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Abstract: Histone deacetylases (HDACs) are a class of epigenetic modulators overexpressed in
numerous types of cancers. Consequently, HDAC inhibitors (HDACIs) have emerged as promising
antineoplastic agents. Unfortunately, the most developed HDACIs suffer from poor selectivity towards
a specific isoform, limiting their clinical applicability. Among the isoforms, HDAC1 represents a
crucial target for designing selective HDACIs, being aberrantly expressed in several malignancies.
Accordingly, the development of a predictive in silico tool employing a large set of HDACIs
(aminophenylbenzamide derivatives) is herein presented for the first time. Software Phase was
used to derive a 3D-QSAR model, employing as alignment rule a common-features pharmacophore
built on 20 highly active/selective HDAC1 inhibitors. The 3D-QSAR model was generated using 370
benzamide-based HDACIs, which yielded an excellent correlation coefficient value (R2 = 0.958) and a
satisfactory predictive power (Q2 = 0.822; Q2

F3 = 0.894). The model was validated (r2
ext_ts = 0.794)

using an external test set (113 compounds not used for generating the model), and by employing a
decoys set and the receiver-operating characteristic (ROC) curve analysis, evaluating the Güner–Henry
score (GH) and the enrichment factor (EF). The results confirmed a satisfactory predictive power
of the 3D-QSAR model. This latter represents a useful filtering tool for screening large chemical
databases, finding novel derivatives with improved HDAC1 inhibitory activity.

Keywords: 3D-QSAR; pharmacophore modeling; ligand-based model; HDACs; isoform-selective
histone deacetylase inhibitors; aminophenylbenzamide

1. Introduction

Epigenetic defects in gene expression are well known in the onset and progression of cancer.
In this context, pharmacological targeting of proteins of the cellular epigenetic machinery has provided
opportunities for anti-cancer drug design [1,2]. Among epigenetic enzymes, histone deacetylases
(HDACs) hold a fundamental role in regulating gene expression through histone post-translational
modifications [3–5].

HDACs catalyze the removal of acetyl groups from the acetylated ε-amino termini of lysine residues
located at the tails of the nucleosomal histones core. Histone deacetylation process leads to condensed
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chromatin structure which concomitantly restricts the accessibility of related transcriptional factors
to their target genes, thereby suppressing gene expression including tumor suppressor genes [6–8].
The abnormal regulation of this process culminates with the high expression level of HDACs. This event
has been observed in the development of several human cancers. Consequently, effective inhibition of
HDACs has recently gained importance as a valid therapeutic strategy to reverse aberrant epigenetic
changes associated with cancer [9–11]. HDAC inhibitors (HDACIs) induce histone hyperacetylation
and subsequent transcriptional re-activation of suppressed genes which are correlated with a variety
of effects on tumor cells including apoptosis, differentiation, cell cycle arrest, inhibition of proliferation
and cytostasis [12,13].

The HDAC family comprises 18 isoforms in mammalian cells which are categorized into four main
classes (class I-IV) based on their structural and functional characteristics. HDACs belonging to class I
(HDAC1–3 and 8), II (HDACs 4–7, 9 and 10) and IV (HDAC11) are all zinc-dependent metalloenzymes,
while class III HDACs, also known as the sirtuins (SIRT1-7), requires NAD+ as a cofactor for their
catalytic function [6,14].

Extensive efforts over recent decades have led to the identification of four chemically diverse
classes of HDACIs as potent antineoplastic agents including, hydroxamates, benzamides, cyclic
peptides, and short-chain fatty acids [3]. The main breakthrough in developing these inhibitors was
achieved by the US FDA approval of Vorinostat [15], Belinostat [16], Panobinostat (hydroxamate-based
inhibitors) [17], Romidepsin (a cyclic peptide) [18] and Chidamide (a benzamide-based inhibitor) [19]
for the treatment of lymphoma and myeloma. Moreover, several HDACIs such as Mocetinostat [20],
Entinostat [21], Tacedinaline [22], Givinostat [23], and Abexinostat [24] are currently in clinical trials
for treating various types of cancers. The structures of several approved and clinical HDACIs are
shown in Figure 1.
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Despite these successes, the most known HDACIs target multiple HDAC isoforms and this poor
selectivity represents a major drawback which limits their broad clinical utility [25,26]. Isoform-selective
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HDACIs would offer superior therapeutic advantages due to limited off-target and undesirable effects,
improved clinical efficacy and better tolerability [27,28]. Moreover, isoform-selective inhibitors would
provide chemical tools to delineate the precise roles of individual HDAC isoforms in human diseases,
including rare disorders [29]. Therefore, in recent years, identification of highly potent inhibitors with
strict selectivity towards a specific isoform have caught more attention in the development of novel
HDACIs for the epigenetic therapy [30–33]. In this context, due to the pivotal role of HDAC1 in the
angiogenesis, proliferation, and survival of mammalian carcinoma cells, this isoform is particularly
being sought as a preferred target for successful design of selective HDACIs [34–38].

A wide range of hydroxamic acid derivatives are known to be potent pan-inhibitors of several
HDAC isoforms [39,40]. Accordingly, in recent years, there has been considerable interest in developing
non-hydroxamate HDACIs with satisfactory selectivity towards a specific isoform. In this context,
aminophenylbenzamide derivatives represent an important class of non-hydroxamate HDACIs owing
to their potent HDAC inhibition along with desirable pharmacokinetic profile and excellent selectivity
for HDAC class I enzyme. Furthermore, inhibitors containing an ortho-aminobenzamide typically
exhibit relatively greater levels of selectivity for class I HDACs, particularly HDAC1 [35,41]. In addition,
hydroxamic-derived inhibitors often suffer from some serious pharmacokinetic issues including
poor metabolic stability, rapid clearance, undesirable oral absorption, and short half-life in plasma,
whereas benzamides-based inhibitors show better metabolic stability and oral bioavailability [42–45].
For these solid reasons, renewed efforts are being directed towards the further exploration of innovative
aminophenylbenzamide chemotypes as privileged and valuable scaffolds to develop isoform-selective
HDACIs [46–48].

Recently, in silico techniques, including ligand-based methods such as pharmacophore modeling
and three-dimensional quantitative structural activity relationship (3D-QSAR), have efficiently
contributed to guide the discovery of novel bioactive molecules, with reduced costs in terms of
money and time [49–51]. In fact, QSAR methods provide relationships between physicochemical
properties of a series of compounds and their biological activities to obtain a reliable statistical model
for predicting the activities of new chemical entities. The fundamental principle of the technique is that
the change in structural properties determines modifications in biological activities of the compounds.
In the classical QSAR approaches, affinities of ligands to their binding sites, inhibition constants,
rate constants, and other biological data have been correlated with molecular properties including
lipophilicity, polarizability, electronic and steric properties (Hansch analysis) or with structural features
(Free-Wilson analysis). However, classical QSAR approach has only a limited utility for designing new
molecules due to the lack of consideration of the 3D structure of the selected compounds. Accordingly,
3D-QSAR has emerged as a natural extension to the classical Hansch and Free-Wilson approaches,
which exploits the three-dimensional properties of the ligands to predict their biological activities
employing robust chemometric techniques such as partial least squares (PLS). The success of these
methods can be attributed to several factors including identification of important features for the
activity, rationalization of activity trends in molecules under study, prediction of the specific activity for
a selected target or undesirable effects of new compounds. On the other hand, ligand-based methods
have been used in virtual screening campaigns of chemical databases to find novel hits with improved
potency and can be combined with other computational and experimental workflows to discover new
potential drugs [52–57].

Until now, only limited number of 3D-QSAR studies for hydroxamate set of HDACIs have been
reported [58–64]. However, to the best of our knowledge, no previous attempt has been made to seek the
structural and chemical features of aminophenylbenzamide governing their HDAC inhibitory activities
employing 3D-QSAR methodology along with a large set of compounds. Given the aforementioned
therapeutic significance of this class of inhibitors, we developed and validated a 3D-QSAR model using
a comprehensive set of previously reported benzamide derivatives as selective HDAC1 inhibitors.
From this perspective, the software Phase, implemented in Maestro, was employed to explore a
common-features pharmacophore hypothesis based on highly active ligands. This hypothesis was
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then used as an alignment rule to derive a predictive 3D-QSAR model [65]. Such an in silico tool could
aid not only in forecasting the HDAC1 inhibitory activity of newly designed chemical entities, but
also offer a robust foundation for designing new selective HDACIs with increased binding affinities
to HDAC1. Accordingly, the developed model could have a relevant implication in drug discovery
campaign for searching isoform-selective HDACIs.

2. Results and Discussion

The application of 3D-QSAR methodology in the design of HDACIs has received little attention
to date and only a few instances of field-based QSAR models (comparative molecular field analysis
(CoMFA) and comparative similarity indices analysis (CoMSIA) methods) have been reported for
hydroxamate-based inhibitors [58–64]. However, this approach has not been carried out for a large
set of benzamide-based derivatives behaving as HDACIs. On the other hand, we have recently
developed a series of predictive 3D-QSAR models for different purposes including the identification or
rational design of new chemical entities for different targets [53,55], and the prediction of undesirable
effects of novel molecules such as potential hERG K+ channel related cardiotoxicity [57]. In all these
cases, Phase was used to develop a computational tool using a pharmacophore-based alignment that
links the information of pivotal functional groups of the ligands with their biological activity [65].
The fruitful results of the above-mentioned molecular modeling studies as well as therapeutic
significance of benzamide chemotypes as valuable isoform-selective HDACIs inspired us to derive a
pharmacophore-based 3D-QSAR model to be used as a screening filtering tool able to quantitatively
predict the HDAC1 inhibitory activity of newly designed ligands.

2.1. Data Set Preparation

A comprehensive data set of 370 diverse HDACIs based on benzamide scaffold with functional
biological activity expressed as IC50 (see the Supplementary Materials for further details) with a range
of HDAC1 inhibitory activities spanning five orders of magnitude (from 6.0 nM of compound 17 to 50
µM of compound 132, Table S1) were selected from literature for developing a predictive 3D-QSAR
model. Subsequently, an extensive conformational search for each ligand was performed employing
MacroModel software (see experimental section for further details). Conformational analysis is crucial
to enhance both the quality of the alignment for the molecules used to generate the 3D-QSAR model
and the reliability of the in silico tool [53–57]. After the exhaustive conformational analysis of the
selected ligands (Table S1), the generation of the 3D-QSAR model was started.

2.2. Pharmacophore Modeling and 3D-QSAR Model Generation

As a first step to develop the 3D-QSAR model, 20 most active compounds with IC50 values≤ 10 nM
included in the data set (ligands 1–20, Figure 2, Table S1) were considered to find out common
pharmacophore hypotheses that were subsequently scored and ranked by the software Phase.
This means that the highly active compounds possess common features that are responsible for
the activity exploited by a 3D pharmacophore hypothesis. Therefore, a pharmacophore hypothesis
provides a rational picture of primary chemical features of ligands responsible for HDAC1 inhibitory
activity and therefore can be used as a reliable alignment rule for the 3D-QSAR model development.
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Figure 2. Chemical structure of highly active compounds against HDAC1 (IC50 comprised between
0.004 µM and 0.01 µM) used for generating a common-features pharmacophore.

To have optimal combination of sites or features shared by the most active ligands, the minimum
and maximum number of site points were set on 5. This means that we selected 5 as maximum
features to include in the pharmacophore models. Among the 26 common pharmacophore hypotheses
generated by the software Phase, only those models which showed superior alignment with the active
compounds were identified by calculating the survival score. The survival scoring function of Phase
module identifies the best candidate hypothesis from the generated models and offers an overall
ranking of all the hypotheses. The scoring algorithm includes contributions from the alignment of site
points and vectors, volume overlap, selectivity, number of ligands matched, relative conformational
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energy, and activity. To identify pharmacophore models with more active and less inactive features,
all models were mapped to inactive compounds and scored. If inactives score well, the hypothesis could
be invalid because it does not discriminate between actives and inactives. Therefore, adjusted survival
score was calculated by subtracting the inactive score from the survival score of these pharmacophores.

After the scoring, the model ADDRR, herein referred to ADDRR hypothesis, with the maximum
adjusted survival score (3.769) and lowest relative conformational energy, was selected as the top-ranked
hypothesis among the generated 3D model hypotheses. The different scoring parameters for the
selected hypothesis (ADDRR) were provided in Table 1. The 3D spatial arrangement of all features
with inter-feature distance constraints of ADDRR are presented in Figure 3. As shown in this
figure, the hypothesis was characterized by the five main features: one hydrogen-bond acceptor (A),
two hydrogen-bond donors (D), and two aromatic rings (R).

Table 1. The different scoring parameters for the best pharmacophore hypothesis, matching all 20 highly
active compounds used.

HYPO ID Survival Survival—Inactive Site Vector Volume Selectivity Matches Energy Activity Inactive

ADDRR 3.769 1.841 0.97 0.999 0.798 1.578 20 0.006 2.097 1.928
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Figure 3A depicts one of the most active ligands in the set (compound 13, Table S1), mapped onto
the ADDRR pharmacophore. As depicted in the mentioned figure, compound 13 thoroughly fits all
features of the pharmacophore model, underlining the previous findings on structural components
required for interacting with the HDAC1 binding site [66–68]. As illustrated in Figure 3, the carbonyl
oxygen of the benzamide group served as a hydrogen-bond acceptor (HBA) feature, while two
hydrogen-bond donor (HBD) features were mapped to the protons of the 2-aminophenyl NH2 and
amide NH. Furthermore, out of two aromatic features, one was mapped to the phenyl ring of the
2-aminophenyl. The other aromatic feature was mapped to the pyridine ring of the nicotinamide
moiety. This hypothesis was well corroborated by accepted common pharmacophore model for
HDACIs comprising the zinc binding group (ZBG), a linker and a cap group as established by
computational and biophysical studies reported for HDAC1 inhibitors [66–70]. Based on the current
study, the aniline groups of the benzamide-based inhibitors are served as ZBG, coordinating the
catalytic zinc ion in the HDAC1 active site. Moreover, it is well known that H-bonds formation
with key residues of HDAC1 active site are commonly found for the ZBG of this class of HDAC1
inhibitors. In particular, in addition to the zinc ion coordination, protons of the 2-aminophenyl NH2

group could also establish hydrogen bonds with His140 and His141, while the carbonyl oxygen of
the benzamide portion could also form another hydrogen binding interaction with hydroxyl group of
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Tyr303. It has been reported that NH of amide could offer the appropriate HBD vector to address the
Gly149 through H-bond formation. The presence of two aromatic features capable of participating in
π-π stacking interactions with hydrophobic residues Phe150, Tyr204, Phe205, and Tyr303, represents
another important requisite for further stabilization of ligand binding. These residues were located in
a long and narrow hydrophobic tube-like channel and thus interaction with them allow tubular access
of ligand into active site [66,67,69,70]. Accordingly, the above-mentioned ADDRR hypothesis imparts
the key features of ligand for providing the relevant interactions with the HDAC1 active site.

The ADDRR pharmacophore hypothesis was then employed as alignment rule to derive the
3D-QSAR model. In this step, the compounds were randomly divided into training (70%) and test
sets (30%) taking into account that the response range was well-covered in both sets (Table S1).
This choice was made to warrant the inclusion of the positive information originating from 70% of the
compounds enclosed in the training set (corresponding to 259 compounds), for the development of
the computational tool. Moreover, the compounds kept in the test set (30%, 111 compounds) ensures
an appropriate assessment of the predictive power of the generated model through an exhaustive
internal validation. The atom-based version of Phase’s 3D-QSAR workflow was preferred to the
pharmacophore-based one. Such a choice allowed us to take into account contributions associated
with all the important structural features other than pharmacophore for HDAC1 inhibitory activity
such as the steric clashes. To enhance the model accuracy and evade overfitting phenomenon, models
containing one up to seven factors were generated for the studied data set. Statistical parameters for
each model are provided in Table 2. Model featuring seven factors was preferred and selected because
it better performed in comparison with other models. The reliability of the selected model is justified
by the fact that all statistical parameters were in acceptable range. In this regard, the correlation and
cross-validated correlation coefficients (R2 = 0.958 and Q2 = 0.822, respectively) of the selected model
along with the Pearson R-value (R-Pearson = 0.915) were extremely satisfactory, indicating a close
correspondence between estimated and experimental IC50 values. Moreover, the high Fisher ratio
(F = 822.1) suggested a statistically significant regression model, which was further supported by the
small value of the variance ratio (P = 4.377 × 10−169), an indication of a high degree of confidence.
Finally, the small values of the standard deviation and the root-mean-square error (SD: 0.178 and RMSE:
0.281, respectively) also provided indication about the robustness of the developed computational
model. Moreover, the Q2

F3 value clearly indicates that the 3D-QSAR model with seven factors is robust.

Table 2. 3D-QSAR statistical parameters of the seven Latent Variables (LVs) Phase-derived sets
of models.

LVs R 2a SD b F c P d RMSE e Q 2f Q2
F3

g R-Pearson h

1 0.3408 0.6978 132.9 4.699 × 10−22 0.5199 0.3886 0.635 0.6747
2 0.6273 0.5257 215.5 1.344 × 10−55 0.3979 0.6420 0.791 0.8282
3 0.7620 0.4209 272.2 3.629 × 10−79 0.3615 0.7045 0.823 0.8579
4 0.8775 0.3025 455.0 1.704 × 10−144 0.3514 0.7207 0.833 0.8690
5 0.9159 0.2512 551.0 9.327 × 10−134 0.2971 0.8004 0.881 0.9003
6 0.9433 0.2067 698.6 6.590 × 10−134 0.2865 0.8143 0.890 0.9100
7 0.9582 0.1778 822.1 4.377 × 10−169 0.2808 0.8217 0.894 0.9152
aR2: value of r2 of the regression. bSD: standard deviation of the regression. cF: variance ratio. dP: significance
level of variance ratio. eRMSE: root-mean-square error in the test set predictions. fQ2: value of Q2 for the predicted
activities. gQ2

F3: value of Q2
F3

: for the predicted activities calculated as reported in Materials and Methods section.
hR-Pearson: correlation between the predicted and observed selectivity index values for the test set.

A scatter plot of experimental versus predicted activities was generated to assess the results
(Figure 4). Based on this plot, the IC50 values were reliably predicted for both training and test set
molecules (Table S1). This plot along with the aforementioned statistical features clearly imply the
significance of the approach and indicate a QSAR model with a robust predictive power.
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Figure 4. Scatter plot for the predicted (Phase-predicted activity) and the observed (experimental
activity) pIC50 values (µM) as calculated by the 3D-QSAR model applied to the training set (blue) and
test set (cyan) compounds.

Three-dimensional aspects obtained from the QSAR model were visualized using 3D plots of the
crucial volume elements occupied by ligands. Such plots allow the visual analysis of important features
of ligand structures along with their contributions to the biological activity. The 3D plot representation
of the whole model, superimposed to the highly (3, 10, and 13), moderate (22, 213, and 239), and less
active derivatives (218, 279, and 299), is depicted in Figure 5. In this illustration, the blue and red cubes
indicate the positive and negative coefficients, respectively. In fact, blue cubes refer to ligand regions
in which the specific feature is important for better activity, whereas the red cubes are indicative of
a particular structural feature or functional group which is not essential for the activity or is likely
to decrease the activity. Cubes with small positive and negative coefficients, which therefore did not
greatly affect the activity, were filtered out by setting a 1.50 × 10−2 coefficient threshold. Remarkably,
compounds 10 and 13 (Figure 5A,B, respectively) as well as other highly active ligands, mainly lodge
in the blue regions, while the less active compounds such as 218 and 299 (Figure 5G,I, respectively)
largely resides on the red regions. Moreover, regarding some compounds with moderate activity and
generally all compounds with limited activity, we also observed a significant inability to match all the
pharmacophore features, according to the decrease of inhibitory potencies.



Molecules 2020, 25, 1952 9 of 20
Molecules 2020, 25, x 9 of 20 

 

 
Figure 5. (A–C) Superposition of highly active compounds 3, 10, and 13, respectively with the 3D-
QSAR model. (D–F) Superposition of moderate active compounds 22 (Mocetinostat), 213, and 239, 
respectively with the 3D-QSAR model. (G–I) Superposition of less active compounds 218, 279, and 
299, respectively with the 3D-QSAR model. The picture was generated by means of Maestro software 
(Schrödinger, LLC, New York, NY, USA, 2015). 

2.3. In Silico 3D-QSAR Model Validation 

2.3.1. Validation Using External Test Set 

After the generation of the 3D-QSAR model, a preliminary in silico validation was performed 
using an external test set selected from the literature that have not been used for generating the 
computational model. This set was composed of 113 compounds with different inhibitory activities 
against HDAC1 (ranging from 5.8 nM to 1140 nM; Table S2 in the Supplementary Materials). As 
reported in Table S2, our model was satisfactorily efficient in estimating the HDAC1 inhibitory 
activity of compounds included in the external test set. In the scatter plot depicted in Figure 6, the 
experimental and predicted pIC50 values of these compounds are also displayed, offering a reasonable 
correlation coefficient (r2ext_ts = 0.794). This result provided further confirmation that the correlation 
shown by the model is not accidental. 

 
Figure 6. Scatter plot for the predicted (Phase-predicted activity) and observed (experimental activity) 
pIC50 values (µM) as calculated by the 3D-QSAR model with 7 factors applied to the external test set. 

Figure 5. (A–C) Superposition of highly active compounds 3, 10, and 13, respectively with the 3D-QSAR
model. (D–F) Superposition of moderate active compounds 22 (Mocetinostat), 213, and 239, respectively
with the 3D-QSAR model. (G–I) Superposition of less active compounds 218, 279, and 299, respectively
with the 3D-QSAR model. The picture was generated by means of Maestro software (Schrödinger, LLC,
New York, NY, USA, 2015).

2.3. In Silico 3D-QSAR Model Validation

2.3.1. Validation Using External Test Set

After the generation of the 3D-QSAR model, a preliminary in silico validation was performed using
an external test set selected from the literature that have not been used for generating the computational
model. This set was composed of 113 compounds with different inhibitory activities against HDAC1
(ranging from 5.8 nM to 1140 nM; Table S2 in the Supplementary Materials). As reported in Table S2,
our model was satisfactorily efficient in estimating the HDAC1 inhibitory activity of compounds
included in the external test set. In the scatter plot depicted in Figure 6, the experimental and predicted
pIC50 values of these compounds are also displayed, offering a reasonable correlation coefficient
(r2

ext_ts = 0.794). This result provided further confirmation that the correlation shown by the model is
not accidental.
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2.3.2. Validation Using Decoy Set and Receiver-Operating Characteristic (ROC) Curve Approach

For a further validation and to assess the performance of the developed 3D-QSAR model, we
employed a validation method based on generation of decoys set. This procedure is usually employed
to evaluate the capability of in silico tools such as 3D-QSAR models to discriminate between active
or inactive molecules [71–75]. Starting from highly active compounds (ligands 1–20 in Table S1),
86 additional compounds with good activity against HDAC1 (cutoff IC50 < 35 nM; Tables S1 and S2)
were selected from the training, test and external validation sets for a total of 106 compounds (Table S3)
from which decoys were generated. For this set of active ligands, DUD-E server generated 5764 decoys.
After an appropriate minimization and conformational search of decoys, we have combined them
with the active molecules (referred as A in Figure 7A) for a total of 5870 compounds (referred as D
in Figure 7A) that were then subjected to a virtual screening using the developed 3D-QSAR model.
Interestingly, the results of this evaluation supported the validity of the proposed model. Analysis
of the database screening results (Figure 7A) indicated a trend in which inactive compounds fail to
completely satisfy all the pharmacophore features, thus making their predicted activity very poor
or absent. In contrast, the 3D-QSAR model was reasonably efficient in the estimation of HDAC1
inhibitory activity of active compounds.
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According to the screening results (Figure 7A), the top 30 ranked compounds were considered to
be hits (Ht). This cutoff value could represent a suitable number of molecules (about 1% of database) to
be purchased after a virtual screening campaign. Remarkably, among Ht, 26 (Ha) compounds belonged
to the set of 106 known HDAC1 inhibitors. Furthermore, this qualitative analysis was well supported
by the calculation of some statistical parameters such as EF and GH score (see Materials and Methods
section for calculation details). In this regard, the calculated EF was 48.33, which implies that it could
be about 48.33 times more probable to select active compounds from the hit list compared with random
selection from the complete database. The estimated GH score value of 0.71, larger than 0.5, indicates
a great reliability of the model (Figure 7A). This suggests that the developed computational model
can serve as efficient tool in virtual screening studies to find out novel chemical entities behaving as
selective HDAC1 inhibitors.

The applicability of the proposed 3D-QSAR model was further evaluated by means of the
receiver-operating characteristic (ROC) curve. The ROC curve approach is a well-recognized metric
used as an objective way to assess the balance between model sensitivity (capability to discover
true positives) and specificity (capability to avoid false positives) [55,57,76,77]. For this purpose,
5870 compounds employed in the previous validation step, were ranked according to their predicted
activity values as estimated by the 3D-QSAR model. The output of the ROC curve provided a score for
appraising the overall performance of the model. In particular, the closer the ROC score is to 1.0, the
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better is the model at discriminating active from inactive compounds. ROC curve analysis of our in
silico model yielded a satisfactory Area Under the Curve (AUC) score of 0.94 (Figure 7B), providing
additional evidence about the predictivity of the developed 3D-QSAR model.

3. Materials and Methods

3.1. Hardware and Software Specifications

All computational tasks in this study were carried out using molecular modeling package from
Schrödinger suite 2015 (Schrödinger, Inc., LLC, New York, NY, USA) installed on an Intel(R) Xeon(R)
CPU E5-2620 v2 @ 3.30 GHz, 64 GB RAM with 12 processors, and a 2GB graphics card of NVIDIA
Quadro K2200 running Ubuntu 10.04 LTS (long-term support) as operating system. Access to the
Schrödinger modules as well as the capability to organize and analyze data was provided by Maestro
as a portal interface of Schrödinger [78].

3.2. Ligands and Data Set Preparation

A comprehensive set of HDAC1 inhibitors characterized by the 2-aminophenylbenzamide scaffold
with known IC50 values that vary over a wide range was collected from the literature [66,67,79–92] and
the bindingDB database [93]. The selection criterion for the compounds to be included in the set was
that their HDAC1 inhibition was evaluated using the same fluorescent assay based on the fluorogenic
substrate Fluor-de-Lys. This inclusion criterion allowed us to obtain a homogeneous set of compounds
regarding their biological evaluation. This step is crucial to develop a predictive model since the data
selection is pivotal for adding the correct information to a software for developing computational models.
The 3D structures of all ligands were built using the builder panel in the Maestro. For the molecules
possessing known stereochemistry, the absolute configuration was specified during the drawing of the
compounds. All structures were treated by LigPrep module of Schrödinger suite 2015 [94] in order to
generate the most probable ionization state at the cellular pH value (7.4 ± 0.2) as reported by us [95–97].
Moreover, the OPLS-AA_2005 force field was used for optimization, which produces the lowest energy
conformer of the ligand [98]. The prepared ligands were then submitted to MacroModel software [99]
in order to obtain an exhaustive conformational analysis using the OPLS-AA_2005 as force field.
The solvent effects are simulated employing the analytical Generalized-Born/Surface-Area (GB/SA)
model [100], and no cutoff for non-bonded interactions was selected. Molecular energy minimizations
were performed using Polak–Ribiere conjugate gradient (PRCG) method with 2000 maximum iterations
and 0.001 gradient convergence threshold. The conformational searches were carried out by employing
MCMM (Monte Carlo Multiple Minimum) torsional sampling method. Automatic setup with 21 kJ/mol
(5.02 kcal/mol) in the energy window for saving structure and a 0.5 Å cutoff distance for redundant
conformers was used.

3.3. 3D-QSAR Model Generation

The software package Phase 4.2 [101], implemented in Maestro suite, was used to
generate pharmacophore hypotheses and 3D-QSAR models for HDAC1 inhibitors based on
2-aminophenylbenzamide scaffold. Given a set of molecules with high affinity for a particular protein
target, this software uses fine-grained conformational sampling and a range of scoring techniques to
identify a common-features pharmacophore hypothesis, which conveys 3D structural characteristics
that are critical for the activity. Pharmacophore feature sites for the molecules were specified by
a set of features well-defined in Phase as hydrogen-bond acceptor (A), hydrogen-bond donor (D),
hydrophobic group (H), negatively charged group (N), positively charged group (P) and aromatic ring
(R). No user-defined feature was employed for the present study. The ligands prepared as reported
in the previous step, were imported into the “develop common pharmacophore hypotheses” panel
of Phase with their respective biological activity values. Twenty active compounds (Figure 2 and in
Table S1 in the Supplementary Materials) possessing highly inhibitory potency against HDAC1 were
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selected for generating the pharmacophore hypotheses. Common-features pharmacophore hypotheses
were identified, scored, and ranked by means of conformational analysis and tree-based partitioning
techniques. In the score hypotheses step, common pharmacophores are examined, and a scoring
procedure is applied to identify the pharmacophore from each surviving n-dimensional box that yields
the best alignment of the active set ligands. This pharmacophore provides the means to explain how
the active molecules bind to the receptor.

The best ranked pharmacophore model obtained by Phase (ADDRR, shown in Figure 3A
superimposed to aminophenylnicotinamide analogue 13), consisted of five features: one hydrogen-bond
acceptor (A), two hydrogen-bond donors (D), and two aromatic functions (R). The inter-feature distances
(Figure 3B) were measured by using the site measurements tool implemented in the software Phase.
This pharmacophore was used as alignment rule for further 3D-QSAR analysis. All the molecules used
for the QSAR studies (Table S1) were aligned to the selected pharmacophore hypothesis. In the present
study, we set a pIC50 threshold for the selection of active and inactive ligands. These pIC50 values were
also used as the dependent variable in the 3D-QSAR calculations. In particular, compounds that showed
an IC50 comprised between 5 and 50 µM were considered to be inactive ligands. Moderate inhibitors
were considered compounds with IC50 between 10 nM and 5 µM, while compounds possessing an
IC50 ≤ 10 nM were assigned as potent inhibitors of HDAC1 and consequently as actives during
3D-QSAR model generation. Remarkably, to avoid possible faults arising from the inclusion in the set
of molecules with uncertain activity, only molecules with experimentally definite inhibitory activity
have been selected to develop the in silico model. Atom-based QSAR models were developed for
ADDRR hypothesis using 259 compounds in the training set (370 compounds were randomly divided
70% in the training and 30% in the test set) and a grid spacing of 0.5 Å. QSAR models were generated
by means of PLS method. An internal validation was achieved employing leave-n-out (LnO) technique
as specified in Phase user manual (Phase, version 4.2, User Manual, Schrödinger press, LLC, New York,
NY, 2015). As reported by Todeschini et al. the internal validation results generally expressed in terms
of Q2 metrics should be amended introducing Q2

F3 metrics for the internal validation of the QSAR
models [102]. For this purpose, we calculated these metrics (Table 2) employing the formula reported
below (Equation (1)).

Q2
F3 = 1−

∑nOUT
i = 1 (yi − ŷi/i)

2/nOUT∑nTR
i = 1

(
yi − yTR

)2
/nTR

(1)

where yi is the experimental response of the ith object, ŷi/i is the predicted response when the ith
object is not in the training set, nTR and nOUT are the number of training and prediction objects,
respectively, and ȳTR is the average value of the training set experimental responses. Moreover, to avoid
overfitting/underfitting phenomena, we considered 7 factors that is an appropriate for the number of
selected compounds. In fact, although there is no limit on the maximum number of factors, but as a
general rule, we stopped adding factors when the standard deviation of regression is approximately
equal to the experimental error (calculated as median error among the selected compounds).

3.4. In Silico 3D-QSAR Model Validation

After the generation of the 3D-QSAR model, a preliminary in silico validation was performed using
a large external test set of compounds (113 molecules) selected from the literature [83,84,89,103–106]
(Table S2 in the Supplementary Materials) that have not been used for generating and cross validating
the model. These compounds were prepared by using Maestro, LigPrep, and MacroModel, adopting
the same procedure for preparing the molecules used to derive the model. Moreover, to further assess
that the chosen model with 7 factors better performs with respect to the other Phase-derived models,
we applied the validation method employing the external test set to all the generated QSAR models
(Table 2). This workflow established that the model with 7 factors is the best performing model of
the series in predicting the activity of the external test set with a correlation coefficient r2

ext_ts = 0.794
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(Figure 6) (LVs 1, r2
ext_ts = 0.421; LVs 2, r2

ext_ts = 0.698; LVs 3, r2
ext_ts = 0.657; LVs 4, r2

ext_ts = 0.712;
LVs 5, r2

ext_ts = 0.735; LVs 6, r2
ext_ts = 0.787; Figures S1–S6, respectively).

Further validation of the model was done by enrichment study using decoy test [107]. For this
purpose, the Enhanced (DUD-E) web server [108] was employed to generate a set of useful decoys
generated from a collection of 106 active compounds from three sources: 1) active compounds used to
develop the pharmacophore model, 2) other compounds with good activity against HDAC1 used in
3D-QSAR studies and 3) the most active compounds of the external test set. This collection consisted
of 106 active compounds with IC50 ≤ 35 nM (Table S3). For this set of active ligands, the DUD-E server
provided 5764 inactive ligands (redundant structures in the output files were deleted) from a subset of
the ZINC database filtered using the Lipinski’s rules for drug-likeness, for a total of 5870 compounds
(5764 inactives plus 106 actives). Each of these inactive decoys was selected to bear a resemblance
to the physicochemical properties of the reference ligand but differ from it in terms of 2D structure
(e.g., large difference of Tanimoto coefficient between decoys and active molecules). Although largely
used, the approach based on decoys sets presents some limitations (i.e., the decoy sets often span a
small, synthetically feasible subset of molecular space and are restricted in physicochemical similarity
compared with actives). After the generation, the decoys sets were downloaded as 126 smiles files
and imported into Maestro and submitted to LigPrep application to properly convert smiles into
3D structures as well as for removing potential erroneous structures. Subsequently, to perform a
minimization and a conformational search of the obtained structures MacroModel program was
employed (same parameters for ligands preparation were applied). A single file containing conformers
of active molecules and decoys was created and submitted to Phase software for predicting the
inhibitory activity of database against HDAC1 using the developed 3D-QSAR model and employing
“search for matches” option. After decoys generation and activity evaluation, the Güner–Henry score,
i.e., goodness of hit list (GH) and enrichment factor (EF) values were estimated by Equations (2)
and (3), respectively.

EF =
Ha/Ht
(A/D)

(2)

GH =

{
Ha ∗ (3A + Ht)

4HtA

}
∗

[
1−

(Ht−Ha)
(D−A)

]
(3)

where Ht represents the total number of compounds in the hit list found by virtual screening, Ha is the
total actives found by virtual screening considering the top 30-ranked position (positions comprise
within the cutoff value). The total number of compounds (Ht) might represent the number of molecules
to purchase after a virtual screening protocol and almost the 1% of the considered database (D).
A represents the total of the active derivatives enclosed in the database, and D stands for the total
number of molecules existing in the set. The range of GH score varies from 0 to 1. The GH score 0
means a null model, while the GH score 1 denotes generation of an ideal model. Moreover, the % yield
of actives (% YA) and % ratio of actives (% RA) were evaluated by Equations (4) and (5), respectively.

%YA =
[(Ha

Ht

)
∗ 100

]
(4)

%RA =
[(Ha

A

)
∗ 100

]
(5)

Moreover, to assess the predictive power of the 3D-QSAR model, a ROC was employed through
an Enrichment Calculator (enrichment.py) script [55–57,76]. The mentioned script calculates the
enrichment metrics, including area under the receiver-operating characteristic curve (AUC), from
virtual screening by means of the output structure file and a list of known active molecules. The output of
the screening protocol, using active molecules and decoys, consisted of a list of molecules ranked by the
predicted activity from the top-predicted molecules as estimated by the 3D-QSAR model. These ranking
data along with a list file of active molecules were submitted to the enrichment.py application.
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4. Conclusions

The present study describes the generation of a ligand-based pharmacophore model (ADDRR)
for a subset of 20 highly active aminophenylbenzamide derivatives reported as selective HDAC1
inhibitors by employing the software Phase implemented in the Schrödinger molecular modeling suite.
With the aid of pharmacophore-based alignment rule, a meaningful 3D-QSAR model was derived and
validated employing of the QSAR models a large set of benzamide-based HDAC1 inhibitors (training
set, test set, and an external test set for a total of 483 molecules) by using PLS analysis. The main
objective of this approach was to develop an in-house computational tool for the prediction of HDAC1
inhibitory activity during the design of innovative aminophenylbenzamide chemotypes as privileged
therapeutic scaffold in the isoform-selective HDACIs research. The validation outcomes confirmed
that the proposed 3D-QSAR model is endowed with satisfactory predictive power taking into account
favorable structural requirements responsible for HDAC1 inhibitory activity. This aspect has been
computationally investigated since the selectivity is implicit in the template molecules; however
prospective validation is needed to exploit the performance of the model. In fact, the developed
3D-QSAR model can be used for rationally designing novel and selective HDACIs. Moreover, based
on the computational investigation, the developed model possesses a rationale for virtual screening
campaign, with huge potential in isoform-selective HDACIs drug discovery, and it can effectively
provide a set of guidelines for the design and optimization of novel derivatives with greater activity
towards HDAC1.

Supplementary Materials: The following are available online, Table S1: Experimental (Observed column) and
predicted (Predicted column) activity pIC50 for compounds used for developing the 3D-QSAR model., Table S2:
Experimental (Observed column) and predicted (Predicted column) activity pIC50 for compounds included in the
external test set, Table S3: Active compounds used for generating a decoys set, Figures S1–S6: Scatter plots for all
the model generated by Phase.
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