Supplementary Information

Rational design, synthesis, characterization and evaluation of iodinated 4,4'-

bipyridines as new transthyretin fibrillogenesis inhibitors

Alessandro Dessì,^a Paola Peluso,^{a,*} Roberto Dallocchio,^a Robin Weiss,^b Giuseppina Andreotti,^c Mariateresa Allocca,^{c,d} Emmanuel Aubert,^e Patrick Pale,^b Victor Mamane,^{b,*} and Sergio Cossu^f

 ^a Istituto di Chimica Biomolecolare ICB-CNR, Sede secondaria di Sassari, Traversa La Crucca 3, Regione Baldinca, 07100 Li Punti - Sassari, Italy
 ^b Institut de Chimie de Strasbourg, UMR CNR 7177, Equipe LASYROC, 1 rue Blaise Pascal, 67008 Strasbourg Cedex, France
 ^c Istituto di Chimica Biomolecolare ICB-CNR, Via Campi Flegrei 34, 80078 Pozzuoli (NA), Italy
 ^d Università degli Studi della Campania "Luigi Vanvitelli", Italy
 ^e Cristallographie, Résonance Magnétique et Modélisations (CRM2), UMR CNRS 7036, Université de Lorraine, Bd des Aiguillettes, 54506 Vandoeuvre-les-Nancy, France
 ^f Dipartimento di Scienze Molecolari e Nanosistemi DSMN, Università Ca' Foscari Venezia, Via Torino 155, 30172 Mestre Venezia, Italy

Table of contents

S1.	Computation of $V_{\rm S}$ on a 0.002 au isosurface, and related parameters.	
	Calculation of conformer distribution (vacuum) for compounds 7-10	2
S2.	Molecular docking	7
S3.	NMR spectra	11
S4.	HPLC enantioseparations	17
S5.	Electronic circular dicroism (ECD) spectra of pure enantiomers of compounds 7-10	22
S6.	Absolute configuration assignment	24
S7.	Inhibition of WT-TTR in the presence of (M) -9 and (P) -9 tested at different concentrations	28

S1. Computation of $V_{\rm S}$ on a 0.002 au isosurface, and related parameters. Calculation of conformer distribution (vacuum) for compounds 7-10

Table S1

Calculated $V_{\rm S}^{\rm a}$ on a 0.002 au isosurface and molecular geometrical parameters^b for polyhalogenated 4,4'-bipyridines **1-6**: $V_{\rm S}$ (kJ/mol), surface volume (Å³), surface area (Å²), length (Å), width (Å).

		_			legenda -224.50 kJ/mc	295.80
engin	7 9	6	8	9	9	~
1		2	3	4	5	6
			polyhalogenated	4,4'-bipyridine		
Descriptor	1	2	3	4	5	6
			$V_{ m S,min}$			
N1	-121.66	-118.39	-117.07	-122.39	-120.87	-121.34
N1'	-121.72	-118.31	-117.19	-122.43	-120.87	-127.35
			$V_{ m S,max}$			
Pyr	72.30;73.32	96.37;96.58	89.13;89.43	85.66;87.46	88.23;89.22	82.36;82.66
Pyr'	72.06;73.57	95.97;96.43	88.96;89.36	85.33;87.18	87.81;88.95	71.01;71.10
2-X	133.42 (I)	75.00 (Cl)	140.83 (I)	71.08 (Cl)	72.93 (Cl)	136.83 (I)
2'-X	133.53 (I)	75.04 (Cl)	140.93 (I)	70.96 (Cl)	72.97 (Cl)	
3-X	157.39 (I)	101.00 (Cl)	96.38 (Cl)	166.62 (I)	96.57 (Cl)	92.06 (Cl)
3'-X	157.22 (I)	101.09 (Cl)	96.18 (Cl)	166.71 (I)	96.56 (Cl)	88.36 (Cl)
5-X	158.79 (I)	101.59 (Cl)	98.81 (Cl)	96.30 (Cl)	167.02 (I)	94.38 (Cl)
5'-X	158.70 (I)	101.83 (Cl)	98.79 (Cl)	96.44 (Cl)	167.06 (I)	88.48 (Cl)
		molecu	lar geometrical para	umeters		
Volume	373.43	277.07	309.37	309.02	309.54	275.77
Area	336.11	269.89	296.41	289.75	292.52	267.82
Length	9.13	8.51	9.26	8.62	8.49	8.29
Width	6.17	5.45	5.45	5.82	5.83	5.47

^a Computation of $V_{\rm S}$ on a 0.002 au isosurface and related parameters were performed by using Gaussian 09 (DFT, B3LYP, 6-311G*) (Wallingford, CT 06492, USA). Search for the exact location of $V_{\rm S,min}$ and $V_{\rm S,max}$ was made through the Multiwfn code, and through its module enabling quantitative analyses of molecular surfaces (isovalue 0.002). ^b Spartan' 10 Version 1.1.0 graphic interface.

Calculated V_S^a on a 0.002 au isosurface and molecular geometrical parameters^b for Tafamidis and Thyroxyne (T₄) (from crystal structure, PDB ID:11CT)^c: V_S (kJ/mol), surface volume (Å³), surface area (Å²), length (Å), width (Å).

^a Computation of $V_{\rm S}$ on a 0.002 au isosurface and related parameters were performed by using Gaussian 09 (DFT, B3LYP, 6-311G*) (Wallingford, CT 06492, USA). Search for the exact location of $V_{\rm S,min}$ and $V_{\rm S,max}$ was made through the Multiwfn code, and through its module enabling quantitative analyses of molecular surfaces (isovalue 0.002). ^b Spartan' 10 Version 1.1.0 graphic interface.^c A. Wojtczak, P. Neumann, V. Cody, Acta Cryst. D57 (2001) 957-967

Calculated^a distribution, pattern and properties of conformations A and B of 4,4'-bipyridines **7-9**: energy (au), Boltzmann distribution (%), a-b-c-d and a'-b'-c'-d' dihedral angles (°).

hinsmiding	Carfornation	n Energy (au) Boltzmann distribution (%)	Poltzmann distribution (0/)	Dihedral angles (°)		
olpynallie	Conformation		a-b-c-d	a'-b'-c'-d'		
7	А	-9483.96542	49.5	-95.48	-44.23	
	В	-9483.96544	50.5	-91.70	42.25	
8	А	-9500.00498	49.3	-95.32	-44.29	
	В	-9500.00503	50.7	-91.71	42.22	
9	А	-9559.20517	53.4	-95.29	-36.87	
	В	-9559.20504	46.6	-93.96	38.31	

^a Spartan' 10 Version 1.1.0 (Wavefunction Inc., Irvine, CA), DFT/B3LYP/6-311G*.

Table S4

Calculated^a distribution, pattern and properties of conformations A-F of 4,4'-bipyridine **10**: energy (au), Boltzmann distribution (%), a-b-c-d and a'-b'-c'-d' dihedral angles (°).

Conformation		Poltzmann distribution (0/)	Dil	Dihedral angles (°)		
Conformation	Energy (au)	Boltzmann distribution (%)	a-b-c-d	a'-b'-c'-d'		
А	-9367.42227	47.3	-89.07	-0.06		
В	-9367.42178	28.2	-96.20	2.07		
С	-9367.42164	24.2	-86.15	2.85		
D	-9367.41699	0.2	-87.58	112.16		
Е	-9367.41697	0.2	-93.92	-111.62		
F	-9367.41264	0.0	-87.69	1.12		

^a Spartan' 10 Version 1.1.0 (Wavefunction Inc., Irvine, CA), DFT/B3LYP/6-311G*.

Calculated $V_{\rm S}^{\rm a}$ on a 0.002 au isosurface and molecular geometrical parameters ^b	of for conformations A and B of 2'-aryl-3,3',5,5'-tetrachloro-
2-iodo-4,4'-bipyridines 7-9: $V_{\rm S}$ (kJ/mol), surface volume (Å ³), surface area (Å ²),), length (Å), width (Å).

kJ/mol

conformations 'B'

	7	8		9		
Descriptor	А	В	А	В	А	В
$V_{ m S,min}$						
N1	-125.92	-125.99	-118.03	-118.13	-128.57	-128.66
N1'	-130.81	-131.06	-111.87	-112.30	-128.33	-128.32
N _{pyr} (8)			-172.86	-172.98		
<u>O</u> H (9)					-110.62	-110.46
			$V_{ m S,ma}$	x		
Pyr	75.08;75.55	75.13;75.56	86.71;86.80	86.13;86.39	71.91;72.37	71.59;71.65
Pyr'	60.25;61.02	60.07;61.32	79.95;80.75	80.13;81.13	53.43;54.36	53.88;55.43
2-I	132.78	131.97	140.56	139.85	130.12	129.82
2'-Ar	-35.70;-40.09	-36.15;-39.53	4.56;7.75	5.12;7.55	-26.85;-30.92	-27.46;-30.78
O <u>H</u> (9)					296.14	295.80
3-Cl	88.39	86.16	98.37	96.20	84.76	83.83
3'-Cl	79.01	78.89	93.65	93.61	75.07	74.63
5-Cl	88.57	90.67	98.53	100.24	86.30	87.35
5'-Cl	82.29	82.06	95.24	94.95	78.39	78.25
			molecular geometri	ical parameters		
Volume	358.28	358.28	353.10	353.11	366.97	366.96
Area	340.63	340.76	336.43	336.57	349.24	349.22
Length	12.07	12.21	11.13	11.23	13.12	13.02
Width	5.44	5.44	5.44	5.44	5.44	5.44

^a Computation of $V_{\rm S}$ on a 0.002 au isosurface and related parameters were performed by using Gaussian 09 (DFT, B3LYP, 6-311G*) (Wallingford, CT 06492, USA). Search for the exact location of $V_{\rm S,min}$ and $V_{\rm S,max}$ was made through the Multiwfn code, and through its module enabling quantitative analyses of molecular surfaces (isovalue 0.002). ^b Spartan' 10 Version 1.1.0 graphic interface.

Calculated $V_{\rm S}^{\rm a}$ on a 0.002 au isosurface and molecular geometrical parameters^b for conformations A-F of 4,4'-bipyridine **10**: $V_{\rm S}$ (kJ/mol), surface volume (Å³), surface area (Å²), length (Å), width (Å).

Descriptor	A-C	D	E	F	
		$V_{ m S,min}$			
N1	-116.33	-118.65	-118.94	-124.90	
N1'	-29.12	-119.60	-119.71	-224.50	
2'-CH ₂ OH	-173.85	-158.94	-159.72	(-224.50)	
		$V_{ m S,max}$			
Pyr	89.45;89.94	85.21;86.96	84.47;86.94	75.91;78.20	
Pyr'	84.64;84.80	66.02;74.63	65.88;75.15	56.77;57.11	
2-I	141.60	139.35	138.69	133.51	
2'-CH ₂ O <u>H</u>	145.47	217.77	216.51	256.70	
3-Cl	98.33	96.49	90.77	87.57	
3'-Cl	98.34	106.50	106.57	89.70	
5-Cl	100.71	93.19	98.43	90.14	
5'-Cl	96.41	90.00	89.68	78.22	
		molecular geometric	cal parameters		
EPS _{volume}	303.13	303.80	303.82	303.79	
EPS _{area}	292.78	292.86	292.88	293.78	
Length	9.80	9.22	9.66	10.46	
Width	5.47	5.46	5.46	5.46	

^a Computation of $V_{\rm S}$ on a 0.002 au isosurface and related parameters were performed by using Gaussian 09 (DFT, B3LYP, 6-311G*) (Wallingford, CT 06492, USA). Search for the exact location of $V_{\rm S,min}$ and $V_{\rm S,max}$ was made through the Multiwfn code, and through its module enabling quantitative analyses of molecular surfaces (isovalue 0.002). ^b Spartan' 10 Version 1.1.0 graphic interface.

Figure S1. V_S molecular isosurfaces (0.002 au) calculated for (P) and (M) enantiomers of 9, T₄, and Tafamidis.

S2. Molecular docking

Table S7

Parameters used for the extra point (ExP) of charge (X = Cl, I).^a

Mass ExP	0.00 amu
r (ExP)	1.00 Å
ε (ExP)	0.00 Å
$r_{\rm eq}$ (Cl-ExP)	1.00 Å
$r_{\rm eq}$ (I-ExP)	1.60 Å
K_r (X-ExP)	600.0
Θ_{eq} (A-X-ExP)	180.0°
K_{θ} (A-X-ExP)	150.0
γ (A-A-X-ExP)	0.00°
V_n (A-A-X-ExP)	0.00

^a a) P. Peluso, V. Mamane, E. Aubert, A. Dessì, R. Dallocchio, A. Dore, P. Pale, S. Cossu, J. Chromatogr. A 1467 (2016) 228–238; b) M.A.A. Ibrahim, J. Mol. Model. 18 (2012) 4625-4638; c) M. Kolar, P. Hobza, K. Bronowska, Chem.Commun. 49 (2013) 981-983.

Table S8				
Blind docking results ^a	targeting poses	found in the	T ₄ binding	pockets. ^b

bipyridine	binding energy range (all poses) [kcal/mol]	T ₄ docking score (binding energy [kcal/mol])	Interacting aminoacid residues
<i>M</i> -1	-5.43 / -4.73	0	
P-1	-5.00 / -4.63	0	
<i>M</i> -2	-5.45 / -4.36	8% (-5.45)	B:Leu110 B:Thr119 B:Lys15 B:Leu17
			D:Ala108 D:Ala109 D:Leu110 D:Ser117 D:Thr119 D:Lys15 D:Leu17
P- 2	-5.26/-4.37	12% (-5.26)	B:Leu110 B:Thr119 B:Lys15 B:Leu17
			D:Ala108 D:Ala109 D:Leu110 D:Ser117 D:Thr119 D:Lys15 D:Leu17
M- 3	-6.14 / -4.42	12% (-6.14)	B:Ala109 B:Leu110 B:Ser117 B:Thr119 B:Lys15 B:Leu17
			D:Thr106 D:Ala108 D:Leu110 D:Thr119 D:Lys15 D:Leu17
		5% (-6.11)	B:Leu110 B:Thr119 B:Val121 B:Leu17
			D:Ala108 D:Leu110 D:Ser117 D:Thr119 D:Lys15 D:Leu17
		4% (-5.44)	A:Leu110 A:Ser117 A:Thr119 A:Lys15 A:Leu17
			C:Thr106 C:Ala108 C:Ala109 C:Leu110 C:Thr119 C:Val121 C:Lys15
			C:Leu17
P- 3	-5.75 / -4.58	3% (-5.75)	B:Ala109 B:Leu110 B:Ser117 B:Thr119 B:Lys15 B:Leu17
			D:Ala108 D:Leu110 D:Thr119 D:Lys15 D:Leu17
		6% (-5.18)	A:Ala108 A:Leu110 A:Ser117 A:Thr119 A:Lys15 A:Leu17
			C:Ala108 C:Ala109 C:Leu110 C:Thr119 C:Lys15 C:Leu17
<i>M</i> - 4	-5.34 / -4.47	5% (-5.15)	B:Ala109 B:Leu110 B:Thr119 B:Lys15 B:Leu17
			D:Ala108 D:Ala109 D:Thr119 D:Lys15 D:Leu17
P- 4	-4.89 / -4.84	0	
М-5	-5.65 / -4.45	0	
P- 5	-5.10 / -4.42	1% (-4.93)	B:Ala109 B:Leu110 B:Thr119 B:Val121 B:Lys15 B:Leu17
			D:Ala108 D:Ala109 D:Thr119 D:Lys15 D:Leu17
6	-5.50 / -5.51	3% (-5.50)	B:Ala109 B:Leu110 B:Ser117 B:Thr119 B:Lys15 B:Leu17
			D:Ala108 D:Leu110 D:Thr119 D:Lys15 D:Leu17
		4% (-5.47)	B:Leu110 B:Thr119 B:Leu17
			D:Ala108 D:Leu110 D:Ser117 D:Thr119 D:Lys15 D:Leu17

^a AutoDock 4.2.6 was employed as docking program, and the software Chimera 1.13.1 for the graphical representation of the poses derived from the docking calculation. ^b TTR structure released from crystal structure, PDB ID:1ICT (A. Wojtczak, P. Neumann, V. Cody, Acta Cryst. D57 (2001) 957-967).

Ding	EEED ^a	EIC K ^b	Interactions with amine axide	distan	ce [Å]
ыру	E.F.E.B.	E.I.C., K _i	Interactions with amino acids	HB, D: Lys15'	XB, D: Ser117'
(10) 1	4.50	420.20	B: Ala109, Leu110, Lys15, Leu17	1.0	
(11)-1	-4.39	430.30	D: Thr106, Ala108, Thr119, Lys15, Leu17	1.9	
(D) 1	4.01	1000 16	B: Ala109, Leu110, Thr119, Val121, Lys15, Leu17	2.1	
(P)-1	-4.01	1000.10	D: Ala108, Thr119, Lys15, Leu17	2.1	
(\mathbf{M})	5 72	64.06	B: Leu110, Thr119, Lys15, Leu17		
(11)-2	-3.72	04.00	D: Ala108, Ala109, Leu110, Ser117, Thr119, Leu17		
(D)	5.62	75 91	B: Ala109, Leu110, Thr119, Lys15, Leu17		
(<i>F</i>)-2 -5.02 75.81	75.81	D: Ala108, Ala109, Leu110, Ser117, Thr119, Lys15, Leu17			
(10) 3 6.56 15	15 65	B: Leu110, Thr119, Val121, Leu17	26	34(10)	
(11)-3	-0.50	15.05	D: Ala108, Leu110, Ser117, Thr119, Lys15, Leu17	2.0	5.4 (10)
	42.60	B: Ala109, Leu110, Ser117, Thr119, Lys15, Leu17	23		
(1)-3	(P)- 3 -5.96 42.09		D: Ala108, Leu110, Thr119, Lys15, Leu17	2.3	
(M)	5 44	102 50	B: Ala109, Leu110, Thr119, Lys15, Leu17		
(1/1)-4	(11)-4 -3:44 102.39		D: Ala108, Ala109, Leu110, Thr119, Lys15, Leu17		
(\mathbf{D})	5.26	129.27	B: Ala109, Leu110, Thr119, Lys15, Leu17	2.0	
(1)-4	-5.20	158.27	D: Ala108, Thr119, Lys15, Leu17	2.0	
(14) 5	5 56	02.05	B: Ala109, Leu110, Thr119, Lys15, Leu17,		
(11)-5	-5.50	65.65	D: Ala108, Ala109, Leu110, Ser117, Thr119, Lys15, Leu17		
(D) 5	5.26	119.50	B: Ala109, Leu110, Thr119, Val121, Lys15, Leu17	26	
(P)- 5	-3.30	118.52	D: Ala108, Thr119, Lys15, Leu17	2.0	
6	5.02	44.92	B: Leu110, Thr119, Leu17	26	24(1 0)
6 -5.93		44.82	D: Ala108, Leu110, Ser117, Thr119, Lys15, Leu17	2.6	5.4 (10)

Table S9	
Docking results for 4,4'-bipyridines $1-6$ in the T ₄ binding pocket.	

^a E.F.E.B. Estimated Free Energy of Binding [kcal/mol]. ^b E.I.C., K_i Estimated Inhibition Constant, K_i [μ M].

Figure S2. Blind docking poses of compounds (*M*)-3 (a) and 6 (b) on the whole TTR (molecules found in the T_4 binding pockets are coloured in green).

Figure S3. Comparison of the docked pose of T_4 (pale yellow) into TTR (BD: T_4 binding pocket) with the crystallographic structure of T_4 (released from PDB ID: 1ICT) (green).

Figure S4. Linear regression analysis describing the relationships between FF% and calculated EFEB by docking in the T_4 pocket (BD): WT-TTR at 7.2 μ M (a) and 3.6 μ M (b) of inhibitor concentration, and (c) Y78F at 3.6 μ M of inhibitor concentration.

Figure S5. ¹H NMR spectrum of 3,3',5,5'-tetrachloro-2-iodo-4,4'-bipyridine (6).

Figure S6. ¹³C NMR spectrum of 3,3',5,5'-tetrachloro-2-iodo-4,4'-bipyridine (6).

Figure S7. ¹H NMR spectrum of 3,3',5,5'-tetrachloro-2-iodo-2'-phenyl-4,4'-bipyridine (7).

Figure S8. ¹³C NMR spectrum of 3,3',5,5'-tetrachloro-2-iodo-2'-phenyl-4,4'-bipyridine (7).

Figure S9. ¹H NMR spectrum of 3,3',5,5'-tetrachloro-2-iodo-2'-(4-pyridyl)-4,4'-bipyridine (8).

Figure S10. ¹³C NMR spectrum of 3,3',5,5'-tetrachloro-2-iodo-2'-(4-pyridyl)-4,4'-bipyridine (8).

Figure S11. ¹H NMR spectrum of 3,3',5,5'-tetrachloro-2-iodo-2'-(4-tert-butyldimethylsilyloxyphenyl)-4,4'-bipyridine (14).

Figure S12. ¹³C NMR spectrum of 3,3',5,5'-tetrachloro-2-iodo-2'-(4-tert-butyldimethylsilyloxyphenyl)-4,4'-bipyridine (14).

Figure S13. ¹H NMR spectrum of 3,3',5,5'-tetrachloro-2-iodo-2'-(4-hydroxyphenyl)-4,4'-bipyridine (9).

Figure S14. ¹³C NMR spectrum of 3,3',5,5'-tetrachloro-2-iodo-2'-(4-hydroxyphenyl)-4,4'-bipyridine (9).

Figure S15. ¹H NMR spectrum of 3,3',5,5'-tetrachloro-2-iodo-2'-hydroxymethyl-4,4'-bipyridine (10).

Figure S16. ¹³C NMR spectrum of 3,3',5,5'-tetrachloro-2-iodo-2'-hydroxymethyl-4,4'-bipyridine (10).

S4. HPLC enantioseparation

Table S10

Optimized multimilligram enantioseparation of 4,4'-bipyridines 7-10¹.

Віру	Racemate (mg)	absolute con	figuration (ee% ²)	recovered amounts (mg) (recovery%)	
		1 st eluted peak (pk)	2 nd eluted peak	1 st eluted peak	2 nd eluted pk
7	30.0	P (>99)	M (>95.7)	14.0 (93.3)	14.9 (99.3)
8	13.3	P (>99)	M (>99)	5.9 (88.7)	6.6 (99.2)
9	18.0	P (>99)	M (>99)	7.4 (82.2)	8.7 (96.7)
10	26.0	P (>99)	M (>95.6)	12.2 (93.8)	11.1 (85.4)

¹ Mobile phase: *n*-hexane/2-propanol 90:10 (7 and **10**), *n*-hexane/2-propanol/methanol 90:5:5 (**8** and **9**), T = 22°C. Flow rate (*FR*): 0.5 ml/min (7) and 0.8 ml/min (**8-10**).

² Enantiomeric excess (ee) determined by chiral HPLC under the same conditions used for recoveries.

Signal 2: DAD1 D, Sig=220,16 Ref=360,100

Peak RetTime Type Width Area Height Area% # [mAU*s] [mAU] [min] [min] 9.041 BB 0.2179 110.37134 1.33176 2.1778 1 2 10.121 BB 0.2763 5068.02100 270.86273 97.8835

(P)-**8**

Signal 2: DAD1 D, Sig=220,16 Ref=360,100								
Peak	RetTime	Туре	Width	Area	Height	Area%		
#	[min]		[min]	[mAU*s]	[mAU]			
1	11.935	BB	0.3232	3927.70581	180.99869	100.0000		

(*M*)-**8**

 Signal 2: DAD1 D, Sig=220,16 Ref=360,100

 Peak
 RetTime
 Type Width
 Area
 Height
 Area%

 #
 [min]
 [min]
 [mAU*s]
 [mAU]

 ------ ------- ------- ------ ------

 2
 16.376
 BB 0.4824
 5122.97998
 159.64221
 100.0000

Figure S18. Enantioseparation of rac-8 on Chiralcel OD-H, n-hexane/2-propanol/MeOH 90:5:5, FR 0.8 ml/min, 220 nm.

(P)-**9**

Signal 2: DAD1 D, Sig=220,16 Ref=360,100 Peak RetTime Type Width Area Height Area% # [min] [min] [mAU*s] [mAU] 1 13.308 BB 0.3114 4108.83350 198.56049 100.0000 (M)-**9** Signal 2: DAD1 D, Sig=220,16 Ref=360,100 Peak RetTime Type Width Area Height Area% # [min] [min] [mAU*s] [mAU] 2 16.460 BB 0.3732 3207.65356 128.52205 100.0000

Figure S19. Enantioseparation of rac-9 on Chiralpak IA, n-hexane/2-propanol/MeOH 90:5:5, FR 0.8 ml/min, 220 nm.

(*P*)-10

Signal 2: DAD1 D, Sig=220,16 Ref=360,100								
Peak	RetTime	Туре	Width	Area	Height	Area%		
#	[min]		[min]	[mAU*s]	[mAU]			
1	10.147	BB	0.2952	3034.07813	154.44859	100.0000		

(*M*)-10

Signal 2: DAD1 D, Sig=220,16 Ref=360,100							
Peak	RetTime	Тур	e Width	Area	Height A	Area%	
#	[min]		[min]	[mAU*s]	[mAU]		
		· ·			-		
1	10.241	BB	0.3126	54.99158	2.60178	2.2158	
2	11.303	BB	0.3366	2426.77661	107.82089	97.7842	

Figure S20. Enantioseparation of rac-10 on Chiralcel OD-H, n-hexane/2-propanol 90:10, FR 0.8 ml/min, 220 nm

S5. Electronic circular dicroism (ECD) spectra of pure enantiomers of compounds 7-10

Figure S21. Experimental ECD spectra for the enantiomers of compound 7.

Figure S22. Experimental ECD spectra for the enantiomers of compound 8.

Figure S23. Experimental ECD spectra for the enantiomers of compound 9.

Figure S24. Experimental ECD spectra for the enantiomers of compound 10.

S6. Absolute configuration assignment

Absolute configurations were obtained by comparison of experimental and theoretical electronic circular dichroism spectra [1]. Molecular conformations of bipys **7-10** were explored at the Density Functional Theory level of theory, using the CAM-B3LYP functional (completed with GD3 Grimme dispersion corrections [2]) and the aug-cc-pVTZ basis set for all atoms (including a pseudo-potential for Iodine) taken from EMSL library [3]. Solvent effects (ethanol) were taken into account through a PCM model. Frequency calculations, done at the same level of theory, proved that true energy minima were obtained for each conformer and Gibbs free energies were used to calculate populations based on Boltzmann statistics. ECD spectra were then obtained for each conformer by TD-DFT calculations (48 excited states, same functional, basis set & solvent modeling; half-width at half-height of 0.3 eV) and final spectra were simulated for each 4,4'-bipyridine by weighting the individual conformer spectra with the Boltzmann populations previously calculated.

Compound 7					
	Conf1	Conf2			
G a.u.	-2859.798926	-2859.798929			
ΔG (k/mol)	0.01	0.00			
Population%	0.499	0.501			

Compound 8					
	Conf1	Conf2			
G a.u.	-2875.853328	-2875.853323			
ΔG (k/mol)	0.00	0.01			
Population%	0.501	0.499			

Compound 9						
	Conf1	Conf2	Conf3	Conf4		
G a.u.	-2935.033585	-2935.033576	-2935.033592	-2935.033611		
$\Delta G (k/mol)$	0.07	0.02	0.05	0.00		
Population%	0.247	0.251	0.249	0.254		

Compound 10						
	Conf1	Conf2	Conf3			
G a.u.	-2743.37346	-2743.37349	-2743.37845			
$\Delta G (k/mol)$	13.09	13.01	0.00			
Population%	0.005	0.005	0.990			

- Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2013.
- [2] S. Grimme, J. Antony, S. Ehrlich and H. Krieg, A consistent and accurate ab initio parameterization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu, J. Chem. Phys. 132 (2010) 154104.
- [3] B.P. Pritchard, D. Altarawy, B. Didier, T.D. Gibson, T.L. Windus, A new basis set exchange: an open, up-to-date resource for the molecular sciences community, J. Chem. Inf. Model. 59 (2019) 4814-4820.

Figure S25. Comparison of measured and calculated ECD spectra for (P)-7.

Figure S26. Comparison of measured and calculated ECD spectra for (P)-8.

Figure S27. Comparison of measured and calculated ECD spectra for (P)-9.

Figure S28. Comparison of measured and calculated ECD spectra for (P)-10.

S7. Inhibition of WT-TTR in the presence of (M)-9 and (P)-9 tested at different concentrations

Figure S29. WT-TTR (3.6 μ M) was incubated in the presence of different concentrations of (*M*)-9 (orange line) and (*P*)-9 (grey line) and the % of fibril formation (FF%) under acidic conditions was measured under standard conditions. Diffunisal (blue line) was also tested as a term of comparison.