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Abstract: Designing peptide inhibitors of the p53-MDM2 interaction against cancer is of wide interest.
Computational modeling and virtual screening are a well established step in the rational design
of small molecules. But they face challenges for binding flexible peptide molecules that fold upon
binding. We look at the ability of five different peptides, three of which are intrinsically disordered,
to bind to MDM2 with a new Bayesian inference approach (MELD×MD). The method is able to
capture the folding upon binding mechanism and differentiate binding preferences between the five
peptides. Processing the ensembles with statistical mechanics tools depicts the most likely bound
conformations and hints at differences in the binding mechanism. Finally, the study shows the
importance of capturing two driving forces to binding in this system: the ability of peptides to adopt
bound conformations (∆Gcon f ormation) and the interaction between interface residues (∆Ginteraction).

Keywords: IDP 1; binding 2; molecular dynamics 3; MELD×MD 4; advanced sampling 5;
p53 6; MDM2 7

1. Introduction

Peptide molecule inhibitors have the potential to bind to proteins classified as “un-
druggable” by small molecules thanks to their flexibility and complementary nature to
proteins [1,2]. Rational drug design of small molecules via computational tools (e.g.,
docking of virtual libraries) is a common practice in the drug discovery process. However,
these tools are not well suited to handle the flexible nature of peptide molecules, many of
which are intrinsically disordered and only adopt stable structures in the presence of their
binding partners [3].

Modeling the binding of flexible molecules continues to be a grand challenge in com-
putational structure prediction. In recent years, with the increase of peptide therapeutics in
the market there has been a continuous development and adaptation of docking tools to
capture protein-peptide interactions [3,4]. Docking programs address the flexibility of pep-
tides by two main routes: (1) using homology models, PDB (Protein Data Bank)structural
motifs, or other sources of structures for docking [5–8]; and (2) provide peptide flexibility
for folding upon binding [9–14]. Initial peptide conformations for docking could come
from computationally expensive molecular dynamics (MD) simulations of the free peptide.
However, many such peptides are intrinsically disordered (IDP), limiting their use [7].
Full exploration of folding upon binding through standard molecular dynamics becomes
too computationally demanding [15], requiring advanced sampling strategies to efficiently
sample the energy landscape.

In this work, we take a look at binding and free-peptide ensembles (simulating the
peptide in isolation) for different peptides to better understand the nature of the p53-
MDM2 interaction. p53 is called the guardian of the genome, triggering programmed
death (apoptosis) when cells misbehave. MDM2 down-regulates p53 limiting its tumor
suppressor activity. Thus, inhibitors of the p53-MDM2 and the closely related MDMX
interaction have long been a cancer drug target [16–18]. Multiple studies of the native

Molecules 2021, 26, 198. https://doi.org/10.3390/molecules26010198 https://www.mdpi.com/journal/molecules

https://www.mdpi.com/journal/molecules
https://www.mdpi.com
https://orcid.org/0000-0001-6076-2187
https://orcid.org/0000-0002-5054-5338
https://doi.org/10.3390/molecules26010198
https://doi.org/10.3390/molecules26010198
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/molecules26010198
https://www.mdpi.com/journal/molecules
https://www.mdpi.com/1420-3049/26/1/198?type=check_update&version=3


Molecules 2021, 26, 198 2 of 20

interaction [19–22] and the ability to design inhibitors that simultaneously block MDM2 and
MDMX [23–25] provide a wealth of data to assess new computational tools. Since binding
simulations are more computationally demanding than free peptide simulations, our goal
is to identify peptide properties that might make the peptide a better binder–leading to
faster computational screening of peptide therapeutics.

The p53-MDM2 interaction is characterized by three hydrophobic residues (Phe19,
Trp23 and Leu26) from the peptide which anchor into a deep cavity in MDM2. In order for
the three hydrophobic residues to align with the pocket, the p53 epitope adopts a helical
conformation. This is in contrast with the IDP nature of the peptide in isolation. We use
noisy information to guide binding using our previously developed Bayesian inference
approach (MELD×MD [26]) to identify the subset of data that is most compatible with
the force field and the resulting bound conformations (see Figure 1). To further test the
methodology, we simulated five different peptides, including the peptide epitope from
p53, two inhibitors, and two alanine-based peptides that we do not expect to be good
binders, as control. The work highlights the ability of molecular dynamics tools to capture
the two driving forces behind binding: preferences of the peptides to adopt bound-like
conformations and the use of binding simulations to differentiate binding preferences.

Figure 1. Outline of the MELD×MD setup. We start with the peptide far from MDM2 (system).
We use noisy information to favor sampling of binding/unbinding events (middle panel). A statistical
mechanics of the posterior distribution coming from the MELD ensemble identifies conformations
that are most consistent with the force field and a subset of the data, and we compare these to the
experimental structure.

2. Results
2.1. Free Peptide Simulation Ensembles Show the IDP Nature of p53

We simulated five peptides in their free form (see Methods and Table 1), capturing their
intrinsic degree of disorder. All peptides are able to visit multiple states with short life times.
A 2D-RMSD clustering of the ensemble reveals many clusters with low populations for
the p53 and two control peptides, consistent with their intrinsically disordered nature (see
unrestrained Molecular Dynamics (MD) column in Table 2). The peptide pdiq adopts stable
helix conformations for a significant amount of time, while ATSP-7041 is an outlier in this
analysis, adopting very stable helical conformations due to the presence of a chemical staple.
We used these simulations to define a common reference frame to compare simulations for
all peptides in their free and binding simulations (see Methods). Each peptide ensemble
was projected onto the corresponding eigenvectors that showed a good separation between
helical and non-helical states—as those are the states required for binding (see left panels
in Figures 2 and A1–A4). Clustering on the space defined by the top 14 eigenvectors shows
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that only ATSP-7041 and, to a lesser extent, pdiq adopt stable helical structures—consistent
with the IDP nature of the other three peptides.

Figure 2. Comparison of the conformational space for free peptide versus binding simulations for the ATSP-7041 pep-
tide. (a) The peptide ensembles are projected onto the third and fifth tICA eigenvectors common to all five peptides.
(b) The metastable states sampled for the free peptide. (c) Top clusters by population from MELD×MD binding simulations.

Table 1. Peptides used in the current work. Bold letters represent the anchoring residues.

Name Sequence

p53 S Q E T F S D L W K L L P E N
pdiq E T F E H W W S Q L L S
Ala1 A A F A A A W A A L A A
Ala2 A A A A A A A A A A A A

ATSP-7041 ACE L T F R8 E Y W A Q Cba S5 S A A NHE
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Table 2. Populations for peptides in free and MELD binding simulations. Clustering is done on the
lowest temperature replica using hierarchical clustering with ε = 1.5 .

Name Peptide Population (% Top Cluster)

Unrestrained MD MELD×MD MELD×MD
(Peptide Align) (Protein Align)

p53 0.6 70.6 46.1
pdiq 24.0 97.6 95.3
Ala1 1.4 54.7 16.0
Ala2 0.2 31.3 17.5

ATSP-7041 69.5 97.8 91.6

2.2. MELD×MD Simulations Balance Exploration and Exploitation of the Binding
Energy Landscape

Figure 3 provides a visual outlook on the binding process explored by the MELD×MD
replica exchange procedure in terms of the relative position of the peptide with respect the
protein and the peptide’s intrinsic conformational preferences. At high replica indexes,
the force constants for the restraints are set to zero and the temperature is high (see
methods). In these conditions, the peptide samples conformations far away from the active
site, distributed uniformly around the protein. During the binding process, the MDM2
flexibility allows for the opening and closing of the binding cavity (see right panel in
Figure A5). As the replica index decreases, the temperature decreases and the biasing
restraints towards the protein become active, producing a frustrated energy landscape.
Under these conditions, the peptide samples conformations on the surface of the protein,
identifying early on the MDM2 hydrophobic pocket as the most likely region for binding.
Sampling is concentrated in the binding pocket at the lowest replica. Thus, at the highest
replica, the protocol favors full exploration of the energy landscape, while, at the lowest
replica, it favors full exploitation by sampling around a particular binding region near
the protein. The nature of MELD×MD enhances binding/unbinding events by allowing
replicas to explore different Hamiltonian and temperature conditions, leading to a different
balance of exploration and exploitation [27,28].

2.3. Peptides Become More Structured in Proximity to MDM2

MELD×MD binding simulations show a higher fraction of helical conformations for
all peptides with respect to their free simulations (see middle column in Table 2). However,
the increase in helical content for the peptide is not always associated with binding at
the correct binding site (right column in Table 2). A 2D-RMSD clustering calculation
on all replicas (see Figures 4 and A6) reveals the funneled nature of binding for three
peptides. We can identify three broadly defined regions in the funneling plots based on the
RMSD distribution: between 0–5 Å (high accuracy binding), 5–15 Å (pre-bound), ∼15–30 Å
(misbound), and a fourth region for unbound conformations sampled by higher replicas
(see Figure A5). All five peptides identify the binding pocket as the binding site, but the
two control sequences bind through multiple backbone conformations with little structural
preference. ATSP-7041 exhibits the most funneled behavior, rapidly converging onto a large
high accuracy native-like cluster. Both pdiq and p53 exhibit a similar behavior, in which
all three regions are explored even at the lower replicas, with funneling to one major state.
For p53, the native configuration is sampled, but is not identified as the most populated
cluster. The observed binding mode introduces a kink in the backbone between the helical
and non-helical region that is not observed in the experimental structure. The control
Ala1 sequence contains the three anchoring residues present in p53, but exhibits a binding
profile more similar to control Ala2, which lacks the anchoring residues. Thus, the control
sequences show that the MELD×MD setup is not over-constraining the peptide to bind
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in the binding pocket or in the binding conformation, and large cluster populations are
reflective of significant binding.

Figure 3. MELD×MD simulations explore unbound states, and different possible binding regions of
p53 on the surface of the protein. The left panel shows a superposition of all peptide conformations
(heavy atoms of each conformation are drawn as orange dots) sampled at different replicas. The right
panel shows the internal backbone RMSD of the peptide with respect the experimental conformation
versus the RMSD of the peptide when aligning to the protein.

We compare all peptide binding ensembles on equal footing by projecting them on
the same eigenvector space as the free peptides. Figure 2 compares the free peptide
ensemble with those produced from MELD×MD at the lowest/highest replica index
(bound/unbound) for ATSP-7041. The figure also shows the clusters arising from the free
peptide ensemble, as well as the highest population clusters, from the binding simulations.
The preferred conformation for ATSP-7041 in its free peptide is the same conformation
needed for binding, resulting in significant binding observed throughout the simulations.
A similar behavior is observed for pdiq, where the ensemble of the free peptide is larger
due to the absence of the chemical staple (see Figure A1). For the three IDP peptides
(see Figures A2–A4), the ensembles are even broader than for pdiq resulting in a larger
number of clusters. The free peptide clusters for these IDP peptides are low in population
and lack agreement with the preferred binding mode. However, in binding simulations
at low temperature, p53 explores a narrow conformational ensemble similar to pdiq and
very different from the broader ensembles sampled by the control sequences. For the two
control sequences, the minima of the free ensemble distribution is displaced with respect
to the three other peptides, disfavoring bound-like conformations, which result in broader
ensembles for the two control peptides during MELD×MD binding simulations.
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Figure 4. Funneling binding plot for the five peptides. Each dot corresponds to a cluster center from
a 2D-RMSD based on all replicas. The larger the circle the larger the population of the cluster. Each
circle is plotted at the average RMSD inside that cluster with respect to the native conformation
and the mode of the index replica in that cluster. The color code is green (RMSD < 5) or blue
(RMSD > 5) when the mode of the replica index is lower than 15, and red otherwise.

Complementary knowledge for the binding process emerges from looking at the
internal structure of the peptide (radius of gyration) with respect to the position of the
peptide to MDM2 (RMSD, see right column in Figures 3 and A7). At high replica index,
all peptides sample conformations far from the protein, with large fluctuations in the radius
of gyration (between 5 and 12 Å except for the ATSP-7041 peptide, where the chemical
staple prevents conformations with a radius of gyration above 9 Å). When binding in the
MDM2 hydrophobic pocket, the peptide adopts compact conformations with a radius of
gyration around 7 Å. This happens early in the binding process (higher replica index) for
the pdiq and ATSP-7041 peptides and is not observed for the Ala2 control due to the lack of
anchoring residues.

2.4. Helical Propensities Show Different Binding Patterns

The binding ensembles produce a higher helical content with respect to the free-
peptide simulations. Figure A8 shows the three anchoring residues to be predominantly
in helical conformations for pdiq and ATSP-7041. p53 is well known to make a helix in
the N-terminal region of the peptide which our simulations reproduce. The Ala1 control
sequence, which has three anchoring residues, is also able to adopt helical conformations,
to a lesser extent. The spacing of the anchoring residues in the sequence (residues i, i + 4
and i + 7) and the size of the binding site favor helical conformations for the simultaneous
interaction inside the active site. However, the Ala2 control, adopts very small amounts of
helical conformations for two of the three anchoring regions, consistent with the lack of
anchoring residues to stabilize those conformations. Not surprisingly, the peptides with
larger helical content also have narrower conformational ensembles at low replica index
(ATSP-7041 and pdiq), whereas p53, Ala1, and Ala2 have progressively larger ensembles at
the lowest temperature replica.

2.5. MDM2 Exhibits a sMall Conformational Change upon Binding

There is a small conformational rearrangement of the backbone (1.9 Å RMSD) between
the apo (unbound) and holo (bound) crystal structures (1z1m [29] and 1ycr [30], respec-
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tively), which opens up the cavity for binding. Sidechain rearrangement of the surface
residues happens on a faster timescale, changing the surface accessibility to the binding
cavity. In MELD×MD binding, the conformational freedom of MDM2 by using flat-bottom
harmomic restraints on the Cα around the holo structure to prevent unfolding in the replica
exchange ladder (see methods). At high temperatures, we find that the protein is sampling
conformations between 2–3.5 Åbackbone RMSD from the holo structure and a similar range
(2.5–4.0 Å) with respect to the apo MDM2 structure (see Figure A9). At low temperatures,
the thermal ensemble is narrower, with an RMSD in between 1 to 2 Åfrom the holo structure
and 2–4 Å from the apo structure. The presence of the peptide binding for a significant
amount of time to the active site further shifts the RMSD to lower values (see pdiq and
ATSP-7041 in Figure A9). There are no restraints on the sidechains, in which fluctuations
determine the open/closed state of the cavity. Reorientation of these sidechains is fast and
adapts to the presence of the peptide near the active site.

3. Discussion

The debate between conformational selection and induced fit mechanisms of binding
is being reconciled into a mixture of the two [7], with different balance of each depending
of the system. In the MDM2/p53 system, the protein undergoes a small conformational
change from its apo (unbound) to holo (bound) structure, whereas the IDP peptide folds
upon binding to the active site. MD simulations of the free p53 sequence shows its intrin-
sically disordered nature, with little propensity for helical conformations. Querying the
p53 binding motif in the PDB returns twelve structures, covering four different protein
targets: MDM2 [30], MDMX [20], p300 [31], and the CREB-binding protein [32]. In all cases,
the p53 N-terminal domain adopts a helical conformation, but with different sidechain
rotameric states [32]. Our binding simulations reproduce these trend, with the size of the
conformational ensemble considerably shrinking upon binding (see Figures A2 and A7).
Our MELD×MD simulations lose the kinetic information of binding, but, following a
particular replica as it goes up and down the replica ladder, we can observe the series
of events that lead to binding. In general, we observe a higher helical content for p53
near the protein surface, consistent with excluded volume effects [33]. The spacing of the
anchoring residues (i, i + 4 and i + 7), combined with the size of the hydrophobic pocket
favors binding in helical conformations. The funneling towards the binding site driven by
hydrophobic interactions in MELD responds to our knowledge that the hydrophobic an-
choring residues were vital for binding. Hydrophobic residues on the surface of the protein
are more likely in the active site, hence accelerating binding towards it. A different choice
of information (e.g., using polar residues) would have resulted in less directed sampling,
as polar and charged residues are frequent in the protein surface. Visual inspection shows
binding through different modes, with one of the hydrophobic residues anchoring in the
cavity and driving the rest; although the peptide does not bind as a helix, it quickly adopts a
partial helical structure (see Figure A8) consistent with experiments. The tryptophan seems
to be critical for adopting the correct experimental binding conformations: we observe
many instances of the peptide bound in the cavity as a helix with the bulky tryptophan
interacting with MDM2 hydrophobic sidechains not in the binding pocket, leading to kinks
in the backbone structure (see cluster 1 in Figure A2). These incorrect bindings have a long
life time in our simulations and require at least partial unbinding before correctly binding
according to the experimental motif, which, in our simulations, is sampled but is not the
predominant state.

The pdiq inhibitor binds experimentally with longer helical motifs covering all amino
acids. Analyzing PDB codes 1ycr and 3jzs reveals differences in the secondary structure
(using STRIDE [34] as incorporated in VMD (Visual Molecular Dynamics) [35]). The dif-
ference in helicity affects the last anchoring residue (leucine), which is in a coil rotameric
state for p53 and in a helical state for pdiq. Our simulations show that pdiq forms a signif-
icant amount of helix in its free form, which favors binding significantly in our binding
simulations (see Figures A1 and A8). For pdiq, we observe pre-binding in helical confor-
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mations, shifted with respect to the experimental binding site, and fast rearrangement of
the peptide, sometimes involving rapid helix unfolding and refolding in the binding site
leading to the experimental structure. The helical behavior is further accentuated for the
ATSP-7041 inhibitor, where all binding takes place through helical conformations thanks
to the chemical staple. Rearrangements in the active site involve displacements of the
alpha helix to allow better interaction of the alpha helices; this is done through partial
unbinding of the helix without loosing the helical character. Both control sequences access
the binding site unfolded and explore many possible conformations. Ala1 can sample
the helical conformations which favor strong binding as seen from the top clusters (see
Figure A3), but they have significantly lower population than the other three binding pep-
tides (see Figure 4). On the contrary, Ala2 has no anchoring residues and is rarely observed
adopting helical conformations in the binding site (see Figure A4). These observations
are supported by looking at the narrow conformational binding ensembles sampled at
the lowest temperature replica for the peptides that bind (see Figures 2, A1, and A2), in
contrast with the broader ensembles of the control peptides (see Figures A3 and A4). Taken
together, the results show that the anchoring residues are necessary to adopt the helical
conformations associated with good binding to MDM2 but not enough on their own to
promote this helical state.

The ensembles at different replica index depict the nature of the binding/unbinding
dynamics. The control peptides rapidly lose any memory of the bound conformation as
the replica index increases (see Figures A7 and A10). For the other three peptides, we
observe a bimodal distribution of states: for p53 centered at 2/4 Å and at 1/2 Å for pdiq and
ATSP-7041. As we increase the temperature in the replica ladder, the higher RMSD state
becomes more prevalent. By replica 20, all peptides are sampling broad distributions with
very low populations of the 1 RMSD state for the peptide, except for ATSP-7041, which,
due to the chemical staple, even at high temperatures can sample conformations close to the
bound conformation. However, at the highest replica, all peptides have lost memory of the
bound conformation. Overall, we can distinguish three regions: an unbound conformation
in which the peptide explores conformations far from its bound conformation, a pre-bound
conformation, and a bound conformation. Both pre-bound and bound conformation lock
the protein close to its holo conformation. For the poly-ala peptide, the bound state is rarely
seen, while, for the poly-ala with binding side-chains, it is easier but not the predominant
state. The pre-bound state for pdiq and ATSP-7041 is very close to the bound conformations,
while, for p53, it is further away.

The binding free energy can be separated into a contribution coming from the con-
formational preferences of the peptide and protein systems, as well as an interaction
contribution (∆Gbind = ∆Gcon f ormation + ∆Ginteraction), where ∆Gcon f ormation can further be

separated into the protein and peptide contributions (∆Gcon f ormation = ∆Gpeptide
con f ormation +

∆Gprotein
con f ormation). ∆Ginteraction is dictated by the specific interactions between the protein and

peptide, which, in this case, arises from the three anchoring residues highlighted in Table
1, as shown by alanine scan mutagenesis studies [25]. Given a force field, MELD×MD
samples multiple binding/unbinding events, effectively capturing both free energy con-
tributions, even if it cannot decompose the contribution of each. Using the same protocol
for all peptides allows us to identify differences in their binding preferences and peptide
conformations. The main advantage is that, in this process, the peptide is completely
flexible, free to adopt conformations in response to the environment. We observe the active
site changing in response to the presence—and conformation—of the peptide.

Our studies hint that the binding mechanisms for pdiq and ATSP-7041 both favor initial
binding as helices, with different mechanisms for rearrangement. Since kinetics are lost
in our replica exchange ladder, testing this hypothesis will require future work in which
the states discovered from our ensembles can be used for seeding unbiased simulations to
construct markov models that show the binding pathways [36–38]. The chemical staple
successfully increases the helical content, but it also plays a role in reducing side chain
rotamer freedom through the steric volume it occupies (see Figure A11). Thus, ATSP-7041 is
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predisposed to make helical conformations, and to establish the right interactions. Figure 2
shows only two clusters: a major cluster binding as a helix with the three anchoring
residues in the active site and a minor one with the staple in the active site. For pdiq, we
see a higher number of minor clusters (see Figure A1) exhibiting helical conformations, in
which at least one anchoring residue is not in the active site.

Thus, for accurate modeling of the p53-MDM2 interaction, we need to capture: (1) the
intrinsic peptide propensity to helical conformations and (2) type and alignment of the
anchoring residues inside the binding cavity. Peptides that, in their free form, favor helices
seem to favor binding (given the same interface residues) by reducing the ∆Gpeptide

con f ormation.
However, even when shifting the helical propensities, binding simulations are needed as
the binding mode can change (as we see for ATSP-7041 and pdiq).

4. Materials and Methods
4.1. Choice of Peptide Systems

We chose a set of five peptides for this study: the sequence from the p53 binding
epitope, two high affinity inhibitors (pdiq [39] and ATSP-7041) [25] and two control peptides,
based on the poly-Ala sequence (Ala1 and Ala2; see Table 1). Of the two control sequences,
Ala1 sequence conserves the set of hydrophobic residues that allow binding, and Ala2 does
not. ATSP-7041 is a stapled peptide using three non-standard amino acids, where one of
the three anchoring residues (Leucine) is substituted by a non-canonical amino acid.

For p53 and pdiq, we used crystal structures of the peptides binding to MDM2 (PDB
codes 1ycr [30] and 3jzs [39]. For ATSP-7041, we used the structure bound to MDMX (PDB
code 4n5t [25]) and superposed the active site onto MDM2 to have the reference structure
of the peptide on the active site of MDM2. For the two control peptides bases on poly-ALA,
there is no native structure. We compare it to the p53-MDM2 conformation for those two
peptides. Parameters for the ATSP-7041 peptide are derived from the general amber force
field (GAFF) [40], deriving charges based on the AM1 model [41].

4.2. Free Peptide Simulations

We used the ff14SB force field for amino acid sidechains [42] and the ff99SB force field
for backbone parameters [43], using the GBneck2 implicit solvent model (igb = 8) [44] to
improve sampling efficiency. We ran the simulations for 2 µs using hydrogen mass reparti-
tioning [45] with a 4fs timestep using the Amber molecular dynamics package [46]. A con-
cern with implicit solvents is the bias towards some secondary structure [47]. However,
this combination of force field with implicit solvent has shown to be reliable in reproducing
the folding of peptide and protein systems [44,48,49].

4.3. MELD×MD Binding Simulations

We ran 1 µs-long H,T-REMD simulations using OpenMM [50] with the MELD plu-
gin [26]. MELD allows us to incorporate noisy information to increase the sampling in
regions of interest [51,52]. In this case, our interest was in observing the peptide-protein
association. We required that there were at least five heavy-atom contacts between the three
anchoring residues in the peptide (F, W, and L in p53) and any other hydrophobic residue
in MDM2, andthe pool of possible contacts was selected from the combinatorics of both
sets. The restraints were imposed using flat-bottom harmonic restraints. The flat region
was defined as a pair of residues closer than 5 from each other, the restraints increased
quadratically up to 7 and linearly beyond, with a force constant of 250 J/K/mol. At every
timestep, all possible restraints are evaluated, sorted by energy, and only the lowest 5 in
restraint energy are used until the next timestep. In this way, no information is lost as the
simulation progresses.

The H,T-REMD protocol includes 30 replicas, where the change in Hamiltonian affects
the force constant of the restraints. The 30 replicas are mapped to a value of alpha (α)
between 0 (lowest replica) and 1 (highest replica). The Hamiltonian and temperature
have defined values of the restraint force constant and temperature as a function of alpha.
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The temperature increases geometrically from 300 K (α = 0) to 500 K (α = 0.5) and is kept
at this temperature for higher values of alpha. The force constants for the restraints is set to
0 J/K/nm2 at α = 1 and is gradually increased to the value of 250 J/K/nm2 for α ≤ 0.6.
Exchanges between active restraints are more likely at higher index replicas.

4.4. Clustering Analysis

We use 2D-RMSD hierarchical clustering using a single linkage scheme within cpp-
traj [53] and report the centroid structure of each cluster and its population as representative
of the clusters. We used the last 500ns of each replica, aligning on the protein (Cα and Cβ

atoms) and clustering on the overlapping peptide residues (Cα and Cβ atoms). For Figure 2,
the lowest temperature replica and all replicas for the clustering of the funnel plots, both
with ε =1.5. For those in Figures 2 and A1–A4, we increase ε to 2.0, to depict more
diverse clusters.

4.5. Projections Onto a Common Feature Space

We used pyEMMA [54] to featurize our system according to phi and psi dihedrals
by choosing a common set of residues on all peptide systems resulting in 22 dihedrals,
and we used dihedral shifting to reduce discontinuities in the distibution rather than
using sine and cosines on the dihedrals [55]. The ensembles from free p53, pdiq, and Ala1
were chosen as a common ensemble before dimensionality reduction of the system by
using time-independent coordinate analysis [56] with a lag time of 10 ns, from which we
extracted the top 14 eigenvectors that account for 95% of the variance. We then projected
each peptide ensemble (from free and bound simulations) into the top eigenvectors. Finally,
we performed clustering of the free peptide ensembles in the space defined by the top 14
eigenvectors to produce Figures 2 and A1–A4. Since the vectors were calculated for intrin-
sically disordered ensembles of the free form of the peptides, they are not representative
of the slowest transitions during the binding process, which we cannot extract from the
MELD-biased ensembles. Nonetheless, they provide a common set of vectors to represent
all free and bound peptide systems studied. For these plots, we decided to project onto the
third and fifth eigenvectors since these offered the best separation between clusters for the
relevant states during binding.

5. Conclusions

Predicting bound structures for IDP peptides that fold upon binding is a computational
grand challenge. We have shown that possible peptide inhibitors do not necessarily bind
with the same binding mode, requiring modeling approaches that allow identification
of the correct binding pose. The method successfully reproduces the binding of the two
inhibitors and the p53 epitope, while showing that the two control peptides are unsuccessful
binders. We further show that, by changing the intrinsic properties (e.g., helical propensity,
in this case), we can identify better binders; this simplifies the design of peptide inhibitors
into two distinct tasks: optimizing interface residues and optimize structural propensities.
The first task requires knowing the binding mode, and the second one can be assessed
by MD simulations on the free peptide, at a lower computational cost than the binding
simulations. Finally, we have shown that MELD×MD is a useful tool to handle flexible
binding and helps to ensure that the designed binders indeed bind and what their preferred
binding mode is.
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Appendix A

Figure A1. Comparison of the conformational space for free peptide versus binding simulations for the pdiq peptide.
(a) The peptide ensembles are projected onto two tICA eigenvectors common to all five peptides. (b) The metastable states
sampled for the free peptide. (c) Top clusters by population from MELD×MD binding simulations.

https://github.com/maccallumlab/meld
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Figure A2. Comparison of the conformational space for free peptide versus binding simulations for the p53 epitope.
(a) The peptide ensembles are projected onto two tICA eigenvectors common to all five peptides. (b) The metastable states
sampled for the free peptide. (c) Top clusters by population from MELD×MD binding simulations.
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Figure A3. Comparison of the conformational space for free peptide versus binding simulations for Ala1. (a) The peptide
ensembles are projected onto two tICA eigenvectors common to all five peptides. (b) The metastable states sampled for the
free peptide. (c) Top clusters by population from MELD×MD binding simulations.
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Figure A4. Comparison of the conformational space for free peptide versus binding simulations for Ala2. (a) The peptide
ensembles are projected onto two tICA eigenvectors common to all five peptides. (b) The metastable states sampled for the
free peptide. (c) Top clusters by population from MELD×MD binding simulations.
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Figure A5. Clustering MELD×MD ensembles correctly identifies the MDM2 pocket as the binding site. Clustering is done
by aligning on the MDM2 protein and using that alignment and the RMSD of the peptide between conformations as a
distance metric. We define high accuracy binding (left) as the peptide binding in the right pocket with the right conformation
(RMSD < 5 Å). For many clusters, the peptide is at least partially occupying the experimental binding site, with incorrect
peptide conformations. Our approach samples these conformations at higher replica index, with a few progressing to the
experimentally bound conformation. Finally, we find some conformations interacting with MDM2 at different sites in the
protein (right panel).

Figure A6. Funneling binding plot for the five peptides. Each dot corresponds to a cluster center from a 2D-RMSD based on
all replicas. The larger the circle the larger the population of the cluster. Each circle is plotted at the average RMSD inside
that cluster with respect to the native conformation and the average of the index replica in that cluster. The color code is
green (RMSD < 5) or blue (RMSD > 5) when the average of the replica index is lower than 15, and red otherwise.
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Figure A7. Radius of gyration versus RMSD of the peptide (protein align) for different replicas in MELD×MD for all peptides studied.
The red lines for peptides pdiq and ATSP-7041 depict the region of the radius of gyration explored at the lowest temperature replica.

Figure A8. Secondary structure profiles for each peptide in MELD×MD runs. Each line represents
a different replica (different H and T). Replicas with higher percentage of secondary structure are
sampling at low temperature and ambiguous restraints guiding the peptide to the protein at full
strength. Red bars represent the location of the three anchoring residues for each peptide.
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Figure A9. MDM2 protein ensembles with respect to holo and apo experimental structures at the
lowest and highest index replicas. Simulations used a flat-bottom harmonic restraint on Cα positions
with a 3.5 flat-bottom region.

Figure A10. MDM2 versus peptide RMSD ensembles for the five peptides.
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Figure A11. RMSF (Root Mean Square Fluctuation)comparison of the two best peptide binders.
The red bars indicate the locations of the anchoring residues. Both peptides have been aligned to
match the anchoring residues and end residues removed from ATSP-7041 for this analysis.
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