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Abstract: Alkyl moieties—open chain or cyclic, linear, or branched—are common in drug molecules.
The hydrophobicity of alkyl moieties in drug molecules is modified by metabolic hydroxy
functionalization via free-radical intermediates to give primary, secondary, or tertiary alcohols
depending on the class of the substrate carbon. The hydroxymethyl groups resulting from the
functionalization of methyl groups are mostly oxidized further to carboxyl groups to give carboxy
metabolites. As observed from the surveyed cases in this review, hydroxy functionalization leads to
loss, attenuation, or retention of pharmacologic activity with respect to the parent drug. On the other
hand, carboxy functionalization leads to a loss of activity with the exception of only a few cases in
which activity is retained. The exceptions are those groups in which the carboxy functionalization
occurs at a position distant from a well-defined primary pharmacophore. Some hydroxy metabolites,
which are equiactive with their parent drugs, have been developed into ester prodrugs while carboxy
metabolites, which are equiactive to their parent drugs, have been developed into drugs as per
se. In this review, we present and discuss the above state of affairs for a variety of drug classes,
using selected drug members to show the effect on pharmacologic activity as well as dependence
of the metabolic change on drug molecular structure. The review provides a basis for informed
predictions of (i) structural features required for metabolic hydroxy and carboxy functionalization of
alkyl moieties in existing or planned small drug molecules, and (ii) pharmacologic activity of the
metabolites resulting from hydroxy and/or carboxy functionalization of alkyl moieties.

Keywords: alkyl moieties; hydroxy functionalization; carboxy functionalization; prodrug metabolic
activation; primary and auxiliary pharmacophores; auxophores

1. Introduction

Nonpolar alkyl moieties are frequently incorporated into drug molecules to serve
pharmacodynamic and/or pharmacokinetic purposes. Being lipophilic, alkyl moieties are metabolized
in phase I via hydroxy functionalization to alcohols—a process which is, in some cases, followed by
carboxy functionalization. Usually, the carboxyl and sterically unhindered hydroxyl groups in the
resulting metabolites are conjugated in phase II by glucuronic acid. The chemical forms and metabolic
products of the alkyl moieties surveyed in this review are summarized in Table 1.
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Table 1. Moieties metabolized by hydroxy and carboxy functionalization.

Aliphatic Moieties Metabolized by
Oxidative Hydroxylation Metabolic Products

Alkyl (linear or branched)
Primary, secondary, or tertiary alcohols, depending on the

class of substrate carbon; primary alcohols are further
oxidized to carboxylic acids

Unhindered methylene groups in alicycles and
aliphatic heterocycles (usually at the farthest

position from the monosubstituent)
Secondary alcohols

Benzylic methyl groups Primary alcohols, followed by oxidation to carboxyl group

Methyl groups bonded to alicycles or heterocycles Primary alcohols, followed by oxidation to carboxyl groups

Methylene groups alpha to both carbonyl and
imino groups Secondary alcohols

Carbons α to a heteroatom in a heterocycle Secondary alcohol; usually followed by carbonyl compound
(aldehyde or ketone) elimination

Allylic carbons Primary alcohols in open-chain alkyls and secondary
alcohols in alicycles

Generally, alkyls are found in drug molecules in their capacity as functional groups or as
frameworks for (or carriers of) hydrophilic or other hydrophobic functional groups. Usually, internal
linear alkyls assume the role of frameworks, while ω methyls of terminal linear or branched alkyls
assume primary or auxiliary pharmacophoric roles by interacting with biological targets through van
der Waals binding. In addition, internal linear alkyls may be used as spacers between functional
groups for different purposes—mainly to extend the chain for one of the functional groups to reach a
binding site. Further, branching of alkyl chains results in compactness: this feature will cause less
disruption of the hydrogen-bonding network of water. Consequently, the lipophilicity of the drug
containing the branched alkyl group will decrease, and if the drug’s mechanism of action is related to
its lipophilicity, then a significant alteration in the biologic effect will ensue [1].

Cycloalkyl groups encountered in drug molecules mostly extend from cyclopropyl to cyclohexyl.
In drug design, cycloalkyl groups are substituted for open-chain alkyl groups to (i) better fill a
hydrophobic pocket in a receptor, and (ii) introduce rigidity and limit the number of conformations a
drug molecule may adopt. Both effects contribute to attaining more drug affinity and selectivity of the
drug containing such groups [2–4]. In monosubstituted cyclohexyl groups—the most common in drug
molecules—metabolic hydroxylation is stereoselective, favoring the trans isomer for its higher stability
with respect to the cis isomer (Figure 1) [5].
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Figure 1. Stereoselective metabolic oxidation of monosubstituted cyclohexyl moiety.

Mechanism of Metabolic Oxidation of Alkyl Moieties

Metabolic hydroxylation of alkyl groups is catalyzed by a family of monooxygenase enzymes,
known as the “cytochrome P450” family, that contain heme redox centers. The heme group is
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characterized by an iron atom coordinated to the nitrogen atoms of four linked pyrrole rings.
The mechanism of metabolic hydroxylation involves free-radical formation at the substrate carbon in
the alkyl moiety, as illustrated in Figure 2 [6–10]. In drug molecules containing more than one class of
carbon atoms, the priority of metabolic hydroxylation is dictated by the stability of the intermediate
free radicals; however, anomalies may occur due to prevailing electronic or steric effects in the molecule.
Due to electronic effects, the stability of alkyl free radicals follows this sequence: benzyl, allyl > 3◦ > 2◦

> 1◦ > methyl [11]. The different classes of alkyl carbons are shown in Figure 1.

Molecules 2020, 25, x FOR PEER REVIEW 3 of 29 

 

Figure 1. Stereoselective metabolic oxidation of monosubstituted cyclohexyl moiety. 

1.1. Mechanism of Metabolic Oxidation of Alkyl Moieties 

Metabolic hydroxylation of alkyl groups is catalyzed by a family of monooxygenase enzymes, 

known as the “cytochrome P450” family, that contain heme redox centers. The heme group is 

characterized by an iron atom coordinated to the nitrogen atoms of four linked pyrrole rings. The 

mechanism of metabolic hydroxylation involves free-radical formation at the substrate carbon in the 

alkyl moiety, as illustrated in Figure 2 [6–10]. In drug molecules containing more than one class of 

carbon atoms, the priority of metabolic hydroxylation is dictated by the stability of the intermediate 

free radicals; however, anomalies may occur due to prevailing electronic or steric effects in the 

molecule. Due to electronic effects, the stability of alkyl free radicals follows this sequence: benzyl, 

allyl > 3° > 2° > 1° > methyl [11]. The different classes of alkyl carbons are shown in Figure 1. 

CH2 CH

H

3+
Fe O

CYP450

Fe2+OH

CYP450

CH2 CH

.

Fe3+OH

CYP450

Fe2+

CYP450

CH2 CH

OH

  Alkyl 
substrate

Alkyl free
   radical

Alcohol

Radical 
initiator

Activated
  oxygen

Reduced
   heme

Neutral oxygen radical derived
from molecular oxygen

.

3+
Fe O

CYP450

.
The radical initiator abstracts a hydrogen from the alkyl substrate to form a free radical.  

Substrate carbon

abstraction of 
hydrogen FR

FR: free radical

 

Figure 2. Free-radical metabolic alkyl hydroxylation (adapted from [3,4]). 
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2. Data on Selected Groups of Drugs Containing Alkyl Moieties

The selection of drug candidates for metabolic alkyl-moiety hydroxylation and carboxyl
functionalization was based on the presence of the groups in Table 1.

2.1. NSAIDS

The chemical classification of NSAIDS is given in the first part of this review series [12]. The two
NSAIDS considered in this section, ibuprofen and tolmetin are of the arylalkanoic acid class.

2.1.1. Ibuprofen

Ibuprofen (Figure 3) is an arylpropionic acid NSAID used in the management of arthritis as
well as for its analgesic and antipyretic properties. It acts as an NSAID by inhibiting COX and
consequently PGE2, which is implicated in the inflammation process [13]. Ibuprofen is a chiral drug
existing in two enantiomeric forms: S-(+) and R-(−). The NSAID activity of ibuprofen has been
reported to reside in the S-(+)-enantiomer [14–16], which is now marketed in a number of countries
as dexibuprofen; however, in most countries, the drug is used as the racemate. The possible reason
why large pharmaceutical companies tend to market racemic equivalent ibuprofen is that the levo
enantiomer is metabolically converted in vivo to the dextro enantiomer [17]. The isobutyl group in
ibuprofen contains three classes of carbon: two primary (C3, C3), one tertiary (C2), and one benzylic
(C1) (Figure 3). As depicted in Figure 4, phase I metabolic hydroxylation occurs at the three carbons
to varying extents [17–22]. 3-Hydroxyibuprofen is further oxidized via the aldehyde intermediate
to the carboxylic acid metabolite. The benzylic-carbon oxidation results in the formation of a chiral
secondary alcohol (1-hydroxyibuprofen). Both the intrinsic and the metabolically generated carboxyl
groups are further metabolized in phase II to glucuronide conjugates. All the metabolites of ibuprofen
are devoid of pharmacological activity [20,23].
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2.1.2. Tolmetin

Tolmetin (Figure 4) is a pyrrole acetic acid NSAID. It is metabolized by the hydroxylation of
the benzylic methyl group to the active hydroxymethyl derivative, which is further oxidized to the
inactive 5-p-carboxybenzoyl-1-methylpyrrole-2-acetic acid in rat, monkey, and human [24,25]. Both the
intrinsic and metabolically produced carboxyl groups are further metabolized in phase II to the inactive
glucuronide conjugates. The retention of COX-inhibiting activity by the hydroxymethyl metabolite
may indicate an auxiliary pharmacophoric role of the benzylic methyl group, since the relatively large
phenyl group is responsible for the primary pharmacophoric role.

2.2. Sulfonylurea Oral Antidiabetics

Sulfonylurea oral antidiabetics have the general structure shown in Figure 5, with the framed
moiety representing the pharmacophore.
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In the first-generation sulfonylureas in Figure 5, R1 is a small lipophilic group such as methyl or
chloro, while R2 is a lipophilic alkyl or cycloalkyl group, mostly cyclohexyl. In the second-generation
sulfonylureas, the alkyl and cycloalkyl substituents at R2 are mostly maintained while the substituent
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at R1 is a large p-(β-arylcarboxyamidoethyl) group (Figure 5). This latter group enhances antidiabetic
activity through strong binding affinity to the ATP K+ channel [26]. On the other hand, according
to Foye (2020) [26], the small lipophilic groups at R1 in the first-generation sulfonylureas have little
influence over activity. Hence, they may have been included to play auxiliary pharmacophoric or
auxophoric roles. Nevertheless, only methyl groups at R1 are within the scope of this review.

The first-generation sulfonylurea oral antidiabetics surveyed in this review include acetohexamide,
tolbutamide, chlorpropamide, and tolazamide, while the second-generation members include glyburide
(glibenclamide), glimepiride, and glipizide [27].

Mechanistically, the sulfonylurea antidiabetics act by binding to the specific receptor for
sulfonylureas on β-pancreatic cells, blocking the inflow of potassium (K+) through the ATP-dependent
channel. The flow of K+ within the β-cell goes to zero; the cell membrane becomes depolarized,
thus removing the electric screen, which prevents the diffusion of calcium into the cytosol. The increased
flow of calcium into β-cells causes contraction in the filaments of actomyosin responsible for the
exocytosis of insulin, which is therefore promptly secreted in large amounts [28].

2.2.1. Acetohexamide

Acetohexamide (Figure 6) is metabolized by (i) reduction of the carbonyl group to give a hydroxy
metabolite that is 2.5 times as active as the parent drug, as well as (ii) stereoselective oxidation of the
cyclohexyl ring to trans-4′-hydroxyacetohexamide, which is inactive as an oral antidiabetic [29,30].
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2.2.2. Tolbutamide

Tolbutamide (Figure 7) is primarily metabolized by benzylic methyl oxidation to the primary
alcoholic hydroxymethyl group, which is further oxidized to the carboxyl group (Figure 7) [31,32].
While the hydroxymethyl metabolite is equiactive with tolbutamide, the carboxy metabolite is
inactive [31]. A minor route of tolbutamide metabolism occurs via butyl chain oxidation at theω and
ω-1 carbons to give primary and secondary alcohol metabolites, respectively, which have minimal
antidiabetic activity (Figure 7). An inference can be made from the ratio of the hydroxy metabolites of
tolbutamide: when a benzylic methyl group and an alkyl chain are present in the same drug molecule,
the preference of metabolic oxidation is for the benzylic methyl group. Substantiation of the inference
is given by the higher stability of the benzylic free radical involved in the oxidation of the benzylic
methyl group compared to the alkyl-chain free radicals. The stability of the benzylic free radical is due
to resonance stabilization [33], as depicted in Figure 8. The metabolic oxidation of the benzylic methyl
group occurs as per the mechanism of alkyl hydroxylation shown in Figure 2.
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2.2.3. Chlorpropamide

Chlorpropamide (Figure 9) has been developed as a variant of tolbutamide in order to prolong
the drug’s antidiabetic effect with the consequent enhancement of potency. Chlorpropamide is slowly
metabolized by alkyl-chain oxidation at theω andω-1 carbons to give primary and secondary alcohols,
respectively (Figure 9) [34]. Both metabolites have minimal antidiabetic activity [20]. It should be
noted that in chlorpropamide metabolism, the secondary alcohol (55% of dose) predominates over
the primary alcohol (2%) [34] (Figure 9). A possible explanation of this finding resides in the higher
stability of the intermediate secondary-propyl free radical compared to the primary-propyl free radical.
In the absence of corresponding data on metabolite concentrations, the analogy could be extended to
the butyl group in tolbutamide (Section 2.2.2).
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2.2.4. Tolazamide

Tolazamide (Figure 10) contains an azepane ring bonded to the terminal sulfonylurea nitrogen and
a methyl group bonded to the aromatic ring. The metabolism of tolazamide is depicted in Figure 12.
The azepane ring is oxidized at position 4′ to the 4′ hydroxy group, while the benzylic methyl group
is oxidized sequentially to the hydroxymethyl and carboxyl groups [35]. It is noteworthy that the
concentrations of the two alcoholic metabolites are almost equal, which leads to the inference that the
benzyl and azepanyl free radicals are almost of equal stability. However, as far as activity is concerned,
the hydroxymethyl metabolite is equiactive with the parent drug, while the azepanyl alcohol metabolite
is only weakly active. Furthermore, the carboxy metabolite resulting from the hydroxymethyl group
oxidation is inactive.
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2.2.5. Glibenclamide

Glibenclamide (also known as glyburide) (Figure 11) is a second-generation sulfonylurea oral
antidiabetic. It contains a cyclohexyl group bonded to the terminal nitrogen of the sulfonylurea moiety.
The cyclohexyl ring forms the main site of metabolism of the drug; it is stereoselectively hydroxylated
to 3-cis and 4-trans isomers (Figure 11) with the latter isomer being the major metabolite [36,37].
The two metabolites have little hypoglycemic effect compared to the parent drug. However, retention
of 4-trans-hydroxyglyburide may prolong the hypoglycemic effect of the agent in those with severe
renal impairment [37].

Molecules 2020, 25, x FOR PEER REVIEW 7 of 29 

 

H3C

S
N N

OOO

H H

Tolazamide 

Hydroxytolazamide 
           (35%)

Carboxytolazamide 
           (17%)

(inactive)
4'-Hydroxymetabolite (31%)

(weak activity)

N

RR'HOOC

R'

R
N OH4'

HOCH2

R'

(equiactive)

 

Figure 10. Metabolic pathways of tolazamide. 

2.2.5. Glibenclamide 

Glibenclamide (also known as glyburide) (Figure 11) is a second-generation sulfonylurea oral 

antidiabetic. It contains a cyclohexyl group bonded to the terminal nitrogen of the sulfonylurea 

moiety. The cyclohexyl ring forms the main site of metabolism of the drug; it is stereoselectively 

hydroxylated to 3-cis and 4-trans isomers (Figure 11) with the latter isomer being the major metabolite 

[36,37]. The two metabolites have little hypoglycemic effect compared to the parent drug. However, 

retention of 4-trans-hydroxyglyburide may prolong the hypoglycemic effect of the agent in those with 

severe renal impairment [37]. 

N

S
N NO

Cl

O

O

H

H H

R

OH

R

R

OH
+

Glibenclamide

4-trans-hydroxy
metabolite 3-cis-hydroxy

metabolite

The hypoglycemic activity of both 
metabolites is substantially lower 
than the parent drug.

O

O

 

Figure 11. Metabolic pathways of glibenclamide. 

2.2.6. Glimepiride 

The cyclohexylmethyl group in glimepiride (Figure 12) allows the drug to exist in cis and trans 

isomeric forms; the active antidiabetic form is the trans isomer. The latter is metabolized, as shown in 

Figure 12, through the sequential oxidation of the cyclohexylmethyl group to the hydroxymethyl and 

carboxy metabolites [38,39]. The hydroxymethyl metabolite is an active antidiabetic in animal 

models, while the carboxyl metabolite is inactive [39]. 

S
N N

OOO

H H

trans-Glimepiride

trans-Carboxy metabolite

(33% as active as the parent 
drug in animal models) 

(devoid of hypoglycemic 
            activity)

N

O

N

O

H

CH3

R
CH2OH

R CYP2C9

R
COOH

trans-Hydroxymethyl
       metabolite

CYP2C9

 

Figure 12. Metabolism of glimepiride. 

Figure 11. Metabolic pathways of glibenclamide.

2.2.6. Glimepiride

The cyclohexylmethyl group in glimepiride (Figure 12) allows the drug to exist in cis and trans
isomeric forms; the active antidiabetic form is the trans isomer. The latter is metabolized, as shown in
Figure 12, through the sequential oxidation of the cyclohexylmethyl group to the hydroxymethyl and
carboxy metabolites [38,39]. The hydroxymethyl metabolite is an active antidiabetic in animal models,
while the carboxyl metabolite is inactive [39].
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2.2.7. Glipizide

Glipizide (Figure 13) is a second-generation sulfonylurea with R2 in Figure 6 as cyclohexyl
substituent. It is metabolized by stereoselective hydroxylation to 4-trans and 4-cis-hydroxyglipizide [40].
No data are available on the activity of the hydroxy metabolites of glipizide.
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2.3. Barbiturates

Barbiturates are CNS depressants used as sedatives and hypnotics, anesthetics, and anti-seizure
drugs. Barbiturates’ primary mechanism of action is inhibition of the central nervous system (CNS).
The CNS depression is brought about by stimulating the inhibitory neurotransmitter system in the
brain called the gamma-aminobutyric acid (GABA) system. The GABA channel is a chloride channel
that has five subunits at its gate. When barbiturates bind to the GABA channel, they cause the chloride
ion channel to open, which allows chloride ions into the cells in the brain. The entry of the chloride
ions into the brain leads to increased negative charge and alteration of the voltage across the brain cells.
This change in voltage makes the brain cells resistant to nerve impulses, thus depressing them [41].

Most barbiturates contain alkyl groups of varying lengths. Being lipophilic, these alkyl groups
are functionalized by metabolic hydroxylation at different positions. The primary alcohols resulting
from oxidation of ω carbons are usually further metabolized to carboxylic acids. Amobarbital and
pentobarbital (Figures 14 and 15, respectively) are taken as representative examples of barbiturates
that contain alkyl groups. Amobarbital has ethyl and amyl groups bonded to C5 of barbituric acid,
while pentobarbital has ethyl and 2-methylbutyl groups bonded to C5 of barbituric acid (Figures 14
and 15). Amobarbital is metabolized by 3′-hydoxylation to give 3′-hydroxyamobarbital as nearly
the sole metabolite (Figure 14) [42,43]. On the other hand, the 2-methylbutyl group in pentobarbital
undergoes ω and ω-1 metabolic oxidation to give primary- and secondary-alcohol metabolites,
respectively (Figure 15) [44]. The primary alcohol metabolite of pentobarbital is further oxidized to the
carboxylic acid. The three metabolites of pentobarbital (the two alcoholic metabolites and the carboxyl
metabolite) are further conjugated by glucuronic acid in phase II (Figure 15) [44]. The alcoholic and
the carboxylic acid metabolites of pentobarbital, and their glucuronide conjugates, are inactive as
sedative-hypnotics [44]. In contrast to the alcoholic metabolites of pentobarbital, 3′-hydroxyamobarbital
has not been reported to undergo glucuronide conjugation—possibly because, being a tertiary alcohol,
it is sterically hindered from such a metabolic pathway. In addition to metabolism, redistribution of
barbiturates has been reported to play an important role in their deactivation [45]. Redistribution
of the lipophilic barbiturates from the brain to other body compartments, such as adipose tissue,
will lead to a reduction of their effective concentration at the receptors in the brain, thus leading to a
loss of sedative-hypnotic activity. On the other hand, amobarbital is rapidly metabolized; however, its
extended activity has been attributed to the 3′-hydroxy metabolite, which is present in diminished
concentration but is, nevertheless, longer acting than the parent drug [43].
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Figure 16. Metabolic pathways of valproic acid. 

2.4.2. Risperidone/Paliperidone 

Risperidone (Figure 17) blocks the formation of serotonin and dopamine, thus decreasing 

psychotic and aggressive behavior. By targeting serotonin 5HT2A and D2 receptors, risperidone is 
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2.4. Miscellaneous

2.4.1. Valproic Acid

Valproic acid (Figure 16) is an anticonvulsant drug used in the treatment of epilepsy. Its mechanism
of action involves the blockage of voltage-gated sodium channels and increased brain levels of
gamma-aminobutyric acid (GABA) [46]. Valproic acid is mainly metabolized by oxidation to alkene
and hydroxy products [47,48]. The two major hydroxy metabolites are the 4- and 5-isomers. The primary
alcoholic metabolite (i.e., 5-hydroxyvalproic acid) is further oxidized to the carboxylic acid to give
2-n-propylglutaric acid (Figure 16). The substantial reduction in anticonvulsant activities of the valproic
acid hydroxy and carboxy metabolites has been attributed to their increased molecular size and surface,
steric effects, and reduced log P, all of which are features that lower the extent of blood-brain barrier
crossing [47,48].
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2.4.2. Risperidone/Paliperidone

Risperidone (Figure 17) blocks the formation of serotonin and dopamine, thus decreasing psychotic
and aggressive behavior. By targeting serotonin 5HT2A and D2 receptors, risperidone is considered an
atypical antipsychotic drug and is used in the treatment of schizophrenia. In addition, it is used off-label



Molecules 2020, 25, 1937 10 of 29

in the treatment of ADHD in children. The metabolism of risperidone is stereoselectively catalyzed
(i) by CYP2D6 at the aliphatic heterocycle to give the major enantiomer (+)-9-hydroxyrisperidone,
and (ii) by CYP3A4 to (−)-9-hydroxyrisperidone (Figure 17) [49–53]. Both enantiomers are equiactive
with risperidone and have been developed into the racemate antipsychotic drug paliperidone [49–53].
Almo and Lopez-Mufioz (2013) [51] have reviewed the clinical use of both risperidone and paliperidone,
stressing the pharmacokinetic and pharmacodynamic bases on which the metabolite drug has been
developed. Further, the metabolically formed hydroxy group in paliperidone has been esterified with
palmitic acid to give paliperidone palmitate. Paliperidone palmitate (Figure 17) is a depo-long-acting
injectable prodrug formulation indicated for a single dose to be given once monthly [53]. The active
drug is released in the blood by esterase hydrolysis.

Paliperidone palmitate is an example of a prodrug that has been developed from a metabolite
drug; hence, it can be described as a metabolite prodrug. Other metabolite prodrugs will be presented
and discussed in due course.
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2.4.3. Bupropion

Bupropion (Figure 18) is an atypical antidepressant drug used to treat major depressive
disorder (MDD) and seasonal affective disorder; it is also used off-label as a smoking cessation
aid. Mechanistically, bupropion enhances both noradrenergic and dopaminergic neurotransmission
via reuptake inhibition of the norepinephrine and dopamine transporters. In addition, its mechanism
of action may involve the presynaptic release of norepinephrine and dopamine. The major active
metabolite of bupropion is hydroxybupropion (Figure 18) [54,55]. The groups in this metabolite are
positioned in such a way as to allow for the occurrence of cyclization, thus preventing further oxidation
of the hydroxymethyl group to the carboxyl group and the consequent loss of activity. The cyclic
metabolite is an active antidepressant [55].
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2.4.4. ∆9-Tetrahydrocannabinol

∆9-Tetrahydrocannabinol (∆9-THC, Figure 19) is the psychoactive hallucinogenic constituent
in Cannabis sativa (hashish and marijuana). It contains three allylic carbons at positions 11, 8, and
10a (Figure 19). The allylic positions at C11and C8 are metabolically hydroxylated, with the former
hydroxylation resulting in the major equiactive hydroxymethyl metabolite; due to steric hindrance,
position 10a is not hydroxylated. The C11 hydroxymethyl metabolite is further metabolically oxidized
to the inactive 11-carboxy-∆9-THC metabolite (Figure 19) [56,57]. The resonance stabilization of the
allyl free radical in ∆9-THC that accounts for the formation of the major allylic hydroxy metabolite is
depicted in Figure 20.
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2.4.5. Tolterodine/Fesoterodine

Tolterodine (Figure 21) is an antimuscarinic drug used in the treatment of overactive bladder
(OAB). As shown in Figure 21, tolterodine is metabolized (i) through mono-deisopropylation to give
an inactive metabolite, and (ii) through benzylic-methyl group oxidation to give 5-hydroxymethyl
tolterodine (5-HMT), which is equiactive with the parent drug [58–61]. Despite being equiactive to its
parent drug, 5-HMT did not qualify for the status of metabolite drug because of its low log P value of
0.73 and the associated poor bioavailability [58]. However, the problem was resolved by esterifying
the aromatic hydroxy (phenolic) group with isobutanoic acid to produce the prodrug fesoterodine,
which has a log D7.4 value of 5.7 [58] and hence enjoys a substantial improvement in bioavailability.

Fesoterodine is the second example of parent-drug equiactive metabolites to have been developed
into metabolite prodrug. The first example from this class of prodrugs is paliperidone palmitate,
presented and discussed in Section 2.4.2. Further discussion of metabolite drugs and prodrugs will be
given in Section 3.
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2.4.6. Terfenadine/Fexofenadine

Terfenadine (Figure 22) is a second generation H1-antihistamine free of the sedative side effect
associated with the first-generation H1-antihistamines. Terfenadine is almost completely metabolized
by benzylic-methyl-group oxidation to an equiactive carboxy metabolite, as shown in Figure 22 [62],
and it is thus considered a prodrug. However, despite this advantage, terfenadine was withdrawn
from clinical use because of its cardiotoxic effect [63]. In the interim, its carboxy metabolite, being
free of cardiotoxicity, was developed into a drug of its own right under the name of fexofenadine.
As shown in Figure 24, fexofenadine is amphoteric and thus is capable of existing as a zwitterion at
physiologic pH [64]. The existence of fexofenadine as zwitterion at physiologic pH may be explained
by the carboxylic group’s interaction with the basic pyridinyl nitrogen via folded conformers [65].
Generally, zwitterions do not cross the blood-brain barrier and hence do not cause sedation [65].
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2.4.7. Ebastine/Carebastine

Ebastine (Figure 23) is a second-generation non-sedating H1-antihistamine. Its structure is similar
to that of terfenadine. As in the latter drug, in ebastine the benzylic methyl group is metabolically
oxidized to the carboxyl group after an intermediate step in which hydroxymethyl metabolite is
formed as shown in Figure 23. The resulting metabolite, given the name of carebastine, is more active
than the parent drug and accounts for nearly all the H1-antihistaminic activity [66]. Despite its high
log P value of 6.9 [67], ebastine does not cross the blood-brain barrier, and accordingly it does not
cause sedation. On the other hand, carebastine, the active metabolite of ebastine, exists as zwitterion
at physiologic pH (Figure 24) and accordingly does not cross the blood-brain barrier. Further, like
terfenadine (Section 2.4.6), ebastine is cardiotoxic [68]. It is worth mentioning that, despite carebastine
lack of cardiotoxicity relative to its parent drug, it has not been developed into a fully-fledged drug in
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analogy with fexofenadine (Section 2.4.6). Almirall-Prodesfarma, a Spanish pharmaceutical company,
reached stage III in the development of carebastine for the treatment of allergic conjunctivitis and
allergic rhinitis, but the company subsequently discontinued the endeavor [69].
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2.5. Metabolic Conversion of Intrinsic Hydroxymethyl Groups in Parent Drugs to Active Carboxy Metabolites

As has been shown in examples in Sections 2.1–2.4, carboxy-metabolites can result from the
oxidation ofω-methyl groups in alkyl chains or methyl groups attached to cycloalkyl or aromatic rings.
In all the cases cited, the carboxy metabolites were found to be pharmacologically inactive, that is,
they did not give the same pharmacological effect as the corresponding parent drugs. However, this
observation should not be generalized. Three prominent examples in which intrinsic hydroxymethyl
groups are metabolically oxidized to the carboxyl groups with retention of activity are hydroxyzine to
cetirizine, salicin to salicylic acid, and losartan to losartan carboxylic acid.

2.5.1. Hydroxyzine/Cetirizine

Hydroxyzine (Figure 24) is a first-generation H1-antihistamine. H1-antihistamines are generally
lipophilic in nature, a property that causes them to cross the blood-brain barrier to cause sedation as
a main side effect [70]. Hydroxyzine is primarily metabolized by oxidation of the primary alcoholic
group to give the equiactive carboxyl metabolite (Figure 24) [71]. Being appreciably more hydrophilic
than hydroxyzine and capable of existing as a zwitterion at the physiologic pH of 7.4 (Figure 24), the
metabolite does not cross the blood-brain barrier and therefore does not cause sedation [72]. As a result
of this pharmacokinetic advantage, the carboxy metabolite of hydroxyzine has been developed into a
second-generation H1-antihistamine of its own right under the name of cetirizine [62,63]. The existence
of cetirizine as zwitterion may be explained by analogy to fexofenadine in Section 2.4.6. Hydroxyzine
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and cetirizine are used concurrently in clinical settings; night urticaria may be a suitable indication for
the sedative hydroxyzine, while in allergic reactions demanding alertness, cetirizine is indicated [72].

2.5.2. Salicin/Salicylic Acid/Aspirin

Salicin (Figure 25) is a natural product found in the bark of the willow tree. The major turning
point for salicylate medicines came in 1763, when a letter from the English chaplain Edward Stone
was read at a meeting of the Royal Society. Stone’s letter described the dramatic power of the willow
bark extract to cure intermittent fever, pain, and fatigue [73]. As shown in Figure 25, the metabolism
of salicin to salicylic acid involves acetalic ether bridge hydrolysis (reminiscent of aromatic-alkoxy
dealkylation) to a phenolic group as well as primary alcohol oxidation to the carboxyl group. The latter
metabolic pathway is the subject of this section.
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Research into willow bark extract culminated in 1899, when the German drug company, Bayer,
prepared aspirin by acetylating the phenolic hydroxy group in salicylic acid, which was believed
to cause gastric irritation and bleeding [74]. However, subsequent research has proven that the
acetyl group in aspirin is crucial to aspirin’s mode of action as a COX inhibitor in the treatment of
inflammation. Through transacetylation, aspirin acetylates the alcoholic hydroxy group of the serine
moiety in COX, thus inhibiting it from catalyzing prostaglandin biosynthesis [75].

In addition to being one of the most widely used anti-inflammatory, analgesic, and antipyretic drug,
aspirin is now renowned for its use as a thrombolytic agent to prevent blood clotting in patients prone to
stroke [76–78]. Furthermore, its preventive role in colorectal cancer has almost been established [79,80],
and it is now being actively researched for other cancers [79,80].

Three factors played significant roles in the design and development of aspirin: (i) nature, by providing
salicin from the willow bark; (ii) metabolism, by converting salicin to salicylic acid; and (iii) medicinal
chemistry, by blocking the phenolic hydroxy group of salicylic acid by acetylation. Therefore, from a
developmental perspective, aspirin can be described as a natural-product-metabolite-synthetic drug,
while salicin can be considered a natural prodrug.

2.5.3. Losartan/Losartan Carboxylic Acid

Losartan (Figure 26) is a selective, competitive angiotensin II receptor type (AT1) antagonist used
as antihypertensive. Through the route shown in Figure 26, the 5-hydroxymethyl group in losartan
is metabolized by cytochrome P450 to the 5-carboxylic acid group through intermediate aldehyde
formation [81–83]. This metabolic route accounts for 14% of losartan dose; the remainder of the drug
is excreted unchanged [82,83]. The carboxy metabolite of losartan has 10–40 times the activity of the
parent drug [82,83]. Since losartan is only partially converted into an active form, it is not considered a
typical prodrug.
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According to Foye [81], the hydroxymethyl group in losartan can be replaced by other groups
including carboxy, keto, or benzimidazole, to give active ARB drugs. Such groups interact with the
AT1 receptor via either ionic, ion-dipole, or dipole-dipole bindings. The considerable increase in
activity of the carboxy metabolite of losartan compared to the parent drug may be explained by the
metabolite’s increased affinity to the receptor caused by the stronger ion-ion or ion-dipole binding due
to the ionized carboxylate group at physiologic pH compared to the hydrogen bond binding of the
hydroxyl group in the parent drug.

2.6. Metabolic Oxidation of Methylene Groups Alpha (α) to Carbonyl and Imino Groups

Generally, methylene groups alpha to carbonyl as well as imino groups undergo metabolic
oxidation via mixed function oxidases [84,85]. Examples of drugs in which such groups are found are
diazepam and alprazolam within the benzodiazepine class, whose members are used as tranquilizers,
hypnotics, or anticonvulsants. The mechanism of metabolic oxidation involves, as a first step, the
formation of a resonance-stabilized free radical, as depicted in Figure 27. A hydroxyl group will then
be transferred to the free radical in accordance with the mechanism of metabolic alkyl oxidation shown
in Figure 2.
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2.6.1. Diazepam

As shown in Figure 28, diazepam is mainly metabolized by hydroxylation at the carbon atom α to
the carbonyl and imino groups at position 3, as well as by N-dealkylation [86–88]. Both metabolic routes
give equiactive products with respect to diazepam, though with modified pharmacokinetic properties
that affect the drugs’ duration of action. Both hydroxylation at position 3 and N-dealkylation result in
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increased metabolite polarity and hence enhanced metabolite elimination. In addition, glucuronide
conjugation taking place at the metabolically generated hydroxy group results in fast elimination and
deactivation of the metabolites.

Molecules 2020, 25, x FOR PEER REVIEW 16 of 29 

 

addition, glucuronide conjugation taking place at the metabolically generated hydroxy group results 

in fast elimination and deactivation of the metabolites. 

N

N
O

Cl

OH

CH3

N

N
O

Cl

N

N
O

Cl

CH3

H

H

1
3

567

8

9

3

3

Diazaepam

Nordazepam 

Oxazepam

Temazepam

CYP3A4

CYP3A4

CYP3A4

N

N
O

Cl

OH

The three diazepam metabolites are pharmacologically active, though with different 
durations. Both oxazepam and temazepam are further metabolized in phase II (at the 
3-OH group) to the glucuronide conjugates, which are inactive.     .

CYP3A4

CYP2C19

CYP2C19*

*

 

Figure 28. Metabolic pathways of diazepam. 

The metabolic hydroxylation of diazepam at position 3 results in the generation of chiral centers 

in both temazepam and oxazepam (Figure 28). However, despite the presence of several reports in 

the literature describing the separation of the enantiomers of the drugs [89–92], studies investigating 

the activity of their separated enantiomers are lacking. 

2.6.2. Alprazolam 

The triazolobenzodiazepine alprazolam (Figure 29) is metabolized (i) by hepatic microsomal 

oxidation at C4, which is alpha to two imino moieties, to give 4-hydroxyalprazolam, and (ii) at the 

methyl group at position 1 to give α-hydroxyalprazolam (Figure 29). Both metabolites have decreased 

benzodiazepine receptor affinity compared to the parent drug [93]. 

N

N

N

N

H3C

Cl
N

N

N

N

HOCH2

Cl
N

N

N

N

H3C

Cl

OH
CYPIIIA

subfamily

Alprazolam4-Hydroxyalprazolam
alpha-Hydroxyalprazolam

44
*

1
2

3

5

6

7
8

9

10

allylic 
methyl

CYPIIIA
subfamily

 

Figure 29. Metabolic pathways of alprazolam. 
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The metabolic hydroxylation of diazepam at position 3 results in the generation of chiral centers
in both temazepam and oxazepam (Figure 28). However, despite the presence of several reports in the
literature describing the separation of the enantiomers of the drugs [89–92], studies investigating the
activity of their separated enantiomers are lacking.

2.6.2. Alprazolam

The triazolobenzodiazepine alprazolam (Figure 29) is metabolized (i) by hepatic microsomal
oxidation at C4, which is alpha to two imino moieties, to give 4-hydroxyalprazolam, and (ii) at the
methyl group at position 1 to give α-hydroxyalprazolam (Figure 29). Both metabolites have decreased
benzodiazepine receptor affinity compared to the parent drug [93].
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2.7. Alkyl-Moiety Metabolic Hydroxylation in Prodrug Activation

2.7.1. Oxazaphosphorines

Metabolic alkyl-moiety hydroxylation in prodrug activation is best exemplified by the
three oxazaphosphorine alkylating anticancer prodrugs, cyclophosphamide, ifosfamide, and
profosfamide [94,95]. The metabolic and chemical processes that lead to the activation of the
three drugs in vivo are respectively illustrated in Figures 30–32. The first step in the activation
process is the metabolic hydroxylation of the 4-methylene group of the common structural feature, the
cyclophosphamide. Generally, carbons α to heteroatoms in heterocycles are activated by metabolic
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oxidation [96]. Next, the secondary alcohol so produced will tautomerize to the aldehydic group to
give the aldo tautomer. This is followed by spontaneous non-enzymic elimination of the aldehydic
neutral fragment, acrolein, to give the active alkylating agent, the nitrogen mustard. Acrolein causes
hemorrhagic cystitis, an adverse effect that can be offset by the concurrent administration of mesna.
The mechanism of action of mesna involves the formation of a highly water-soluble conjugate of
acrolein that is excreted in the urine [97] (Figure 33).
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2.7.2. Aryl-Dialkyl-Triazines 

Another class of anticancer prodrugs that are activated by alkyl-group metabolic hydroxylation 

is the aryl-dialkyl-triazines [98,99]. The antitumor 1-aryl-3,3-dimethyltriazines have the general 

structure shown in Figure 34. The prototype of this class of drugs is 5-(3,3-Dimethyl-1-

Figure 33. Structure of mesna.



Molecules 2020, 25, 1937 18 of 29

2.7.2. Aryl-Dialkyl-Triazines

Another class of anticancer prodrugs that are activated by alkyl-group metabolic hydroxylation is
the aryl-dialkyl-triazines [98,99]. The antitumor 1-aryl-3,3-dimethyltriazines have the general structure
shown in Figure 34. The prototype of this class of drugs is 5-(3,3-Dimethyl-1-triazeno)imidazole-
4-carboxamide (DTIC) (Figure 34), used in the treatment of malignant melanoma. The metabolic
activation of the aryl-dialkyl-triazines is illustrated in Figure 34.
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3. Further Interpretations

When studying the effect of drug molecules’ metabolic hydroxy and carboxy functionalization
of alkyl groups on metabolite pharmacologic activity, several factors should first be considered.
These factors include:

(a) the extent of formation of the hydroxy and carboxy metabolites
(b) the hydrophobicity of the parent drug and hydrophilicity of the metabolites
(c) the drug’s mechanism of action
(d) the favored site of metabolic hydroxylation in drug molecules containing more than one alkyl group
(e) the molecular size increase and steric effect resulting from the replacement of the small hydrogen

atom in the alkyl group in the drug molecule by the larger and bulkier hydroxyl or carboxyl
group in the metabolite molecule

(f) the creation of new metabolite-receptor binding mechanisms, e.g., hydrogen bonding, ion-pairing,
and ion-dipole, in contrast to van der Waals binding of the alkyl groups

Generally, the extent of the metabolic oxidation of carbon atoms in drug molecules’ alkyl chains
depends in part on the class of the carbon atom, which in turn dictates the stability of the resulting
free radicals: benzylic, allylic > tertiary > secondary > primary > methyl. On the other hand, the
hydrophilicity of an alcoholic hydroxyl group is determined by the strength of the intermolecular
hydrogen bonds it forms. Due to steric effects, the strength of hydrogen bonding in the different classes
of alcohols follows the sequence primary > secondary > tertiary [100]. The order of the hydrophilicity
of primary, secondary, and tertiary alcohols follows the same sequence.

From the aliphatic hydroxy and carboxy metabolites of the cases surveyed in this review, we observe
three effects on the pharmacologic activity of the metabolites relevant to their parent drugs: loss,
attenuation, or retention.
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3.1. NSAIDS

Loss of pharmacologic activity has been observed for ibuprofen upon metabolic hydroxylation
of the isobutyl group at C1, C2, and C3 (Figure 3). In analogy with the O-demethylation of the
methoxy-group-containing NSAIDS discussed in the first part of this review series [12], both
pharmacodynamic and pharmacokinetic effects may account for the ibuprofen isobutyl-hydroxy
metabolites’ loss of pharmacologic activity. The SAR of ibuprofen dictates that the branched isobutyl
moiety is essential for optimum COX-inhibitory effect; in this context, n-butyl substitution has led
to significant loss of activity [101]. This finding should imply that each of the methyl groups in the
isobutyl moiety occupies a small hydrophobic pocket in COX, enabling a pharmacophoric effect that
is essential for optimum activity. The hydroxy and carboxy groups in metabolite III and metabolite
IV, respectively (Figure 3), are detrimental to the hydrophobic binding of the isobutyl group, and
accordingly, they precipitate a loss of COX-inhibiting activity [102]. Further, by replacing a hydrogen
atom in the isobutyl group in ibuprofen, the bulkier hydroxyl or carboxyl groups in the metabolites
will impart molecular-size increase and steric effects—factors that are detrimental to optimum binding
between isobutyl group and COX [102]. In addition, being hydrophilic, the hydroxyl or carboxyl
group will increase the water solubility of the metabolites, hence leading to their elimination and
termination of their action. Furthermore, glucuronide conjugation of the hydroxyl and carboxyl groups
will considerably enhance the prospects of metabolite elimination and activity termination through
substantially increasing aqueous solubility.

3.2. Sulfonylurea Oral Antidiabetics

For the sake of discussing the effect of metabolic oxidation of alkyl and aliphatic cyclic groups in
the sulfonylurea antidiabetics, we dissect the general structure of these agents, as depicted in Figure 5.
To reiterate, in the first-generation sulfonylureas (Section 2.2), R1 (Figure 7) is a small lipophilic group,
such as methyl or chloro, while R2 is an alkyl or aliphatic cyclic group. According to Foye (2020) [26],
the R1 groups do little to increase the binding efficiency of the pharmacophore to the ATP-sensitive
K+ channel. As such, R1 groups may be playing weak auxiliary pharmacophoric and/or auxophoric
roles. On the other hand, the R2 groups in both first- and second-generation sulfonylurea antidiabetics
have the auxophoric role of optimizing the pKa of the sulfonylurea group to ~5. At this pKa value, a
sulfonylurea anion is formed that is essential for interaction with the pancreatic β-cell subtypes (SUR1,
SURA1, and SUR2A) through ion-ion and ion-dipole bindings [103]. Generally, metabolic change at
auxiliary pharmacophores or auxophores is associated with retention of pharmacologic activity [12].
However, a discrepancy is observed for some members of the first-generation sulfonylurea antidiabetics
in this respect. For instance, while the aliphatic-ring hydroxy metabolite of tolazamide (Figure 12) is
active with a prolonged duration of action, the counterpart metabolite of acetohexamide (Figure 8)
is inactive.

The lipophilic methyl group at R1 in the general structure of sulfonylureas (Figure 5) is metabolized
by oxidation, via hydroxymethyl formation, to the carboxyl group with loss of activity in both
tolbutamide and tolazamide (Figures 7 and 9, respectively). Generally, the loss of activity caused by
metabolically formed carboxyl groups can be explained by two effects. Firstly, the carboxyl group
is almost fully ionized at the physiologic pH of 7.4. Secondly, the carboxyl group is, in most cases,
glucuronide conjugated in phase II. These two effects will result in a substantial increase of water
solubility and elimination of the metabolite with the consequent loss of activity due to reduced effective
concentration of the metabolite at the receptor. It is noteworthy that the metabolic functionalization
of the lipophilic benzylic methyl group to the carboxyl group in tolbutamide (Figure 7), with the
consequent enhanced elimination and loss of activity, has led to the development of chlorpropamide
(Figure 9). By employing bioisosterism, medicinal chemists replaced the benzylic methyl group in
tolbutamide with a chloro group, which is not prone to metabolism, to obtain chlorpropamide. Due to
this manipulation of metabolic stability, chlorpropamide can be used at a lower dose and frequency
than tolbutamide [104].
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In the second-generation sulfonylurea antidiabetics, the small lipophilic groups of the first
generation at R1 (Figure 5) have been replaced by the larger p-(β-arylcarboxyamidoethyl) group,
such as in glimepiride (Figure 14), in order to attain strong binding affinity to the ATP-sensitive K+

channel [26]. Metabolism of this group is not within the scope of this review.

3.3. Barbiturates

The metabolic oxidative hydroxylation of alkyl chains in barbiturates has resulted in variable
levels of activity subject to the class of the resulting alcohol. In pentobarbital (Figure 17), the primary
and secondary alcohols, respectively resulting from ω and ω-1 oxidation, are sufficiently hydrophilic
to jeopardize the hydrophobicity requirement for blood-brain barrier crossing [105]. In addition to
hydrophilicity, the factors of increased steric effect, molecular size, and surface area may come into
play to hinder the hydroxy metabolite from fitting in the receptor, thus leading to either attenuation
or loss of activity as governed by the extent of each factor. On the other hand, in amobarbital
(Figure 16), metabolic oxidation occurs mainly at theω-1 tertiary carbon, resulting in a tertiary alcohol,
3′-hydroxyamobarbital. Despite being less active, 3′-hydroxyamobarbital has been reported to be
responsible for the sedative-hypnotic activity of amobarbital [43]. With reduced hydrogen bonding
ability, and the consequent diminishment of hydrophilicity, due to steric effects in tertiary alcohols,
3′-hydroxyamobarbital is expected to cross the blood-brain barrier in sufficient concentration to
produce sedative-hypnotic effects.

The loss of activity of the carboxy metabolites of barbiturates may be explained similarly to the
NSAIDS-carboxy metabolites (Section 3.1).

3.4. Accounting for the Activity of the H1-Antihistamines’ Carboxy Metabolites: Hydroxyzine, Terfenadine,
and Ebastine

Methyl groups that are bonded to aromatic or cycloalkyl rings, or terminal in alkyl chains (i.e., ω
methyls) in drug molecules are usually oxidized to inactive carboxy metabolites through the formation
of mostly active hydroxymethyl intermediates. The loss of pharmacologic activity indicates that the
methyl groups in such cases play pharmacophoric roles, at least of an auxiliary nature. However, when
the methyl or hydroxymethyl group is distant from a predetermined pharmacophore, the situation is
different: metabolic oxidation of either group to the carboxyl group does not cause loss of activity of the
resulting metabolite. This has been the case with the three H1-antihistamines hydroxyzine, terfenadine,
and ebastine, which are respectively metabolized to equiactive cetirizine (Figure 24), fexofenadine
(Figure 22), and carebastine (Figure 23).

Hydroxyzine is a first generation H1-antihistamine. With a log P value of 3.5 [106], it is hydrophobic
enough to cross the blood-brain barrier, interact with cholinergic, serotonergic, and adrenergic receptors
and cause sedation [107]. On the other hand, cetirizine, the carboxy-metabolite drug of hydroxyzine,
has a log P value of 1.5 [108] and exists as zwitterion at physiologic pH of 7.4. Due to these properties,
cetirizine does not cross the blood-brain barrier and does not accordingly cause sedation. As shown in
Figure 24, in both hydroxyzine and cetirizine, the metabolically exchanged groups are distant from the
pharmacophore, and accordingly, the two drugs are therapeutically equiactive as H1-antihistamines.
The ethoxyethanol group in hydroxyzine and the ethoxyacetic acid group in cetirizine each play an
auxophoric role. A similar situation can be observed for the terfenadine/fexofenadine H1-antihistamine
pair (Figure 23). However, here, the carboxyl group in fexofenadine plays a pharmacodynamic rather
that a pharmacokinetic role. Terfenadine causes heart arrhythmias by blocking the hERG channel K+

current [109]. On the other hand, the ionized carboxylate group (COO−) in fexofenadine reduces this
blockage by over three orders of magnitude, thus rendering this drug almost free of the cardiotoxic
effect [110].

The inference that can be made from the two H1-antihistamine pairs presented above is that
when metabolic changes occur at groups distant from the primary pharmacophores (i.e., at auxophoric
groups), the original pharmacologic activity will not be affected. Further, beneficial pharmacokinetic
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and/or pharmacodynamic modifications may result in the metabolites warranting their development
into fully-fledged drugs. An extended definition of pharmacophores is given in Section 3.6.7.

3.5. Aspirin Is an NSAID of Its Own Disposition

In salicin (Figure 27), the acetalic group is metabolically converted to a hydroxyl group in a
reaction reminiscent of O-dealkylation, while the hydroxymethyl group is oxidized to the carboxyl
group to give salicylic acid. The phenolic hydroxyl group in salicylic acid was suspected to be the
cause of stomach irritation and bleeding, and it was hence esterified by acetic anhydride to give
aspirin. However, later, it was proven [111–113] that the gastrointestinal adverse effects of aspirin were
associated with the inhibition of COX1 and accordingly the inhibition of PGE1 formation, i.e., synthesis
of the prostaglandin involved in the protection of gastric mucosa against acid attack. Sometime then
elapsed before the mechanism of the anti-inflammatory activity of aspirin was understood to be caused
by acetylation of the serine moiety in COX [114]. That being the case, the benzene ring and the carboxyl
group in aspirin are likely playing auxiliary pharmacophoric roles by properly anchoring the aspirin
molecule in the COX-active cavity, thus facilitating the transfer of the acetyl group to the serine moiety.

3.6. Subtexts Arising from Hydroxy and Carboxy Metabolic Functionalization of Alkyl Moieties in
Drug Molecules

The aim of this section is to provide focused information on some general and specific issues that
have been extracted from the individual cases of alkyl-moiety metabolic hydroxy and carboxy
functionalization. The information presented and discussed includes definitions, significance,
implications, and/or applications of selected topics, which include:

3.6.1.Metabolism of methyl groups in drug molecules
3.6.2.Metabolic hydroxylation of alicycles and aliphatic heterocycles in drug molecules
3.6.3. Inferences from hydroxymethyl group in drug metabolites regarding origin and significance
3.6.4.Development of metabolite drugs and prodrugs from metabolites equiactive with parent drugs
3.6.5.Pharmacologic activity of carboxy metabolites
3.6.6.Significance of the carboxy metabolite of ∆9-tetrahydrocannabinol
3.6.7.Primary and auxiliary pharmacophoric properties

3.6.1. Metabolism of Methyl Groups in Drug Molecules

Methyl groups assume their importance in drug molecules due to their small size, higher steric
effect with respect to the hydrogen atom, hydrophobicity, isosterism with a number of groups, and
historical inclusion in drug molecules. They are found in drug molecules atω-carbons in both straight-
and branched-chain alkyls, as substituents in aromatic (benzene) rings and alicycles, and as substituents
in secondary and tertiary amino moieties. In branched-chain alkyls, methyl groups are found as
isopropyl, isobutyl, or tert-butyl moieties. In all of these forms, the methyl group is metabolically
oxidized by CYP450 enzymes to the hydroxymethyl group. The sequential oxidation of the latter
group to the carboxylic acid follows in most cases via primary alcohol formation. When there is more
than one equivalent methyl group in a drug molecule, only one group will be metabolically oxidized.

3.6.2. Metabolic Hydroxylation of Alicycles and Aliphatic Heterocycles in Drug Molecules

Six-membered alicycle (cyclohexyl) and heterocycle (piperidinyl) groups are often encountered
in drug molecules of various pharmacologic classes. For the most part, rings are stereoselectively
metabolized by hydroxylation at the positions 3 and 4, which are less sterically hindered, compared
to other positions (in the ring), to form cis and trans isomers. Pharmacologic action may also be a
function of stereoselective metabolism. For instance, the oral antidiabetic acetohexamide is mainly
metabolized to trans-4′-hydroxyacetohexamide, which is inactive. The cyclohexyl ring in glibenclamide
is metabolically oxidized to 3-cis and 4-trans-hydroxy metabolites with a substantial attenuation of
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antidiabetic activity. A similar effect has been observed for tolazamide, in which the azepane ring is
metabolically hydroxylated at position 4 (Figure 11) with a substantial loss of activity.

An interesting case of metabolic hydroxylation of alicycles and aliphatic heterocycles is given
by the psychotropic drug phencyclidine, which contains both cyclohexyl and piperidinyl groups.
Phencyclidine is mainly metabolized by hydroxylation at position 4 of the cyclohexyl ring to the
active cis- and trans-4-phenyl-4-(1-piperidinyl)cyclohexanol (Figure 35) [115]. In addition, the
piperidinyl ring in phencyclidine is metabolically hydroxylated to a minor extent at position
4 to give 4-phenyl-4-(1-coclohexyl)piperidinyl alcohol [116]. The pharmacologic activity of the
piperidinyl-hydroxy metabolite of phencyclidine has not been reported. A tentative inference
can be made heeding the phencyclidine metabolic hydroxylation example: when an alicycle and
aliphatic heterocycle are parts of the same molecule, metabolic hydroxylation favors the alicycle over
the heterocycle.
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3.6.3. Inferences from Hydroxymethyl Metabolites

Hydroxymethyl groups (-CH2OH), either intrinsic to drug molecules or metabolically formed, play
pharmacophoric and/or auxophoric roles. Here, we highlight the significance of the hydroxymethyl
group as derived from the relevant cases in Section 2.

Hydroxymethyl groups may be intrinsic to drug molecules, or they may result from the metabolic
oxidation of methyl groups bonded to aromatic or alicyclic rings or terminal methyl groups in alkyl
chains—i.e.,ω carbons. Intrinsic or metabolically formed hydroxymethyl groups are almost invariably
metabolically oxidized to carboxyl groups.

The hydroxymethyl metabolites are almost invariably equiactive with the parent drugs, whereas
the carboxy metabolites (resulting from the sequential oxidation of the hydroxymethyl metabolites) are
mostly inactive with only a few exceptions being equiactive with the parent drugs. These exceptional
cases are those in which the hydroxymethyl groups are distant from the primary pharmacophore.

The fact that hydroxymethyl metabolites invariably retain the pharmacologic activity due to the
parent drug probably reflects the auxiliary pharmacophoric status of the methyl group from which
they have resulted.

Of the hydroxymethyl metabolites that are equiactive with their parent drugs, only that of
tolterodine has been developed into a prodrug, which carries the name of fesoterodine (Figure 20).

3.6.4. Development of Metabolite Drugs and Prodrugs from Parent-Drug Equiactive Metabolites

The metabolite drugs presented in Section 1 include the H1-antihistamines cetirizine (Figure 24)
and fexofenadine (Figure 22), the carboxy metabolites of hydroxyzine and terfenadine, respectively.
Both drugs are more hydrophilic than their respective parent drugs and are capable of existing as
zwitterions at physiologic pH. Due to these properties, the two drugs do not cross the blood-brain
barrier, and accordingly, they do not cause sedation. In addition, the carboxyl group in fexofenadine
seems to offer an ionic binding site that is responsible for the removal of cardiotoxic adverse effects from
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the parent drug terfenadine. The advantages of both cetirizine and fexofenadine that warranted their
development into metabolite drugs may be described as intrinsic. However, cases are known in which
these advantages are artificially produced, such as in metabolite prodrugs. In such cases, the metabolite
is equiactive with the parent drug, but due to high hydrophilicity, it suffers the disadvantages of low
bioavailability and short duration of action. Chemists have responded to this situation by producing
ester prodrugs. The two metabolite prodrugs presented in Section 2 are the antipsychotic paliperidone
palmitate (Section 2.4.2, Figure 17) and the antimuscarinic fesoterodine (Section 2.4.5, Figure 21).
The development of ester prodrugs of hydroxy metabolites equiactive with their parent drugs to attain
improved pharmacokinetic properties may be extended to other cases if sufficiently warranted.

3.6.5. Pharmacologic Activity of Carboxy Metabolites

In most of the surveyed drugs in Section 2, where terminal methyls in alkyl chains (ω-carbons),
benzylic methyls, and methyls directly bonded to alicycles are metabolically oxidized to the carboxy
group, a loss of pharmacologic activity due to the parent drug has been observed. However, two cases,
terfenadine and ebastine, are unique in that the oxidation of the benzylic methyl group has resulted in
retention of pharmacologic activity. In these two particular cases, the metabolic oxidation of the methyl
group to the carboxyl group has taken place at positions distant from the primary pharmacophores:
terfenadine and ebastine (Figures 20 and 21, respectively). Of all the metabolically generated polar
functional groups in drug molecules, the carboxyl group stands alone in that it is almost completely
ionized at the physiologic pH of 7.4. If such metabolic change occurs at a pharmacophoric site, the new
state of ion-pairing interactions replacing the van der Waals interaction of the methyl group will tend to
change the pharmacodynamics of the parent drug, leading to a loss of activity. On the other hand, the
ionized carboxyl group introduces a pharmacokinetic dimension—which substantially enhances the
polarity, water solubility, and elimination of the metabolite as per se or as the glucuronide conjugate,
thus causing a significant reduction of the metabolite’s effective concentration at the receptor. It is
noteworthy that when a carboxyl group is involved in zwitterion formation with an aliphatic amino
group, such as in fexofenadine, carebastine, and cetirizine, it (the carboxy group) will not be subject to
glucuronide conjugation. In fact, glucuronide conjugation has not been reported as a metabolic route
for any of the three aforementioned drugs.

3.6.6. Significance of the Carboxy Metabolite of ∆9-Tetrahydrocannabinol

∆9-Tetrahydrocannabinol (Figure 20) is the major psychoactive constituent of Cannabis sativa.
The use of Cannabis products, hashish and marijuana, is illegal in many countries and is punishable
by law. The detection of cannabis-product use is based on urinalysis of the constituent metabolites.
For this purpose, presumptive immunoassays have been developed based on the carboxy metabolite
of ∆9-tetrahydrocannabinol, i.e., carboxy-∆9-tetrahydrocannabinol (Figure 21). Confirmation tests of
the presence of this metabolite are carried out by chromatography-mass spectrometry methods such as
GC-MS after trimethylsilyl derivatization or LC-MS [117,118].

3.6.7. Primary and Auxiliary Pharmacophores

In the first part of this review series [12], we classified the pharmacophore as primary and auxiliary
(secondary or logistic) based on the “message/address” concept suggested by Dr. Portoghese [119].
The case of fexofenadine development as a metabolite drug of terfenadine (Figure 24) due to the
cardiotoxicity of the latter has prompted us to extend the definition of an auxiliary pharmacophore.
An auxiliary pharmacophore is a group that may play one of two roles: (a) properly anchoring the
primary pharmacophore in the active site of the receptor or enzyme, or (b) interacting with a site other
than the primary site (i.e., an auxiliary site) to produce or override an adverse effect or to account
for an off-label use of the drug. Hence, the cardiotoxic effect of terfenadine may be explained by the
interaction of the three benzylic methyl groups with an auxiliary receptor via van der Waals binding.
On the other hand, in fexofenadine, one of the benzylic methyl groups (in terfenadine) has been
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metabolically oxidized to a carboxyl group, which interacts with the auxiliary site via ionic binding.
Due to its higher strength, ionic binding strongly predominates over van der Waals binding and thus
dictates, in part, the nature of the pharmacologic activity of drugs in which it occurs.

4. Conclusions

The occurrence and extent of alkyl moiety hydroxy functionalization in drug molecules is
predictable based on the feasibility of intermediate free radicals’ formation and stability. On the
other hand, the pharmacologic activities of the alkyl moieties-hydroxy and carboxy metabolites
may be predicted based on analogy with the reviewed cases. All hydroxymethyl metabolites are
pharmacologically equiactive with their parent drugs while most carboxy metabolites are inactive.
The development of metabolite ester prodrugs has an extendable potential when the equiactive hydroxy
metabolite is characterized by poor bioavailability and/or short duration of action. The pharmacologic
activities of the hydroxy and carboxy metabolites resulting respectively from alkyl or hydroxymethyl
moiety functionalization are explicable on pharmacodynamic and/or pharmacokinetic grounds.
In some cases, metabolic hydroxy and carboxy functionalization of alkyl or hydroxymethyl moieties
has enabled distinctions to be made between primary pharmacophores, auxiliary pharmacophores,
and auxophores.
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