 4 =] 6

Figure 9. p53 and p21"WAF! Jevels using immunoblotting with densitometric analysis of the immunoblots.
Representative images of three experiments with comparable results. Data of the densitometric analysis
are the mean + SD. Bars with different letters are significantly different with p < 0.05 (ANOVA associated
with Tukey test).

3. Materials and Methods

3.1. Synthesis of Triorganotin(IV) Compounds

The synthesis and characterization of the compounds Me3Sn(5tpO) (1), n-BuzSn(5tpO) (2),
Me3zSn(mtpO) (3), n-BuzSn(mtpO) (4), n-BuzSn(HtpO,) (5), PhySn(HtpO;) (6) (where 5HtpO =
4,5-dihydro-5-oxo-[1,2 4]triazolo-[1,5-a]pyrimidine, HmtpO = 4,7-dihydro-5-methyl-7-oxo-[1,2,4]
triazolo-[1,5-a]pyrimidine, and HytpO, = 4,5,6,7-tetrahydro-5,7-dioxo-[1,2,4]triazolo-[1,5-a]-
pyrimidine), were carried out according to the method reported in our previous study [25] and
will not be discussed here.

3.2. X-ray Crystallography of MezSn(5tpO), 1 and n-BuzSn(5tp0O), 2

Single crystal data for compounds Me3Sn(5tpO) 1 and n-BuzSn(5tpO) 2 were collected at
low temperature (200 K) on an Oxford XCalibur S CCD diffractometer equipped with a graphite
monochromator (Mo-K« radiation, A = 0.71073A) and with a cryostat CryoStream800. Two twin unit
cells were indexed for 1 and 2, and the reflection data were integrated with the default configuration
for twinned crystals of CrysAlisPro software. Subsequent structure solution and refinement were
performed using the HKLF4 file containing non-overlapped reflections. All non-hydrogen atoms
were refined anisotropically. Hcy atoms for all compounds were added in calculated positions and
refined riding on their respective carbon atoms. SHELX97 [41] was used for structure solution and
refinement on F2. The program Mercury [42] was used to calculate intermolecular interactions and
for molecular graphics. Data collection and refinement details are listed in Table 4. Crystal data can
be obtained free of charge via www.ccdc.cam.ac.uk/conts/retrieving.html (or from the Cambridge
Crystallographic Data Centre, 12 Union Road, Cambridge CB21EZ, UK; fax: (+44)1223-336-033;
or e-mail: deposit@ccdc.cam.ac.uk). CCDC numbers 1908619-1908620.
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Table 4. Crystal data and refinement details for crystalline Me3Sn(5tpO) 1 and n-BuzSn(5tpO) 2.

1 2
Empirical formula CgH1pN4O15n  Ci7H30N4O15n
Formula weight 298.90 425.16
Temperature (K) 300 200
Crystal system monoclinic monoclinic
Space group P2, C2/C
Z 2 8
a(A) 6.9546(7) 26.570(4)
b (A) 11.0787(9) 11.6290(4)
c(A) 15.539(1) 17.403(2)
o (deg) 90 90
B (deg) 91.205(9) 131.45(2)
v (deg) 920 920
Volume (A%) 1196.9(2) 4030.5(9)
Peale (g/cm?) 1.659 1.401
1 (mm™1) 2212 1.277
Measured reflections 6727 8816
Independent reflections 4070 4032
Ry[on Fy2, 1> 20(I)] 0.0746 0.0331
wR; (all data) 0.2409 0.0615

11 of 16

3.3. Biological Studies

3.3.1. Viability Assay

The synthesized compounds 1-6 with three different ligands 5HtpO, HmtpO and H,tpO, were
dissolved in dimethylsulfoxide (DMSO) and then diluted in culture medium so that the effective
DMSO concentration did not exceed 0.1%. HTC116 (human colorectal carcinoma), HepG2 (human
hepatocellular carcinoma), MCF-7 (human breast cancer), 16-HBE (human bronchial epithelium) and
Caco-2 (human colorectal carcinoma) cell lines were purchased from American Type Culture Collection,
Rockville, MD, USA. All cell lines were grown in RPMI medium supplemented with L-glutamine
(2 mM), 10% fetal bovine serum (FBS), penicillin (100 U/mL), streptomycin (100 pg/mL) and gentamicin
(5 pg/mL). Cells were maintained in log phase by seeding twice a week at a density of 3 x 10® cells/L in
humidified 5% CO; atmosphere, at 37 °C. In all experiments, after plating, cells were allowed to adhere
overnight and then treated with the compounds or vehicle alone (control cells), whereas Caco-2 cells
were treated 15 days after confluence, at which time the cells are differentiated in normal intestinal-like
cells [43]. No differences were found between cells treated with DMSO 0.1% and untreated cells in
terms of cell number and viability.

Cytotoxic activity of the organotin compounds against human tumor cell lines (HCT-116,
HepG2 and MCF-7) and human normal cells (16-HBE and intestinal-like differentiated
Caco2 cells) was determined using the MTT colorimetric assay based on the reduction of
3-(4,5-dimethyl-2-thiazolyl)bromide-2,5-diphenyl-2H-tetrazolium (MTT) to purple formazan using
mitochondrial dehydrogenases of living cells, as reported [44]. This method is commonly used to
illustrate inhibition of cellular proliferation. Monolayer cultures were treated for 24 h with various
concentrations (0.01-1 uM) of the drugs. Cisplatin was used for comparison. Briefly, all cell lines were
seeded at 1.0 x 10* cells/well in 96-well plates containing 200 uL. RPMI. When appropriated, cells were
washed with fresh medium and incubated with the compounds in RPMI. After incubation, cells were
washed, and 50 pL FBS-free medium containing 5 mg/mL MTT was added. The medium was discarded
after a 2 h incubation at 37 °C by centrifugation, and formazan blue formed in the cells was dissolved
in DMSO. The absorbance, measured at 570 nm in a microplate reader (Bio-RAD, Hercules, CA, USA)
of MTT formazan of control cells was taken as 100% of viability. The growth inhibition activity of
compounds was estimated by comparison with the not-treated control. The values for the inhibitory
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concentration for 50% of the tested compounds (ICsp) were calculated using a sigmoidal model using
GraphPad Prism 5.02 from GraphPad Software (San Diego, CA, USA). Each experiment was repeated
three times in triplicate to obtain the mean values.

3.3.2. Selectivity Index (SI)

Formazan of control cells was taken as 100% viability and the 50% lethal concentrations of the
synthesized complexes (LCsp) were determined by plotting the graph of cell viability versus the
concentrations. The selectivity index (SI) values were calculated for each compound by dividing the
LCsp of normal differentiated Caco2 or 16-HBE cells by the IC5¢ of HCT-116 tumor cells. Each experiment
was repeated three times in triplicate.

3.3.3. Measurement of Phosphatidylserine Exposure

The externalization of phosphatidylserine to the cell surface was detected using flow cytometry
by double staining with annexin V/PI. Tumor cells were seeded in triplicate in 24-well culture plates at
a density of 5.0 x 10% cells/cm?2. After an overnight incubation, cells were washed with fresh medium
and incubated with the compounds prepared as described above. After 24 h, cells were harvested
by trypsinization and adjusted at 1.0 x 10° cells/mL with buffer according to the manufacturer’s
instructions (eBioscience, San Diego, CA, USA). One hundred pL of cell suspended solution was
added to a new tube and incubated with 5 pL annexin V and 10 pL of a 20 pg/mL propidium iodide
(PT) solution at room temperature in the dark for 15 min. Then samples of at least 1.0 x 10* cells
were subjected to fluorescence-activated cell sorting (FACS) analysis using Epics XL™ flow cytometer
with Expo32 software (Beckman Coulter, Fullerton, CA, USA), using appropriate 2-bidimensional
gating method.

3.3.4. Measurement of Mitochondrial Transmembrane Potential

Mitochondrial transmembrane potentials (Alm) were assessed using flow cytofluorometry, with
the cationic lipophilic dye 3,3’-dihexyloxacarbocyanine iodide(3) (DiOC6) (Molecular Probes, Inc.,
Life Technologies Italia, Monza, Italy), which accumulates in the mitochondrial matrix. Changes in
mitochondrial membrane potential are indicated by a reduction in the DiOC6-induced fluorescence
intensity. After 24 h treatment, cells were incubated with DiOC6 at a 40 nmol/L final concentration,
for 15 min at 37 °C. After centrifugation, cells were washed with phosphate buffer saline (PBS) and
suspended in 500 pL PBS. Then, samples of 1.0 X 10* cells were subjected to FACS analysis.

3.3.5. Measurement of Intracellular Reactive Oxygen Species (ROS)

ROS level was monitored by measuring fluorescence changes that resulted from intracellular
oxidation of 2’,7’-dichlorofluorescin diacetate (DCFH-DA). DCFH-DA, at 10 uM final concentration,
was added to the cell medium 30 min before the end of the treatment. The cells were collected using
centrifugation for 5 min at 2000 rpm at 4 °C, washed, suspended in PBS and immediately subjected to
FACS analysis. At least 1 x 10* cells were analyzed for each sample.

3.3.6. Cell Cycle Analysis

Cell cycle stage was analyzed using flow cytometry. Aliquots of 1.0 x 10° cells were harvested
using centrifugation, washed with PBS and incubated in the dark in a PBS solution containing Triton
X100 (0.1%, v/v), 20 pg/mL propidium iodide (PI) and 200 ng/mL RNase, for 30 min, at room temperature.
Then, samples were immediately subjected to FACS analysis. At least 1 x 10* events were analyzed for
each sample.
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3.3.7. Western Blot Analysis

After treatment with the compound, protein extracts were prepared and equal amounts of
protein samples (80 pg/lane), subjected to SDS-PAGE, were transferred to nitrocellulose membrane as
previously reported [45]. The immunoblot was incubated overnight at 4 °C with blocking solution
(5% skim milk), followed by incubation with anti-p21 (F-5, Cat No SC-6246 Santa Cruz Biotechnology)
or anti-p53 (DO-1, Cat No SC-126, Santa Cruz Biotechnology) for 1 h at room temperature. Blots were
washed two times with Tween 20/Tris-buffered saline (TTBS) and incubated with a 1:2000 dilution of
horseradish peroxidase (HRP)-conjugated anti-IgG antibody (Dako Denmark, Glostrup, Denmark) for
1 h at room temperature. Blots were again washed five times with TTBS and then developed using
enhanced chemiluminescence (Amersham Life Science, Arlington Heights, IL, USA.). Imnmunoreactions
were also performed using 3-actin antibody as loading controls.

3.3.8. Statistical Analysis

Results are given as means and standard deviations. Unless stated otherwise, three independent
observations were performed for each experiment thrice replicated. Calculations and graphs were
obtained using the INSTAT-3 statistical software (GraphPad Software, Inc., San Diego, USA) with a test
for normality followed by ANOVA, with Tukey’s correction for multiple comparisons. In all cases,
significance was accepted if the null hypothesis was rejected at the p < 0.05 level.

4. Conclusions

The spectroscopic properties of compounds 1-6 have been previously reported [25]. In this study
we report that compounds 2, 4, 5 and 6 effectively inhibited the cell growth of three different lines of
human carcinoma (colon, liver and breast), with calculated submicromolar IC5; values. Cytotoxic
activity of the compounds appeared 2-3 orders of magnitude higher than that of cisplatin used as gold
standard, and were highly selective (SI > 90) towards the tumor cells. Among the tri-n-butyltin(IV)
derivatives 2, 4 and 5, the complex 4 with HmtpO showed stronger cytotoxicity. Although it has been
previously demonstrated that n-BusSn(HtpO,) 5 owns a greater antifungal and antibiofilm activity
than Ph3Sn(HtpO,) 6 [25], the present study carried out on human tumor cells indicates an inverse
antiproliferative efficacy.

The cell death mechanism exerted by the organotin(IV) derivatives was apoptosis, as established in
HCT-116 cells using flow cytometric analysis of externalization of plasma membrane PS, and occurred
via the intrinsic pathway, as ascertained using mitochondrial dysfunction. The signaling pathway
of apoptosis induced by the compounds appeared distinct. In fact, while compound 6 arrested the
cell progression in the G2/M cell cycle phase and increased p53 and p21VAF! levels, compounds
2, 4 and 5 induced a block of cell duplication in the G0/G1 phase without affecting either p53
or p21WAFL expression. It is interesting in this regard to mention that a triphenyl derivative with
N-tert-butoxycarbonyl-L-ornithine, previously synthesized and characterized in our laboratory, induced
apoptosis in human hepatoma HepG2 cells associated with an increase of p53 levels [46], suggesting
that the induction pathway of the oncoprotein is influenced by the Ph3Sn-moiety. At last, since p53 is
defective in >50% of tumors, the ability of the 2, 4 and 5 derivatives to induce apoptosis independently
of p53 may offer an advantage in anti-tumor therapy.

A SCXRD investigation was carried out on both compounds 1 and 2, the only ones of the series to
yield good enough crystals. As for compound 2, its ability, through metal coordination, to form pairs of
hydrogen bonded inter-strand, purine-like ligands may certainly be related to an enhanced propensity
for recognition processes towards biological targets, in comparison to 1, which is devoid of it and
inactive. These ligand-mediated recognition processes may give a contribution towards organotin
binding to DNA and help to potentially deliver new metal-based therapies to the clinic. Therefore,
a further investigation on the detailed mechanism of pro-apoptotic action exerted specifically by
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compounds n-BuzSn(5tpO) 2 and n-BuzSn(mtpO) 4 may prove of great interest, and is actually planned
in the near future, in order to better elucidate their specific signaling pathways.
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