SUPPLEMENTARY DATA

Evaluation of Organo^{[18}F]fluorosilicon Tetrazine as a Prosthetic Group for Synthesis of PET Radiotracers

Sofia Otaru[†], Surachet Imlimthan[†], Mirkka Sarparanta[†],

Kerttuli Helariutta[†], Kristiina Wähälä^{\dagger, \S}, Anu J. Airaksinen^{$\dagger, q, *$}

[†]Department of Chemistry, Radiochemistry, University of Helsinki, Finland

[§]Department of Biochemistry and Developmental Biology, Faculty of Medicine, University of Helsinki, Finland

^aPresent address: Turku PET Centre, Department of Chemistry, University of Turku, Finland

*Corresponding author: Anu J. Airaksinen

Department of Chemistry, Radiochemistry, P.O. Box 55, FI-00014 University of Helsinki, Finland. E-mail: <u>anu.airaksinen@helsinki.fi</u>. Present address: Turku PET Centre, University of Turku, Kiinamyllynkatu 4-8, FI-20520 Turku

Table of contents

Figure S1 ¹ H-NMR of compound 3	1
Figure S2 ¹³ C-NMR of compound 3	2
Figure S3 ¹ H-NMR of SiFA-Tz (6)	3
Figure S4 ¹⁹ F-NMR of SiFA-Tz (6)	4
Figure S5 ¹³ C-NMR of SiFA-Tz (6)	5
Figure S6 HPLC of [¹⁸ F]SiFA ([¹⁸ F]5)	6
Figure S7 HPLC of oxime formation (two-step method) for [¹⁸ F]SiFA-Tz ([¹⁸ F]6) (crude)	7
Figure S8 HPLC (radio- and PDA -detectors) of formulated [¹⁸ F]SiFA-Tz ([¹⁸ F]6)	8
Figure S9 Autoradiography TLC-profile of purified [¹⁸ F]SiFA-Tz ([¹⁸ F]6)	9
Figure S10 HPLC of [¹⁸ F]SiFA-Tz ([¹⁸ F]6) stability in 1xPBS (90 min)	10
Figure S11 HPLC of purified [¹⁸ F]fluoroalbumin ([¹⁸ F]10)	11
Figure S12 Autoradiography TLC-profile of purified [¹⁸ F]fluoroalbumin ([¹⁸ F]10)	11
Figure S13 Biodistribution of [¹⁸ F]SiFA-Tz ([¹⁸ F]6)	12
Figure S14 Biodistribution of [¹⁸ F]fluoroalbumin ([¹⁸ F]10)	13
Figure S15 Radio-TLC profile of [¹⁸ F]SiFA-Tz ([¹⁸ F]6) in human plasma stability studies	14
Figure S16 Radio-HPLC profile of [¹⁸ F]SiFA-Tz ([¹⁸ F]6) in human plasma stability studies	14
Figure S17 Radio-HPLC profile of [¹⁸ F]SiFA-Tz ([¹⁸ F]6) metabolites found in blood	15

Figure S1. ¹H-NMR (300 MHz, CDCl₃) of compound 3.

Figure S2. ¹³C-NMR (75 MHz, CDCl₃) of compound 3.

Figure S3. ¹H-NMR (500 MHz, CDCl₃) of SiFA-Tz (6).

Figure S4. ¹⁹F-NMR (282 MHz, CDCl₃) of SiFA-Tz (6).

Figure S5. ¹³C-NMR (126 MHz, CDCl₃) of SiFA-Tz (6).

Figure S6. Radio-HPLC chromatogram of crude [¹⁸F]SiFA ([¹⁸F]**5**) (Radiodetector).

Figure S7. Radio-HPLC chromatogram of oxime formation (two-step method) for $[^{18}F]$ SiFA-Tz ($[^{18}F]$ **6**) crude (radiodetector).

Figure S8. HPLC chromatograms of formulated $[^{18}F]$ SiFA-Tz ($[^{18}F]$ 6) analyzed by radiodetector (top) and PDA -detector (bottom).

Figure S9. Radio-TLC chromatogram (digital autoradiography) of [¹⁸F]SiFA-Tz ([¹⁸F]**6**).

Figure S10. Radio-HPLC chromatogram of $[^{18}F]$ SiFA-Tz ($[^{18}F]6$) stability at 90 minutes in 1×PBS (radiodetector).

Figure S11. Radio-HPLC chromatogram of [¹⁸F]fluoroalbumin ([¹⁸F]**10**) (radiodetector).

Figure S12. Radio-TLC chromatogram (digital autoradiography) of [¹⁸F]fluoroalbumin ([¹⁸F]**10**).

Figure S13. Biodistribution of radioactivity after intravenous administration of [¹⁸F]SiFA-Tz ([¹⁸F]**6**) demonstrating fast clearance from circulation, hepatobiliary excretion and high bone uptake at 60 minutes post-injection.

Figure S14. Biodistribution of radioactivity after intravenous administration of $[^{18}F]$ fluoroalbumin ($[^{18}F]$ **10**) demonstrating prolonged residence time in circulation.

Figure S15. Radio-TLC (digital autoradiography) chromatograms of $[^{18}F]SiFA-Tz([^{18}F]6)$ in human plasma stability studies show minor defluorination of the radiotracer at 180 minutes after start of incubation.

Figure S16. Radio-HPLC chromatograms of $[^{18}F]$ SiFA-Tz ($[^{18}F]$ 6) in human plasma stability studies demonstrating no detectable decomposition.

Figure S17. Radio-HPLC chromatograms of radiolabeling of $[^{18}F]$ SiFA-aldehyde ($[^{18}F]$ **5**), oxime formation producing $[^{18}F]$ SiFA-Tz ($[^{18}F]$ **6**) and metabolites (t = 5 min, 30 min) found in mouse blood after intravenous administration of $[^{18}F]$ SiFA-Tz ($[^{18}F]$ **6**).