

MDPI

Supplementary Information file for the manuscript:

Oxidative Dehydrogenation of Propane over Vanadium-Containing Faujasite Zeolite

Małgorzata Smoliło¹, Katarzyna Samson¹, Ting Zhou^{1,2}, Dorota Duraczyńska¹, Małgorzata Ruggiero¹, Agnieszka Drzewiecka-Matuszek¹ and Dorota Rutkowska-Zbik^{1,*}

- ¹ Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Krakow, Poland; ncsmolil@cyf-kr.edu.pl; ncsamson@cyf-kr.edu.pl; ncduracz@cyf-kr.edu.pl; nbruggie@cyf-kr.edu.pl; ncmatusz@cyf-kr.edu.pl; nczbik@cyf-kr.edu.pl
- ² Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, 30-155 Krakow, Poland; tingzhou1995@yahoo.com
- * Correspondence: nczbik@cyf-kr.edu.pl; Tel.: +48-12-639-5160 (D. R.-Z.)

Table S1. Elemental composition of the selected catalyst samples obtained from the energy-dispersive X-ray spectroscopy.

Sample	O [wt%]	Al [wt%]	Si [wt%]	V [wt%]
V _{1.0} FAUdes	76.6	1.2	21.3	0.9
V _{3.0} FAUdes	67.4	0.8	27.1	2.4
V _{5.0} FAU	68.9	0.7	37.7	3.7

SAMPLE	Tr [°C]	Flow	Conv	S сзн6 [%]	Sc2H4 [%]	Sco2 [%]	Sco [%]
		[ml/min]	[%]				
V _{1.0} FAU		30	5.8	34.7	0.8	43.8	20.7
0.5ml/0.5ml	400	60	2.7	36.1	0.7	48.8	14.3
quartz/catalyst		90	4.4	49.1	0.9	36.4	13.6
		30	8.6	24.6	1.0	47.9	26.4
	450	60	7.7	33.7	1.0	42.9	22.5
		90	7.2	41.6	0.9	39.1	18.4
		30	18.1	14.4	3.0	50.7	31.8
	500	60	15.6	22.6	2.2	46.1	29.1
		90	15.6	22.6	2.2	46.2	29.1

Table S2. Results of the catalytic tests for the V1.0FAU sample.

Table S3. Results of the ca	atalytic tests for the V3.0FAU sample.
-----------------------------	--

SAMPLE	Tr [°C]	Flow	Conv	Scзн6 [%]	Sc2H4 [%]	Sco2 [%]	Sco [%]
		[ml/min]	[%]				
V _{3.0} FAU		30	5.1	30.3	0.5	43.2	26.0
0.5ml/0.5ml	400	60	21.7	39.9	0.5	38.4	21.1
quartz/catalyst		90	17.0	46.3	0.4	31.3	21.9
		30	11.5	22.0	0.9	47.4	29.8
	450	60	13.0	29.9	0.6	43.3	26.1

	90	8.8	37.5	0.5	35.6	26.4
	30	27.7	12.1	2.5	51.1	34.3
500	60	26.3	18.9	1.8	46.8	32.4
	90	19.4	24.5	1.3	42.2	31.9

Table S4. Results o	f the catalytic tests	for the V6.0FAU sample.	

SAMPLE	T _r [°C]	Flow	Conv	Sсзн6 [%]	Sc2H4 [%]	Sco2 [%]	Sco [%]
		[ml/min]	[%]				
V6.0FAU		30	12.0	16.7	0.3	59.6	23.4
0.5ml/0.5ml	400	60	20.1	28.9	0.3	47.4	23.4
quartz/catalyst		90	8.0	26.3	0.2	54.4	19.1
		30	18.9	10.9	0.8	64.2	24.1
	450	60	14.7	19.6	0.4	54.8	23.2
		90	12.8	18.9	0.5	58.9	21.7
		30	39.1	41.7	1.9	36.9	19.6
	500	60	40.4	9.9	2.5	61.5	26.1
		90	30.9	13.1	2.5	58.8	26.1

Table S5. Results of the catalytic tests for the $V_{1.0}FAUdes$ sample.

SAMPLE	Tr [°C]	Flow	Conv	SC3H6	Sc2h4	Sco2 [%]	Sco [%]
		[ml/min]	[%]	[%]	[%]		
V1.0FAUdes		30	1.7	13.8	0.4	69.2	16.5
0.5ml/0.5ml	400	60	4.4	35.8	0	50.5	13.6
quartz/catalyst		90	10.9	22.5	0	66.7	10.8
		30	1.5	13.8	0.5	64.6	21.1
	450	60	3.7	24.8	0.6	57.4	17.2
		90	3.4	31.0	0.5	57.7	10.8
		30	18.1	14.4	3.0	50.7	31.8
	500	60	15.6	22.6	2.2	46.1	29.1
		90	15.6	22.6	2.2	46.2	29.1

Table S6. Results of the cataly	ic tests for the V3.0FAUdes sample.
---------------------------------	-------------------------------------

SAMPLE	Tr [°C]	Flow	Conv	Scзн6 [%]	Sc2H4 [%]	Sco2 [%]	Sco [%]
		[ml/min]	[%]				
V _{3.0} FAUdes		30	9.4	28.2	0.4	42.3	29.1
0.5ml/0.5ml	400	60	6.5	37.1	0.5	37.4	25.0
quartz/catalyst		90	14.1	34.1	0.2	36.6	29.0
		30	16.7	19.1	0.9	47	33.0
	450	60	5.7	26.7	0.6	41.6	31.1
		90	10.2	41.2	0.9	39.6	57.3

	30	27.0	11.2	2.3	49.4	37.1
500	60	24.2	16.6	1.8	45.4	36.2
	90	25.7	19.5	1.6	41.8	37.1

SAMPLE	T _r [°C]	Flow	Conv	Scзн6 [%]	Sc2H4 [%]	Sco2 [%]	Sco [%]
		[ml/min]	[%]				
V6.0FAUdes		30	2.6	45.1	0	49.6	6.1
0.5ml/0.5ml	400	60	4.2	60.1	0	31.8	8.1
quartz/catalyst		90	9.5	63.6	0	22.3	14.2
		30	6.1	46	0.1	40.8	13.1
	450	60	4.4	51.6	0.2	35.9	12.4
		90	8.9	65	0.3	19.0	15.8
		30	20.2	31.9	0.2	46.3	21.7
	500	60	11.9	43.5	0.2	39.1	17.3
		90	8.7	56.8	0.3	27.1	15.9

Table S7. Results of the catalytic tests for the $V_{6.0}FAUdes$ sample.

Table S8. Comparison of the initia	al catalytic performance of the	e studied samples with the	eir activity after 40h (T
------------------------------------	---------------------------------	----------------------------	---------------------------

SAMPLE		Conv [%]	S сзн6 [%]	Sc2H4 [%]	Sco2 [%]	Sco [%]
V1.0FAU	1 st run	7.7	33.7	1.0	42.9	22.5
	after 40h	7.5	28.5	0.9	42.8	27.7
V _{3.0} FAU	1 st run	13.0	29.9	0.6	43.3	26.1
	after 40h	8.1	3.2	0.6	43.0	26.2
V6.0FAU	1 st run	14.7	19.6	0.4	54.8	23.2
	after 40h	53.4	4.9	3.5	65.8	25.7
V _{1.0} FAUdes	1 st run	3.7	24.8	0.6	57.4	17.2
	after 40h	4.6	20.0	0.5	63.4	15.8
V _{3.0} FAUdes	1 st run	5.7	26.7	0.6	41.6	31.1
	after 40h	17.1	35.3	0.5	38.9	25.3
V6.0FAUdes	1 st run	4.4	51.6	0.2	35.9	12.4
	after 40h	6.0	47.7	0.1	42.3	9.9

= 450 °C, flow 60 ml/min).

Figure S1. Theoretical (TD-DFT: PBE/def2-TZVP) UV-VIS spectrum of the VO(OH)₃ complex, in which vanadium is located in the tetrahedral environment.

Figure S2. Theoretical (TD-DFT: PBE/def2-TZVP) UV-VIS spectrum of the VO(OH)₄⁻ complex, in which vanadium is located in the square pyramid environment.

Figure S3. Theoretical (TD-DFT: PBE/def2-TZVP) UV-VIS spectrum of the $VO(OH)_{5^{2-}}$ complex, in which vanadium is located in the octahedral environment.

Figure S4. Exemplary IR spectra of the studied samples.

Figure S5. NH₃-TPD profiles for the VxFAU (a) and VxFAUdes (b) series.