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Abstract: The review summarizes for the first time the poorly studied electrooxidative functionaliza-
tion of pyrazole derivatives leading to the C–Cl, C–Br, C–I, C–S and N–N coupling products with
applied properties. The introduction discusses some aspects of aromatic hydrogen substitution. Fur-
ther, we mainly consider our works on effective synthesis of the corresponding halogeno, thiocyanato
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1. Introduction

The functionalization of arenes is the key to their diversity, opening the way to prac-
tically useful substances. At the beginning of the 21st century, C-H functionalization of
arenes became a popular tool for the implementation of such processes [1], and the center
for selective C-H functionalization (mainly based on metal complex catalysis) was orga-
nized in the USA [2,3]. At the same time, a more attractive metal-free C-H functionalization
of arenes has existed for many years. Its development is discussed below, since the review
is related to it.

The first to consider is the electrophilic aromatic hydrogen substitution (SE
H) [4]. It

proceeds via the σH
+ adduct formation and proton elimination leading to the target product

(Scheme 1a).
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Scheme 1. Electrophilic (a) and nucleophilic (b) aromatic hydrogen substitution.

The nucleophilic aromatic hydrogen substitution (SN
H, Scheme 1b) is problematic due

to the difficulty of the hydride ion direct elimination from the σH
− adduct. Nevertheless, in

the mid-1970s, Chupakhin and Postovsky proposed an indirect way of obtaining the target
product, the chemical oxidation of the σH

− adduct [5]. To date, such processes have been
extensively developed by Chupakhin and Charushin [6–9].

This review is devoted to electrooxidative functionalization of pyrazoles. Why is it
so attractive? The answer is given by Seebach [10], who showed that the interaction of
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two near-polar co-reactants is provided by the polarity inversion of one of them. This
is the essence of electrochemistry, where the electrode transformation of the substrate is
accompanied by its polarity inversion. For example, 1,4-dimethoxybenzene (DMB) and
pyrazole (Scheme 2) are two non-interacting nucleophiles, but polarity inversion of DMB
by electrooxidation leads to the electrophilic radical cation that reacts with pyrazole. In
the electrochemical literature, this C-H functionalization is called anodic substitution,
which has been actively studied since the mid-1950s [11–20].
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Scheme 2. Electrooxidative N-arylation of pyrazole by 1,4-dimethoxybenzene.

Note that chemical (electrophilic and nucleophilic) substitution and electrochemical
(anodic) substitution in arenes have been being developed in parallel and independently
of each other for a long time. In addition, the role of anodic substitution among the corre-
sponding chemical processes was unconsidered.

Only recently we have introduced the concept of anodic substitution as an electro-
chemical aromatic substitution of hydrogen [21,22]. Such reactions were designated as SN

H

An (An is anode), since the key stage is anodic oxidation of the substrate. For electron-rich
arenes, the processes proceed along two main routes (Scheme 3), depending on the ease of
oxidation of nucleophile vs. arene [21]. Route I (arene oxidizes easier than Nu−) proceeds
via the interaction between Nu− and the arene radical cation. Route II (Nu− oxidizes
easier than arene) proceeds via the formation of Nu•, which either interacts with the arenes
homolytically (route IIa) or forms a dimer that interacts with the arene as an electrophile
(route IIb).
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In general, the multitude of SN
H (An) processes, where hydrogen is displaced with

a nucleophile, are electrooxidative C-H functionalizations (C–H An) and can be described
by Scheme 4. Such strategy opens up the direct method of C–H functionalization of
arenes with the C–C and C–Het coupling realization. The latter is especially shown
in the examples of electrooxidative C–H halogenation and thiocyanation of pyrazole
derivatives (Sections 2 and 3). A special place is occupied by the N–N coupling of amino
pyrazoles via the N–H functionalization (Section 4), since its patterns are somehow similar
to those described above, but not sufficiently studied.
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Such processes are attractive for green chemistry [23,24] because they use cheap, af-
fordable and environmentally promising electric current instead of chemical oxidants (often
toxic, unrecyclable and used in excess) and complex catalysts (sometimes expensive and
toxic). In addition, the varying anode potential eliminates the difficulties of an empirical
search for suitable chemical oxidants, while Pt, a frequently used electrode material [25],
can be replaced by more attractive ones, e.g., glassy carbon, or ruthenium–titanium oxide
(for more information on electrode materials see [25–27]).

Since the review is devoted to the poorly studied electrochemical functionalization of
pyrazole derivatives, Sections 2–4 mainly summarize the investigations of
the review’s authors.

2. Electrooxidative C–H Halogenation of Pyrazole and Its Substituted Derivatives

Halogenated pyrazoles are widely used in organic synthesis; in particular, iodo and
bromo pyrazoles are the key reagents in transition metal-catalyzed cross-coupling [28].
Moreover, they are important precursors of drugs, such as antihepatitis, anti-Alzheimer,
antiparkinsonian and anti-schizophrenic drugs (chloro-pyrazoles) [29–31], antiglaucoma
drugs (bromo-pyrazoles) [32] and antiatherosclerotic, antimalarial, anti-inflammatory
and immunocorrective drugs (iodo-pyrazoles) [33–38]. At the same time, chloro- and
iodo-pyrazoles are used for preparation of antidiabetic drugs [39,40], bromo- and iodo-
pyrazoles—of anticancer [41–44] and antimicrobial [45,46] agents, and chloro- and bromo-
pyrazoles—of agrochemicals [47–51].

The active use of halogeno-pyrazoles has stimulated interest in their efficient and
ecologically attractive synthesis, including electrosynthesis (see Introduction). At the same
time, the electrochemical halogenation of pyrazoles has practically not been studied be-
fore us, but it was preceded by chemical halogenation, the aspects of which are briefly
given below.

2.1. Chemical Halogenation of Pyrazoles

The processes (Scheme 5) are usually carried out by the interaction of pyrazoles and
halogens (or halogenating reagents), and they occur first at position 4 and only then at
other positions [28].
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2.1.1. Chlorination

The most common is the interaction of pyrazoles and Cl2. It was used to convert
the pyrazole and its alkyl derivatives into the 4-chloro pyrazoles (yields 40–85%, at 0–40 ◦C,
in CH2Cl2 or CCl4). Under severe conditions (at 80–100 ◦C, in AcOH) dichloropyrazoles
and the chloro products of the alkyl groups were also formed [52,53]. At the same time,
the corresponding 4-chloro derivatives were obtained by the reaction of 3,5-dimethyl-1H-
pyrazole (and its N-substituted derivatives) with N-chlorosuccinimide (yield 95–98%, at
20–25 ◦C, in CCl4 or H2O) [54,55].

2.1.2. Bromination

The reaction of alkyl-substituted pyrazoles and their carboxylic acids with Br2 (at
20–25 ◦C) proceeded in yields of 75–96% in non-aqueous media (CH2Cl2, CHCl3 or
CCl4) [45,56–58], or 50–75% in water [59,60]. The NaOH additives (which binds with
HBr formed) allows bromination of low-reactive pyrazole-3-carboxylic acid in the yield
of 90% [61]. A number of 4-bromopyrazoles were also obtained by the reaction of 3,5-
dimethyl-1H-pyrazole (and its N-substituted derivatives) with N-bromosuccinimide (yields
90–99%, at 20–25 ◦C, in CCl4 or H2O) [55].
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2.1.3. Iodination

Good results in the iodination of pyrazoles with donor substituents were obtained
using the I2–NaI–K2CO3 system (yields 75–90% at 20–25 ◦C in aq. EtOH) [62–64]. A solu-
tion of N-iodosuccinimide in acidic media (50% aq. H2SO4, CF3SO3H, CF3COOH, AcOH)
was also efficient for the iodination [44,62,65]. Finally, the iodination of practically any
pyrazoles proceeded efficiently and without toxic waste using the I2–HIO3 system in
AcOH–CCl4 [66,67].

In general, the above methods are quite effective, but not ecologically attractive enough
due to the frequent use of halogens in their pure form or waste of other halogenating agents
(e.g., succinimide). Such problems can be solved using electrochemical methods—C–H
An halogenation.

2.2. C-H An Halogenation of Pyrazoles

The halogenation (Scheme 6) usually proceeds [26] via the electrogeneration of a halo-
gen followed by its interaction with pyrazole (cf. Scheme 3, route IIb).
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Scheme 6. C–H An halogenation of pyrazoles (X = Cl, Br, I).

Such processes are mainly carried out under mild conditions in an anodic compart-
ment of a divided cell on a Pt-anode under galvanostatic electrolysis with alkali metal
halides in H2O or in H2O–CHCl3. A series of N–H and N–Alk pyrazoles, including those
with donor (acceptor) substituents, were objects of study (Tables 1–3).

2.2.1. Chlorination

C–H An chlorination of pyrazole 1a (Table 1, entry 1) led to 4-chloropyrazole 1b
(yield 46%) and to by-product 1b′ (yield 8%) in H2O–CHCl3 at the theoretical amount
of electricity passed (Q/Qt = 1). Apparently, the product 1b undergoes chlorination to
1,4-dichloropyrazole 1b′ (Scheme 7), followed by C–N dehydrogenative cross-coupling to
by-product 1b-1b′.
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The need for CHCl3 (as an extractant of target product) should be noted, since its ab-
sence decreased the yield of product 1b to 34% and increased the yield of by-product 1b-1b′

to 15%. Pyrazoles 2a–7a (entries 2–7), gave the monochlorinated products 2b–7b with dif-
ferent yields (8–71%) depending on the position of Me groups. Di- and trichloroproducts
were obtained in entries 5 and 6.

Pyrazoles with acceptor groups (NO2 or COOH) were chlorinated without CHCl3
additives: the yields of the target products 8b–14b were 41–93% (entries 8–14). Only
pyrazole 14a, containing both NO2 and COOH groups, was the least reactive. Therefore,
the electrochemical method for the synthesis of 4-chloropyrazolcarboxylic acids [68] is
noticeably superior to the corresponding chemical one [69].
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Table 1. C-H An chlorination of pyrazoles (Az-H) 1.

Entry Az-H, Az-Cl and other Products (Yield, %) [70,71] Entry Az-H, Az-Cl (Yield, %) [68,70,71]
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some cases, dibromo by-products (entries 2 and 5), low yield (entry 9), or the absence of 

any reactions (entries 7 and 14) were observed.  

Table 2. C‒H An bromination of pyrazoles (Az‒H) 1. 

Entry Az‒H, Az‒Br and other Products (Yield, %) [71,72] Entry Az‒H, Az‒Br (Yield, %) [71,72]  

1 

1a 1c (70 2) 

8 

8a 8c (89 2) 

2 

2a 2c (76 3) 2c’ (5 3) 

9 

9a 9c (15 3) 

3 

3a 3c (66 3) 

10 

10a 10c (68 3) 

4 

4a 4c (94 2) 

11 

11a 11c (78 2) 

5 

5a 5c (55 3) 5c’ (26 3) 

12 

12a 12c (84 2) 

6 

6a 6c (88 2) 

13 

13a 13c (84 2) 

7 

7a 7c (0 5) 

14 

14a 14c (0 3) 
1 Electrolysis in 100 mL of 1M solution of NaBr in H2O–CHCl3 (entries 1–7), H2O (entries 8–14), 30 °C, pyrazole (12.5–50 

mmol), divided cell, Pt anode, Cu cathode, galvanostatic electrolysis (janode = 30 mA‧cm−2), Q = Qt = 2412–9650 C; 2 the yield 

was determined for the isolated product; 3 the yield was calculated from the 1H NMR spectroscopic data for the isolated 

mixture of products with (or) unreacted pyrazoles; 5 unpublished data. 

2.2.3. Iodination  

C‒H An iodination by weakly electrophilic I2 (Table 3) was generally less effective 

than bromination [73]. Traces of the target products or no reaction were observed in half 

of the cases (entries 2, 7–9, 11–13). In other cases, the yields were 35–86% (for pyrazole 

and its methyl derivatives in entries 1, 3–6) and 30–40% (for nitro- and carboxypyrazoles 

in entries 10 and 14). 

  

9c (15 3)



Molecules 2021, 26, 4749 6 of 25

Table 2. Cont.

Entry Az-H, Az-Br and Other Products (Yield, %) [71,72] Entry Az-H, Az-Br (Yield, %) [71,72]

3

Molecules 2021, 26, x  6 of 24 
 

 

some cases, dibromo by-products (entries 2 and 5), low yield (entry 9), or the absence of 

any reactions (entries 7 and 14) were observed.  

Table 2. C‒H An bromination of pyrazoles (Az‒H) 1. 

Entry Az‒H, Az‒Br and other Products (Yield, %) [71,72] Entry Az‒H, Az‒Br (Yield, %) [71,72]  
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1a 1c (70 2) 

8 

8a 8c (89 2) 

2 

2a 2c (76 3) 2c’ (5 3) 

9 
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3 

3a 3c (66 3) 

10 

10a 10c (68 3) 

4 

4a 4c (94 2) 

11 

11a 11c (78 2) 

5 

5a 5c (55 3) 5c’ (26 3) 

12 

12a 12c (84 2) 

6 

6a 6c (88 2) 

13 

13a 13c (84 2) 

7 

7a 7c (0 5) 

14 

14a 14c (0 3) 
1 Electrolysis in 100 mL of 1M solution of NaBr in H2O–CHCl3 (entries 1–7), H2O (entries 8–14), 30 °C, pyrazole (12.5–50 

mmol), divided cell, Pt anode, Cu cathode, galvanostatic electrolysis (janode = 30 mA‧cm−2), Q = Qt = 2412–9650 C; 2 the yield 

was determined for the isolated product; 3 the yield was calculated from the 1H NMR spectroscopic data for the isolated 

mixture of products with (or) unreacted pyrazoles; 5 unpublished data. 

2.2.3. Iodination  

C‒H An iodination by weakly electrophilic I2 (Table 3) was generally less effective 

than bromination [73]. Traces of the target products or no reaction were observed in half 

of the cases (entries 2, 7–9, 11–13). In other cases, the yields were 35–86% (for pyrazole 

and its methyl derivatives in entries 1, 3–6) and 30–40% (for nitro- and carboxypyrazoles 

in entries 10 and 14). 
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some cases, dibromo by-products (entries 2 and 5), low yield (entry 9), or the absence of 

any reactions (entries 7 and 14) were observed.  

Table 2. C‒H An bromination of pyrazoles (Az‒H) 1. 

Entry Az‒H, Az‒Br and other Products (Yield, %) [71,72] Entry Az‒H, Az‒Br (Yield, %) [71,72]  

1 

1a 1c (70 2) 

8 

8a 8c (89 2) 

2 

2a 2c (76 3) 2c’ (5 3) 

9 

9a 9c (15 3) 

3 

3a 3c (66 3) 

10 

10a 10c (68 3) 

4 

4a 4c (94 2) 

11 

11a 11c (78 2) 

5 

5a 5c (55 3) 5c’ (26 3) 

12 

12a 12c (84 2) 

6 

6a 6c (88 2) 

13 

13a 13c (84 2) 

7 

7a 7c (0 5) 

14 

14a 14c (0 3) 
1 Electrolysis in 100 mL of 1M solution of NaBr in H2O–CHCl3 (entries 1–7), H2O (entries 8–14), 30 °C, pyrazole (12.5–50 

mmol), divided cell, Pt anode, Cu cathode, galvanostatic electrolysis (janode = 30 mA‧cm−2), Q = Qt = 2412–9650 C; 2 the yield 

was determined for the isolated product; 3 the yield was calculated from the 1H NMR spectroscopic data for the isolated 

mixture of products with (or) unreacted pyrazoles; 5 unpublished data. 

2.2.3. Iodination  

C‒H An iodination by weakly electrophilic I2 (Table 3) was generally less effective 

than bromination [73]. Traces of the target products or no reaction were observed in half 

of the cases (entries 2, 7–9, 11–13). In other cases, the yields were 35–86% (for pyrazole 

and its methyl derivatives in entries 1, 3–6) and 30–40% (for nitro- and carboxypyrazoles 

in entries 10 and 14). 
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some cases, dibromo by-products (entries 2 and 5), low yield (entry 9), or the absence of 

any reactions (entries 7 and 14) were observed.  

Table 2. C‒H An bromination of pyrazoles (Az‒H) 1. 

Entry Az‒H, Az‒Br and other Products (Yield, %) [71,72] Entry Az‒H, Az‒Br (Yield, %) [71,72]  

1 

1a 1c (70 2) 

8 

8a 8c (89 2) 

2 

2a 2c (76 3) 2c’ (5 3) 

9 

9a 9c (15 3) 

3 

3a 3c (66 3) 

10 

10a 10c (68 3) 

4 

4a 4c (94 2) 

11 

11a 11c (78 2) 

5 

5a 5c (55 3) 5c’ (26 3) 

12 

12a 12c (84 2) 

6 

6a 6c (88 2) 

13 

13a 13c (84 2) 

7 

7a 7c (0 5) 

14 

14a 14c (0 3) 
1 Electrolysis in 100 mL of 1M solution of NaBr in H2O–CHCl3 (entries 1–7), H2O (entries 8–14), 30 °C, pyrazole (12.5–50 

mmol), divided cell, Pt anode, Cu cathode, galvanostatic electrolysis (janode = 30 mA‧cm−2), Q = Qt = 2412–9650 C; 2 the yield 

was determined for the isolated product; 3 the yield was calculated from the 1H NMR spectroscopic data for the isolated 

mixture of products with (or) unreacted pyrazoles; 5 unpublished data. 

2.2.3. Iodination  

C‒H An iodination by weakly electrophilic I2 (Table 3) was generally less effective 

than bromination [73]. Traces of the target products or no reaction were observed in half 

of the cases (entries 2, 7–9, 11–13). In other cases, the yields were 35–86% (for pyrazole 

and its methyl derivatives in entries 1, 3–6) and 30–40% (for nitro- and carboxypyrazoles 

in entries 10 and 14). 
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some cases, dibromo by-products (entries 2 and 5), low yield (entry 9), or the absence of 

any reactions (entries 7 and 14) were observed.  

Table 2. C‒H An bromination of pyrazoles (Az‒H) 1. 

Entry Az‒H, Az‒Br and other Products (Yield, %) [71,72] Entry Az‒H, Az‒Br (Yield, %) [71,72]  

1 

1a 1c (70 2) 

8 

8a 8c (89 2) 

2 

2a 2c (76 3) 2c’ (5 3) 

9 

9a 9c (15 3) 

3 

3a 3c (66 3) 

10 

10a 10c (68 3) 

4 

4a 4c (94 2) 

11 

11a 11c (78 2) 

5 

5a 5c (55 3) 5c’ (26 3) 

12 

12a 12c (84 2) 

6 

6a 6c (88 2) 

13 

13a 13c (84 2) 

7 

7a 7c (0 5) 

14 

14a 14c (0 3) 
1 Electrolysis in 100 mL of 1M solution of NaBr in H2O–CHCl3 (entries 1–7), H2O (entries 8–14), 30 °C, pyrazole (12.5–50 

mmol), divided cell, Pt anode, Cu cathode, galvanostatic electrolysis (janode = 30 mA‧cm−2), Q = Qt = 2412–9650 C; 2 the yield 

was determined for the isolated product; 3 the yield was calculated from the 1H NMR spectroscopic data for the isolated 

mixture of products with (or) unreacted pyrazoles; 5 unpublished data. 

2.2.3. Iodination  

C‒H An iodination by weakly electrophilic I2 (Table 3) was generally less effective 

than bromination [73]. Traces of the target products or no reaction were observed in half 

of the cases (entries 2, 7–9, 11–13). In other cases, the yields were 35–86% (for pyrazole 

and its methyl derivatives in entries 1, 3–6) and 30–40% (for nitro- and carboxypyrazoles 

in entries 10 and 14). 
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some cases, dibromo by-products (entries 2 and 5), low yield (entry 9), or the absence of 

any reactions (entries 7 and 14) were observed.  

Table 2. C‒H An bromination of pyrazoles (Az‒H) 1. 

Entry Az‒H, Az‒Br and other Products (Yield, %) [71,72] Entry Az‒H, Az‒Br (Yield, %) [71,72]  

1 

1a 1c (70 2) 

8 

8a 8c (89 2) 

2 

2a 2c (76 3) 2c’ (5 3) 

9 

9a 9c (15 3) 

3 

3a 3c (66 3) 

10 

10a 10c (68 3) 

4 

4a 4c (94 2) 

11 

11a 11c (78 2) 

5 

5a 5c (55 3) 5c’ (26 3) 

12 

12a 12c (84 2) 

6 

6a 6c (88 2) 

13 

13a 13c (84 2) 

7 

7a 7c (0 5) 

14 

14a 14c (0 3) 
1 Electrolysis in 100 mL of 1M solution of NaBr in H2O–CHCl3 (entries 1–7), H2O (entries 8–14), 30 °C, pyrazole (12.5–50 

mmol), divided cell, Pt anode, Cu cathode, galvanostatic electrolysis (janode = 30 mA‧cm−2), Q = Qt = 2412–9650 C; 2 the yield 

was determined for the isolated product; 3 the yield was calculated from the 1H NMR spectroscopic data for the isolated 

mixture of products with (or) unreacted pyrazoles; 5 unpublished data. 

2.2.3. Iodination  

C‒H An iodination by weakly electrophilic I2 (Table 3) was generally less effective 

than bromination [73]. Traces of the target products or no reaction were observed in half 

of the cases (entries 2, 7–9, 11–13). In other cases, the yields were 35–86% (for pyrazole 

and its methyl derivatives in entries 1, 3–6) and 30–40% (for nitro- and carboxypyrazoles 

in entries 10 and 14). 
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some cases, dibromo by-products (entries 2 and 5), low yield (entry 9), or the absence of 

any reactions (entries 7 and 14) were observed.  

Table 2. C‒H An bromination of pyrazoles (Az‒H) 1. 

Entry Az‒H, Az‒Br and other Products (Yield, %) [71,72] Entry Az‒H, Az‒Br (Yield, %) [71,72]  

1 

1a 1c (70 2) 

8 

8a 8c (89 2) 

2 

2a 2c (76 3) 2c’ (5 3) 

9 

9a 9c (15 3) 

3 

3a 3c (66 3) 

10 

10a 10c (68 3) 

4 

4a 4c (94 2) 

11 

11a 11c (78 2) 

5 

5a 5c (55 3) 5c’ (26 3) 

12 

12a 12c (84 2) 

6 

6a 6c (88 2) 

13 

13a 13c (84 2) 

7 

7a 7c (0 5) 

14 

14a 14c (0 3) 
1 Electrolysis in 100 mL of 1M solution of NaBr in H2O–CHCl3 (entries 1–7), H2O (entries 8–14), 30 °C, pyrazole (12.5–50 

mmol), divided cell, Pt anode, Cu cathode, galvanostatic electrolysis (janode = 30 mA‧cm−2), Q = Qt = 2412–9650 C; 2 the yield 

was determined for the isolated product; 3 the yield was calculated from the 1H NMR spectroscopic data for the isolated 

mixture of products with (or) unreacted pyrazoles; 5 unpublished data. 

2.2.3. Iodination  

C‒H An iodination by weakly electrophilic I2 (Table 3) was generally less effective 

than bromination [73]. Traces of the target products or no reaction were observed in half 

of the cases (entries 2, 7–9, 11–13). In other cases, the yields were 35–86% (for pyrazole 

and its methyl derivatives in entries 1, 3–6) and 30–40% (for nitro- and carboxypyrazoles 

in entries 10 and 14). 
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some cases, dibromo by-products (entries 2 and 5), low yield (entry 9), or the absence of 

any reactions (entries 7 and 14) were observed.  

Table 2. C‒H An bromination of pyrazoles (Az‒H) 1. 

Entry Az‒H, Az‒Br and other Products (Yield, %) [71,72] Entry Az‒H, Az‒Br (Yield, %) [71,72]  

1 

1a 1c (70 2) 

8 

8a 8c (89 2) 
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2a 2c (76 3) 2c’ (5 3) 
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9a 9c (15 3) 

3 

3a 3c (66 3) 
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4a 4c (94 2) 
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11a 11c (78 2) 
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5a 5c (55 3) 5c’ (26 3) 
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12a 12c (84 2) 

6 

6a 6c (88 2) 

13 

13a 13c (84 2) 

7 

7a 7c (0 5) 

14 

14a 14c (0 3) 
1 Electrolysis in 100 mL of 1M solution of NaBr in H2O–CHCl3 (entries 1–7), H2O (entries 8–14), 30 °C, pyrazole (12.5–50 

mmol), divided cell, Pt anode, Cu cathode, galvanostatic electrolysis (janode = 30 mA‧cm−2), Q = Qt = 2412–9650 C; 2 the yield 

was determined for the isolated product; 3 the yield was calculated from the 1H NMR spectroscopic data for the isolated 

mixture of products with (or) unreacted pyrazoles; 5 unpublished data. 

2.2.3. Iodination  

C‒H An iodination by weakly electrophilic I2 (Table 3) was generally less effective 

than bromination [73]. Traces of the target products or no reaction were observed in half 

of the cases (entries 2, 7–9, 11–13). In other cases, the yields were 35–86% (for pyrazole 

and its methyl derivatives in entries 1, 3–6) and 30–40% (for nitro- and carboxypyrazoles 

in entries 10 and 14). 

  

11a

Molecules 2021, 26, x  6 of 24 
 

 

some cases, dibromo by-products (entries 2 and 5), low yield (entry 9), or the absence of 

any reactions (entries 7 and 14) were observed.  

Table 2. C‒H An bromination of pyrazoles (Az‒H) 1. 

Entry Az‒H, Az‒Br and other Products (Yield, %) [71,72] Entry Az‒H, Az‒Br (Yield, %) [71,72]  

1 

1a 1c (70 2) 

8 

8a 8c (89 2) 

2 

2a 2c (76 3) 2c’ (5 3) 
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9a 9c (15 3) 
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3a 3c (66 3) 
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10a 10c (68 3) 
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4a 4c (94 2) 
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11a 11c (78 2) 

5 

5a 5c (55 3) 5c’ (26 3) 
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12a 12c (84 2) 

6 

6a 6c (88 2) 

13 

13a 13c (84 2) 

7 

7a 7c (0 5) 

14 

14a 14c (0 3) 
1 Electrolysis in 100 mL of 1M solution of NaBr in H2O–CHCl3 (entries 1–7), H2O (entries 8–14), 30 °C, pyrazole (12.5–50 

mmol), divided cell, Pt anode, Cu cathode, galvanostatic electrolysis (janode = 30 mA‧cm−2), Q = Qt = 2412–9650 C; 2 the yield 

was determined for the isolated product; 3 the yield was calculated from the 1H NMR spectroscopic data for the isolated 

mixture of products with (or) unreacted pyrazoles; 5 unpublished data. 

2.2.3. Iodination  

C‒H An iodination by weakly electrophilic I2 (Table 3) was generally less effective 

than bromination [73]. Traces of the target products or no reaction were observed in half 

of the cases (entries 2, 7–9, 11–13). In other cases, the yields were 35–86% (for pyrazole 

and its methyl derivatives in entries 1, 3–6) and 30–40% (for nitro- and carboxypyrazoles 

in entries 10 and 14). 
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some cases, dibromo by-products (entries 2 and 5), low yield (entry 9), or the absence of 

any reactions (entries 7 and 14) were observed.  

Table 2. C‒H An bromination of pyrazoles (Az‒H) 1. 

Entry Az‒H, Az‒Br and other Products (Yield, %) [71,72] Entry Az‒H, Az‒Br (Yield, %) [71,72]  

1 

1a 1c (70 2) 

8 

8a 8c (89 2) 

2 

2a 2c (76 3) 2c’ (5 3) 

9 

9a 9c (15 3) 

3 

3a 3c (66 3) 

10 

10a 10c (68 3) 

4 

4a 4c (94 2) 

11 

11a 11c (78 2) 

5 

5a 5c (55 3) 5c’ (26 3) 

12 

12a 12c (84 2) 

6 

6a 6c (88 2) 

13 

13a 13c (84 2) 

7 

7a 7c (0 5) 

14 

14a 14c (0 3) 
1 Electrolysis in 100 mL of 1M solution of NaBr in H2O–CHCl3 (entries 1–7), H2O (entries 8–14), 30 °C, pyrazole (12.5–50 

mmol), divided cell, Pt anode, Cu cathode, galvanostatic electrolysis (janode = 30 mA‧cm−2), Q = Qt = 2412–9650 C; 2 the yield 

was determined for the isolated product; 3 the yield was calculated from the 1H NMR spectroscopic data for the isolated 

mixture of products with (or) unreacted pyrazoles; 5 unpublished data. 

2.2.3. Iodination  

C‒H An iodination by weakly electrophilic I2 (Table 3) was generally less effective 

than bromination [73]. Traces of the target products or no reaction were observed in half 

of the cases (entries 2, 7–9, 11–13). In other cases, the yields were 35–86% (for pyrazole 

and its methyl derivatives in entries 1, 3–6) and 30–40% (for nitro- and carboxypyrazoles 

in entries 10 and 14). 
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some cases, dibromo by-products (entries 2 and 5), low yield (entry 9), or the absence of 

any reactions (entries 7 and 14) were observed.  

Table 2. C‒H An bromination of pyrazoles (Az‒H) 1. 

Entry Az‒H, Az‒Br and other Products (Yield, %) [71,72] Entry Az‒H, Az‒Br (Yield, %) [71,72]  

1 

1a 1c (70 2) 

8 

8a 8c (89 2) 

2 

2a 2c (76 3) 2c’ (5 3) 

9 

9a 9c (15 3) 

3 

3a 3c (66 3) 

10 

10a 10c (68 3) 

4 

4a 4c (94 2) 

11 

11a 11c (78 2) 

5 

5a 5c (55 3) 5c’ (26 3) 

12 

12a 12c (84 2) 

6 

6a 6c (88 2) 

13 

13a 13c (84 2) 

7 

7a 7c (0 5) 

14 

14a 14c (0 3) 
1 Electrolysis in 100 mL of 1M solution of NaBr in H2O–CHCl3 (entries 1–7), H2O (entries 8–14), 30 °C, pyrazole (12.5–50 

mmol), divided cell, Pt anode, Cu cathode, galvanostatic electrolysis (janode = 30 mA‧cm−2), Q = Qt = 2412–9650 C; 2 the yield 

was determined for the isolated product; 3 the yield was calculated from the 1H NMR spectroscopic data for the isolated 

mixture of products with (or) unreacted pyrazoles; 5 unpublished data. 

2.2.3. Iodination  

C‒H An iodination by weakly electrophilic I2 (Table 3) was generally less effective 

than bromination [73]. Traces of the target products or no reaction were observed in half 

of the cases (entries 2, 7–9, 11–13). In other cases, the yields were 35–86% (for pyrazole 

and its methyl derivatives in entries 1, 3–6) and 30–40% (for nitro- and carboxypyrazoles 

in entries 10 and 14). 
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some cases, dibromo by-products (entries 2 and 5), low yield (entry 9), or the absence of 

any reactions (entries 7 and 14) were observed.  

Table 2. C‒H An bromination of pyrazoles (Az‒H) 1. 

Entry Az‒H, Az‒Br and other Products (Yield, %) [71,72] Entry Az‒H, Az‒Br (Yield, %) [71,72]  

1 

1a 1c (70 2) 

8 

8a 8c (89 2) 

2 

2a 2c (76 3) 2c’ (5 3) 

9 

9a 9c (15 3) 

3 

3a 3c (66 3) 

10 

10a 10c (68 3) 

4 

4a 4c (94 2) 

11 

11a 11c (78 2) 

5 

5a 5c (55 3) 5c’ (26 3) 

12 

12a 12c (84 2) 

6 

6a 6c (88 2) 

13 

13a 13c (84 2) 

7 

7a 7c (0 5) 

14 

14a 14c (0 3) 
1 Electrolysis in 100 mL of 1M solution of NaBr in H2O–CHCl3 (entries 1–7), H2O (entries 8–14), 30 °C, pyrazole (12.5–50 

mmol), divided cell, Pt anode, Cu cathode, galvanostatic electrolysis (janode = 30 mA‧cm−2), Q = Qt = 2412–9650 C; 2 the yield 

was determined for the isolated product; 3 the yield was calculated from the 1H NMR spectroscopic data for the isolated 

mixture of products with (or) unreacted pyrazoles; 5 unpublished data. 

2.2.3. Iodination  

C‒H An iodination by weakly electrophilic I2 (Table 3) was generally less effective 

than bromination [73]. Traces of the target products or no reaction were observed in half 

of the cases (entries 2, 7–9, 11–13). In other cases, the yields were 35–86% (for pyrazole 

and its methyl derivatives in entries 1, 3–6) and 30–40% (for nitro- and carboxypyrazoles 

in entries 10 and 14). 
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some cases, dibromo by-products (entries 2 and 5), low yield (entry 9), or the absence of 

any reactions (entries 7 and 14) were observed.  

Table 2. C‒H An bromination of pyrazoles (Az‒H) 1. 

Entry Az‒H, Az‒Br and other Products (Yield, %) [71,72] Entry Az‒H, Az‒Br (Yield, %) [71,72]  

1 

1a 1c (70 2) 

8 

8a 8c (89 2) 

2 

2a 2c (76 3) 2c’ (5 3) 

9 

9a 9c (15 3) 

3 

3a 3c (66 3) 

10 

10a 10c (68 3) 

4 

4a 4c (94 2) 

11 

11a 11c (78 2) 

5 

5a 5c (55 3) 5c’ (26 3) 

12 

12a 12c (84 2) 

6 

6a 6c (88 2) 

13 

13a 13c (84 2) 

7 

7a 7c (0 5) 

14 

14a 14c (0 3) 
1 Electrolysis in 100 mL of 1M solution of NaBr in H2O–CHCl3 (entries 1–7), H2O (entries 8–14), 30 °C, pyrazole (12.5–50 

mmol), divided cell, Pt anode, Cu cathode, galvanostatic electrolysis (janode = 30 mA‧cm−2), Q = Qt = 2412–9650 C; 2 the yield 

was determined for the isolated product; 3 the yield was calculated from the 1H NMR spectroscopic data for the isolated 

mixture of products with (or) unreacted pyrazoles; 5 unpublished data. 

2.2.3. Iodination  

C‒H An iodination by weakly electrophilic I2 (Table 3) was generally less effective 

than bromination [73]. Traces of the target products or no reaction were observed in half 

of the cases (entries 2, 7–9, 11–13). In other cases, the yields were 35–86% (for pyrazole 

and its methyl derivatives in entries 1, 3–6) and 30–40% (for nitro- and carboxypyrazoles 

in entries 10 and 14). 
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some cases, dibromo by-products (entries 2 and 5), low yield (entry 9), or the absence of 

any reactions (entries 7 and 14) were observed.  

Table 2. C‒H An bromination of pyrazoles (Az‒H) 1. 
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1 Electrolysis in 100 mL of 0.3 M solution of NaNO3 in H2O–CHCl3, 30 ◦C, KI (10 mmol), pyrazole (10 mmol), NaHCO3 (15 mmol), divided
cell, Pt anode, Cu cathode, galvanostatic electrolysis (janode = 7.5 mA·cm−2), Q = Qt = 1930 C; 2 two-step process: 1. electrogeneration of
KIO3 in 1M aq. KOH, 70 ◦C, KI (30 mmol), K2Cr2O7 (0.7 mmol), undivided cell, NiO(OH) anode, Ni cathode, galvanostatic electrolysis
(janode = 200 mA·cm−2), Qt = 17370 C, Q/Qt = 0.9–1.1; 2. pyrazole (45–150 mmol), KIO3 (9–30 mmol), I2 (18–60 mmol), H2O–CHCl3 (or
H2O–CCl4), H2SO4 conc., temperature 50–66 ◦C, 0.5–14 h; 3 the yield was determined for the isolated product; 4 the yields were calculated
from the 1H NMR spectroscopic data for the isolated products with (or) unreacted pyrazoles; 5 unpublished data.

2.2.2. Bromination

Compared with chlorination, the C-H An bromination (Table 2) proceeded more
effectively for pyrazole and its methyl derivatives (yields of products 1c–6c 55–94%). In
some cases, dibromo by-products (entries 2 and 5), low yield (entry 9), or the absence of
any reactions (entries 7 and 14) were observed.

2.2.3. Iodination

C-H An iodination by weakly electrophilic I2 (Table 3) was generally less effective
than bromination [73]. Traces of the target products or no reaction were observed in half of
the cases (entries 2, 7–9, 11–13). In other cases, the yields were 35–86% (for pyrazole and
its methyl derivatives in entries 1, 3–6) and 30–40% (for nitro- and carboxypyrazoles in
entries 10 and 14).

A much more effective iodinating agent was HOI, which can be obtained by the re-
action of KIO3 with KI (or I2) and H2SO4 [75–79]. The original process [74] includes
the electrogeneration of KIO3 (on the NiO(OH) anode [80]), followed by the interaction
of HOI generated in situ with the pyrazole (Scheme 8). As a result, the yields of target
products increased to 74–93% (entries 1, 2, 4, 8, 10–12, 13).
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2.3. The Mechanistic Aspects of C–H (An) Halogenation of Pyrazoles

Since I−, Br−, and Cl− are commonly oxidized at lower anodic potentials than
the studied pyrazoles, the process proceeds via the electrooxidation of Hal− to Hal2
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followed by interaction of the latter with arenes (see Scheme 3, route IIb and Scheme 6).
The possible mechanism [26,71,79] (Scheme 9) includes the initial attack of the halogen on
the N2 of Az–H with the formation of σH

+ adduct 1. The latter, depending on the R, gives
either N–X intermediate (R = H) or σH

+ adduct 2 (R = Alk). Therefore, the target Az–X is
formed either due to N–C rearrangement of N–X derivative or due to the deprotonation of
σH

+ adduct 2.
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Iodination by HOI proceeds similarly, but for highly basic N-unsubstituted pyrazole
and its alkyl derivatives it most likely occurs (Scheme 10) via C–I adduct (the result of
protonation of N2 and HOI attack on C4) [74,75,77–79].
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Scheme 10. Iodination of highly basic pyrazoles by HOI.

Additional control experiments showed different properties of N–Cl and N–Br in-
termediates (Scheme 11). Therefore, the N–C rearrangement of the N–Cl derivative is
significantly lower than that for the N–Br (cf. stages N–X→Az–Cl and N–X→Az–Br). At
the same time, for the N–Cl bond, homolytic cleavage is observed, while for N–Br it is
heterolytic (cf. stages N–X→Ar–CH2-Cl and N–X→Ar–Br).
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The above data not only reveal the essence of pyrazoles C-H An halogenation, but also
explain the difference in its efficiency (e.g., the anomalously less efficient chlorination of
N-unsubstituted pyrazoles compared to bromination (cf. entries 1, 3 and 4, Tables 1 and 2),
and the formation of by-products (e.g., entries 1 and 6, Table 1).

Therefore, this Section describes the basic patterns of C–H An halogenation, and
the efficient (up to 94% yield) gram-scale synthesis of a series of chloro-, bromo- and iodo-
pyrazoles in aqueous or aqueous-organic media. The following Section reflects the main
points on the related C-H An thiocyanation of pyrazole derivatives.

3. Electrooxidative C–H Thiocyanation of 5-Aminopyrazoles and Pyrazolo
[1,5-a]pyrimidines

Thiocyanation of the C–H bond of arenes is an effective tool for C–S coupling [81–84].
The resulting aryl thiocyanates are valuable precursors of sulfur and nitrogen-containing
compounds (thiols [85], (di)sulfides [86,87], dithiocarbamates [88], thiazoles [89], tetra-
zoles [90]), and are highly bioactive compounds (antifungal [91], antitumor [92], antipara-
sitic [93]). Recently synthesized thiocyanates of pyrazole derivatives also have sufficient
antifungal [94] and antitumor [95] activity.

One of the key intermediates of C-H thiocyanation of arenes is the well-known [96,97]
pseudohalogene thiocyanogen (SCN)2. It is usually obtained in situ by chemical or electro-
chemical oxidation of the thiocyanate ion (Scheme 12).
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Scheme 12. C–H thiocyanation of arenes via the thiocyanogen.

The chemical approach has been actively developed over the past 10–15 years, but
it is often associated with the use of an excess of unrecyclable oxidants, which can some-
times be toxic, scalding or poorly available (e.g., Br2 [98], I2 [99], DEAD [100], HIO3 [101],
H5IO6 [102], I2O5 [103], H2O2 [102,104–107], K2S2O8 [108,109], CAN [110], Mn(OAc)3 [111],
p-TSA [112], NCS [113], NBS [100], NIS [114], NTS [115], DDQ [116,117]). The electrochemi-
cal approach (see [22], Scheme 3, route IIb, and Scheme 13) is devoid of such disadvantages,
but it is poorly studied in general [118–120]. For pyrazole derivatives, C–H An thiocya-
nation is studied for the first time in a series of works [22,121–126], which are reflected in
this Section.
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Scheme 13. C–H An thiocyanation of arenes (II) via the thiocyanogen (I′) and voltammetric test of
the process efficiency.

3.1. C–H An Thiocyanation: General Patterns and Approaches

According to the above and developed [22,118–126] concepts, C–H An thiocyanation
occurs during the anodic oxidation of the thiocyanate ion in the presence of arene, as a rule,
via the thiocyanogen (Scheme 13, step I→I′). The latter either interacts with arene (step
I′ + II→III), or gives polythiocyanogen [127] (step I′→IV).
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These processes were investigated by cyclic voltammetry (CV) [22,123,125,126].
Scheme 13 shows a typical CV curve of SCN−. Peak A corresponds to the oxidation
of thiocyanate ion I to thiocyanogen I′, which is detected on the reverse scan by its reduc-
tion peak B (B3). If after the addition of arene II, peak B disappears (cf. peaks B1 and B3)
or decreases (cf. peaks B2 and B3), then Ar–H II interacts with (SCN)2, respectively, via
the route B1 or B2 to form the target Ar–SCN III. If the peak B does not change, then Ar–H
II does not react with (SCN)2 (see peak B3 and route B3). In this case the main reaction
product is polythiocyanogen IV.

Further, we proposed [122,123] the original system of approaches to the C–H An thio-
cyanation of arenes (Scheme 14) depending on the reactivity of arenes with respect to
(SCN)2: via the generation (SCN)2 at the oxidation potential (Ep

ox) of thiocyanate ion
(approach A, cf. Scheme 3, route IIb, and Scheme 13), via electrogeneration (SCN)2 in
the presence of ZnCl2 activating additives (approach B) or via the generation of a highly
reactive radical cation at Ep

ox of arene (approach C, cf. Scheme 3, route I).
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(SCN)2.

These patterns and approaches are considered below on the examples of C–H An thio-
cyanation of the practically useful [128–130] derivatives of 5-aminopyrazole and pyra-
zolo[1,5-a]pyrimidine and the original electrosynthesized 1-(hetero)arylpyrazoles [124,131].

3.2. C–H An Thiocyanation of Pyrazole Derivatives

The studies included a preliminary CV test in addition to electrosynthesis. The initial
pyrazoles 1e–15e and their thiocyanation products 1f–15f are presented in Tables 4 and 5.
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(CPE or GE), passing a theoretical or excess amounts of electricity (Q/Qt = 1–3). Pt or 

glassy carbon (GC) electrodes were used. 

The amino compounds 1e–6e gave thiocyanates 1f–6f with yields 64–89% (under 

CPE at EpoxSCN-) and 57–71% (under GE) at Q/Qt = 1 (Table 4, entries 1–6) when imple-

menting approach A (see Scheme 14).  
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CPE at EpoxSCN-) and 57–71% (under GE) at Q/Qt = 1 (Table 4, entries 1–6) when imple-

menting approach A (see Scheme 14).  
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Figure 1. CV curves on Pt working electrode in 0.1M NaClO4 in MeCN,  = 0.10 V‧s−1. (А) NH4SCN (0.002M)—1; 
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10e (1:1) on the reverse scan from 1.20 V—4; the same on the reverse scan from 2.10 V—5. 
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CPE at EpoxSCN-) and 57–71% (under GE) at Q/Qt = 1 (Table 4, entries 1–6) when imple-

menting approach A (see Scheme 14).  
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Figure 1. CV curves on Pt working electrode in 0.1M NaClO4 in MeCN,  = 0.10 V‧s−1. (А) NH4SCN (0.002M)—1; 
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10e (1:1) on the reverse scan from 1.20 V—4; the same on the reverse scan from 2.10 V—5. 
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Electrolyses were carried out in 0.1M solution of NaClO4 in MeCN (MeCN–H2O) in 

undivided or divided cells (UC or DC) in controlled-potential or galvanostatic mode 

(CPE or GE), passing a theoretical or excess amounts of electricity (Q/Qt = 1–3). Pt or 

glassy carbon (GC) electrodes were used. 

The amino compounds 1e–6e gave thiocyanates 1f–6f with yields 64–89% (under 

CPE at EpoxSCN-) and 57–71% (under GE) at Q/Qt = 1 (Table 4, entries 1–6) when imple-

menting approach A (see Scheme 14).  

Table 4. C–H An thiocyanation of pyrazole derivatives (Az‒H) via (SCN)2 (approach A) 1. 

Entry Az–H, Az–SCN (Yield, %) [22,122,123,126] Entry Az–H, Az–SCN (Yield, %) [22,122,123,126] 

1 
 

1e 
 

1f (83 2,5,6, 72 2,4,6, 74 2,5,7, 69 3,5,7) 

6 

6e  
6f (86 2,4,6) 

2 

 
2e 

 
2f (87 2,5,6, 78 2,5,7, 71 3,5,7) 

7 

7e 
 

7f (83 2,4,6, 80 2,4,7, 75 2,5,7, 77 3,4,7, 

71 3,5,7) 

3 

3e 3f (65 2,4,6, 57 3,4,6) 8 

8e 
 

8f (85 2,4,6, 82 2,5,6) 4 

4e 4f (75 2,4,6, 68 3,4,6) 

9 

9e 
 

9f (75 2,4,6, 66 2,5,6) 

5 

5e 5f (89 2,4,6, 64 2,5,6) 
1 Electrolysis in 50–85 mL of 0.1M solution of NaClO4 in MeCN-H2O (entries 1–2), MeCN (entries 3–5, 7–9), MeCN–MeOH 

(entry 6), 20–25 °C, NH4SCN (3–20 mmol), pyrazole (entries 1–5, 7–9) or its hydrochloride (entry 6) (1–6 mmol), divided 

cell (entries 1–2), undivided cell (entries 3–9), Qt = 193–985 C, Q/Qt = 1 (entries 1–6), Q/Qt = 2 (entries 7–9). All yields were 

determined for the isolated and purified products; 2 CPE—controlled potential electrolysis (Eanode = 0.70–1.00 V); 3 

7f (83 2,4,6, 80 2,4,7, 75
2,5,7, 77 3,4,7, 71 3,5,7)

3

Molecules 2021, 26, x  11 of 24 
 

 

  
(A) (B) 

Figure 1. CV curves on Pt working electrode in 0.1M NaClO4 in MeCN,  = 0.10 V‧s−1. (А) NH4SCN (0.002M)—1; 

3-methyl-1H-pyrazol-5-amine 1e (0.002M)—2; 3-methyl-4-thiocyanato-1H-pyrazol-5-amine 1f (0.002M)—3; mixture 

NH4SCN/azole 1e (1:1) with the reverse scan from 0.60 V—4; the same on the reverse scan from 1.45V—5; (B) NH4SCN 

(0.002M)—1; 2-methyl-5-thiophen-2-yl-7-(trifluoromethyl)pyrazolo[1,5-a]pyrimidine 10e—2; 

2-methyl-3-thiocyanato-5-thiophen-2-yl-7-(trifluoromethyl)pyrazolo[1,5-a]pyrimidine 10f—3; mixture NH4SCN/ azole 

10e (1:1) on the reverse scan from 1.20 V—4; the same on the reverse scan from 2.10 V—5. 

3.2.2. Electrosynthesis 

Electrolyses were carried out in 0.1M solution of NaClO4 in MeCN (MeCN–H2O) in 

undivided or divided cells (UC or DC) in controlled-potential or galvanostatic mode 

(CPE or GE), passing a theoretical or excess amounts of electricity (Q/Qt = 1–3). Pt or 

glassy carbon (GC) electrodes were used. 

The amino compounds 1e–6e gave thiocyanates 1f–6f with yields 64–89% (under 

CPE at EpoxSCN-) and 57–71% (under GE) at Q/Qt = 1 (Table 4, entries 1–6) when imple-

menting approach A (see Scheme 14).  
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Figure 1. CV curves on Pt working electrode in 0.1M NaClO4 in MeCN,  = 0.10 V‧s−1. (А) NH4SCN (0.002M)—1; 

3-methyl-1H-pyrazol-5-amine 1e (0.002M)—2; 3-methyl-4-thiocyanato-1H-pyrazol-5-amine 1f (0.002M)—3; mixture 

NH4SCN/azole 1e (1:1) with the reverse scan from 0.60 V—4; the same on the reverse scan from 1.45V—5; (B) NH4SCN 

(0.002M)—1; 2-methyl-5-thiophen-2-yl-7-(trifluoromethyl)pyrazolo[1,5-a]pyrimidine 10e—2; 

2-methyl-3-thiocyanato-5-thiophen-2-yl-7-(trifluoromethyl)pyrazolo[1,5-a]pyrimidine 10f—3; mixture NH4SCN/ azole 

10e (1:1) on the reverse scan from 1.20 V—4; the same on the reverse scan from 2.10 V—5. 

3.2.2. Electrosynthesis 

Electrolyses were carried out in 0.1M solution of NaClO4 in MeCN (MeCN–H2O) in 

undivided or divided cells (UC or DC) in controlled-potential or galvanostatic mode 

(CPE or GE), passing a theoretical or excess amounts of electricity (Q/Qt = 1–3). Pt or 

glassy carbon (GC) electrodes were used. 

The amino compounds 1e–6e gave thiocyanates 1f–6f with yields 64–89% (under 

CPE at EpoxSCN-) and 57–71% (under GE) at Q/Qt = 1 (Table 4, entries 1–6) when imple-

menting approach A (see Scheme 14).  
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(entry 6), 20–25 °C, NH4SCN (3–20 mmol), pyrazole (entries 1–5, 7–9) or its hydrochloride (entry 6) (1–6 mmol), divided 
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Figure 1. CV curves on Pt working electrode in 0.1M NaClO4 in MeCN,  = 0.10 V‧s−1. (А) NH4SCN (0.002M)—1; 

3-methyl-1H-pyrazol-5-amine 1e (0.002M)—2; 3-methyl-4-thiocyanato-1H-pyrazol-5-amine 1f (0.002M)—3; mixture 

NH4SCN/azole 1e (1:1) with the reverse scan from 0.60 V—4; the same on the reverse scan from 1.45V—5; (B) NH4SCN 

(0.002M)—1; 2-methyl-5-thiophen-2-yl-7-(trifluoromethyl)pyrazolo[1,5-a]pyrimidine 10e—2; 

2-methyl-3-thiocyanato-5-thiophen-2-yl-7-(trifluoromethyl)pyrazolo[1,5-a]pyrimidine 10f—3; mixture NH4SCN/ azole 

10e (1:1) on the reverse scan from 1.20 V—4; the same on the reverse scan from 2.10 V—5. 

3.2.2. Electrosynthesis 

Electrolyses were carried out in 0.1M solution of NaClO4 in MeCN (MeCN–H2O) in 

undivided or divided cells (UC or DC) in controlled-potential or galvanostatic mode 

(CPE or GE), passing a theoretical or excess amounts of electricity (Q/Qt = 1–3). Pt or 

glassy carbon (GC) electrodes were used. 

The amino compounds 1e–6e gave thiocyanates 1f–6f with yields 64–89% (under 

CPE at EpoxSCN-) and 57–71% (under GE) at Q/Qt = 1 (Table 4, entries 1–6) when imple-

menting approach A (see Scheme 14).  

Table 4. C–H An thiocyanation of pyrazole derivatives (Az‒H) via (SCN)2 (approach A) 1. 
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(entry 6), 20–25 °C, NH4SCN (3–20 mmol), pyrazole (entries 1–5, 7–9) or its hydrochloride (entry 6) (1–6 mmol), divided 

cell (entries 1–2), undivided cell (entries 3–9), Qt = 193–985 C, Q/Qt = 1 (entries 1–6), Q/Qt = 2 (entries 7–9). All yields were 
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Figure 1. CV curves on Pt working electrode in 0.1M NaClO4 in MeCN,  = 0.10 V‧s−1. (А) NH4SCN (0.002M)—1; 

3-methyl-1H-pyrazol-5-amine 1e (0.002M)—2; 3-methyl-4-thiocyanato-1H-pyrazol-5-amine 1f (0.002M)—3; mixture 

NH4SCN/azole 1e (1:1) with the reverse scan from 0.60 V—4; the same on the reverse scan from 1.45V—5; (B) NH4SCN 

(0.002M)—1; 2-methyl-5-thiophen-2-yl-7-(trifluoromethyl)pyrazolo[1,5-a]pyrimidine 10e—2; 

2-methyl-3-thiocyanato-5-thiophen-2-yl-7-(trifluoromethyl)pyrazolo[1,5-a]pyrimidine 10f—3; mixture NH4SCN/ azole 

10e (1:1) on the reverse scan from 1.20 V—4; the same on the reverse scan from 2.10 V—5. 

3.2.2. Electrosynthesis 

Electrolyses were carried out in 0.1M solution of NaClO4 in MeCN (MeCN–H2O) in 

undivided or divided cells (UC or DC) in controlled-potential or galvanostatic mode 

(CPE or GE), passing a theoretical or excess amounts of electricity (Q/Qt = 1–3). Pt or 

glassy carbon (GC) electrodes were used. 

The amino compounds 1e–6e gave thiocyanates 1f–6f with yields 64–89% (under 

CPE at EpoxSCN-) and 57–71% (under GE) at Q/Qt = 1 (Table 4, entries 1–6) when imple-

menting approach A (see Scheme 14).  

Table 4. C–H An thiocyanation of pyrazole derivatives (Az‒H) via (SCN)2 (approach A) 1. 

Entry Az–H, Az–SCN (Yield, %) [22,122,123,126] Entry Az–H, Az–SCN (Yield, %) [22,122,123,126] 

1 
 

1e 
 

1f (83 2,5,6, 72 2,4,6, 74 2,5,7, 69 3,5,7) 

6 

6e  
6f (86 2,4,6) 

2 

 
2e 

 
2f (87 2,5,6, 78 2,5,7, 71 3,5,7) 

7 

7e 
 

7f (83 2,4,6, 80 2,4,7, 75 2,5,7, 77 3,4,7, 

71 3,5,7) 

3 

3e 3f (65 2,4,6, 57 3,4,6) 8 

8e 
 

8f (85 2,4,6, 82 2,5,6) 4 

4e 4f (75 2,4,6, 68 3,4,6) 

9 

9e 
 

9f (75 2,4,6, 66 2,5,6) 

5 

5e 5f (89 2,4,6, 64 2,5,6) 
1 Electrolysis in 50–85 mL of 0.1M solution of NaClO4 in MeCN-H2O (entries 1–2), MeCN (entries 3–5, 7–9), MeCN–MeOH 

(entry 6), 20–25 °C, NH4SCN (3–20 mmol), pyrazole (entries 1–5, 7–9) or its hydrochloride (entry 6) (1–6 mmol), divided 

cell (entries 1–2), undivided cell (entries 3–9), Qt = 193–985 C, Q/Qt = 1 (entries 1–6), Q/Qt = 2 (entries 7–9). All yields were 

determined for the isolated and purified products; 2 CPE—controlled potential electrolysis (Eanode = 0.70–1.00 V); 3 

8f (85 2,4,6, 82 2,5,6)



Molecules 2021, 26, 4749 11 of 25

Table 4. Cont.

Entry Az–H, Az–SCN (Yield, %) [22,122,123,126] Entry Az–H, Az–SCN (Yield, %) [22,122,123,126]

4

Molecules 2021, 26, x  11 of 24 
 

 

  
(A) (B) 

Figure 1. CV curves on Pt working electrode in 0.1M NaClO4 in MeCN,  = 0.10 V‧s−1. (А) NH4SCN (0.002M)—1; 

3-methyl-1H-pyrazol-5-amine 1e (0.002M)—2; 3-methyl-4-thiocyanato-1H-pyrazol-5-amine 1f (0.002M)—3; mixture 

NH4SCN/azole 1e (1:1) with the reverse scan from 0.60 V—4; the same on the reverse scan from 1.45V—5; (B) NH4SCN 

(0.002M)—1; 2-methyl-5-thiophen-2-yl-7-(trifluoromethyl)pyrazolo[1,5-a]pyrimidine 10e—2; 

2-methyl-3-thiocyanato-5-thiophen-2-yl-7-(trifluoromethyl)pyrazolo[1,5-a]pyrimidine 10f—3; mixture NH4SCN/ azole 

10e (1:1) on the reverse scan from 1.20 V—4; the same on the reverse scan from 2.10 V—5. 

3.2.2. Electrosynthesis 

Electrolyses were carried out in 0.1M solution of NaClO4 in MeCN (MeCN–H2O) in 

undivided or divided cells (UC or DC) in controlled-potential or galvanostatic mode 

(CPE or GE), passing a theoretical or excess amounts of electricity (Q/Qt = 1–3). Pt or 

glassy carbon (GC) electrodes were used. 

The amino compounds 1e–6e gave thiocyanates 1f–6f with yields 64–89% (under 

CPE at EpoxSCN-) and 57–71% (under GE) at Q/Qt = 1 (Table 4, entries 1–6) when imple-

menting approach A (see Scheme 14).  

Table 4. C–H An thiocyanation of pyrazole derivatives (Az‒H) via (SCN)2 (approach A) 1. 

Entry Az–H, Az–SCN (Yield, %) [22,122,123,126] Entry Az–H, Az–SCN (Yield, %) [22,122,123,126] 

1 
 

1e 
 

1f (83 2,5,6, 72 2,4,6, 74 2,5,7, 69 3,5,7) 

6 

6e  
6f (86 2,4,6) 

2 

 
2e 

 
2f (87 2,5,6, 78 2,5,7, 71 3,5,7) 

7 

7e 
 

7f (83 2,4,6, 80 2,4,7, 75 2,5,7, 77 3,4,7, 

71 3,5,7) 

3 

3e 3f (65 2,4,6, 57 3,4,6) 8 

8e 
 

8f (85 2,4,6, 82 2,5,6) 4 

4e 4f (75 2,4,6, 68 3,4,6) 

9 

9e 
 

9f (75 2,4,6, 66 2,5,6) 

5 

5e 5f (89 2,4,6, 64 2,5,6) 
1 Electrolysis in 50–85 mL of 0.1M solution of NaClO4 in MeCN-H2O (entries 1–2), MeCN (entries 3–5, 7–9), MeCN–MeOH 

(entry 6), 20–25 °C, NH4SCN (3–20 mmol), pyrazole (entries 1–5, 7–9) or its hydrochloride (entry 6) (1–6 mmol), divided 

cell (entries 1–2), undivided cell (entries 3–9), Qt = 193–985 C, Q/Qt = 1 (entries 1–6), Q/Qt = 2 (entries 7–9). All yields were 

determined for the isolated and purified products; 2 CPE—controlled potential electrolysis (Eanode = 0.70–1.00 V); 3 

4e

Molecules 2021, 26, x  11 of 24 
 

 

  
(A) (B) 

Figure 1. CV curves on Pt working electrode in 0.1M NaClO4 in MeCN,  = 0.10 V‧s−1. (А) NH4SCN (0.002M)—1; 

3-methyl-1H-pyrazol-5-amine 1e (0.002M)—2; 3-methyl-4-thiocyanato-1H-pyrazol-5-amine 1f (0.002M)—3; mixture 

NH4SCN/azole 1e (1:1) with the reverse scan from 0.60 V—4; the same on the reverse scan from 1.45V—5; (B) NH4SCN 

(0.002M)—1; 2-methyl-5-thiophen-2-yl-7-(trifluoromethyl)pyrazolo[1,5-a]pyrimidine 10e—2; 

2-methyl-3-thiocyanato-5-thiophen-2-yl-7-(trifluoromethyl)pyrazolo[1,5-a]pyrimidine 10f—3; mixture NH4SCN/ azole 

10e (1:1) on the reverse scan from 1.20 V—4; the same on the reverse scan from 2.10 V—5. 

3.2.2. Electrosynthesis 

Electrolyses were carried out in 0.1M solution of NaClO4 in MeCN (MeCN–H2O) in 

undivided or divided cells (UC or DC) in controlled-potential or galvanostatic mode 

(CPE or GE), passing a theoretical or excess amounts of electricity (Q/Qt = 1–3). Pt or 

glassy carbon (GC) electrodes were used. 

The amino compounds 1e–6e gave thiocyanates 1f–6f with yields 64–89% (under 

CPE at EpoxSCN-) and 57–71% (under GE) at Q/Qt = 1 (Table 4, entries 1–6) when imple-

menting approach A (see Scheme 14).  

Table 4. C–H An thiocyanation of pyrazole derivatives (Az‒H) via (SCN)2 (approach A) 1. 

Entry Az–H, Az–SCN (Yield, %) [22,122,123,126] Entry Az–H, Az–SCN (Yield, %) [22,122,123,126] 

1 
 

1e 
 

1f (83 2,5,6, 72 2,4,6, 74 2,5,7, 69 3,5,7) 

6 

6e  
6f (86 2,4,6) 

2 

 
2e 

 
2f (87 2,5,6, 78 2,5,7, 71 3,5,7) 

7 

7e 
 

7f (83 2,4,6, 80 2,4,7, 75 2,5,7, 77 3,4,7, 

71 3,5,7) 

3 

3e 3f (65 2,4,6, 57 3,4,6) 8 

8e 
 

8f (85 2,4,6, 82 2,5,6) 4 

4e 4f (75 2,4,6, 68 3,4,6) 

9 

9e 
 

9f (75 2,4,6, 66 2,5,6) 

5 

5e 5f (89 2,4,6, 64 2,5,6) 
1 Electrolysis in 50–85 mL of 0.1M solution of NaClO4 in MeCN-H2O (entries 1–2), MeCN (entries 3–5, 7–9), MeCN–MeOH 

(entry 6), 20–25 °C, NH4SCN (3–20 mmol), pyrazole (entries 1–5, 7–9) or its hydrochloride (entry 6) (1–6 mmol), divided 

cell (entries 1–2), undivided cell (entries 3–9), Qt = 193–985 C, Q/Qt = 1 (entries 1–6), Q/Qt = 2 (entries 7–9). All yields were 

determined for the isolated and purified products; 2 CPE—controlled potential electrolysis (Eanode = 0.70–1.00 V); 3 

4f (75 2,4,6, 68 3,4,6)

9

Molecules 2021, 26, x  11 of 24 
 

 

  
(A) (B) 

Figure 1. CV curves on Pt working electrode in 0.1M NaClO4 in MeCN,  = 0.10 V‧s−1. (А) NH4SCN (0.002M)—1; 

3-methyl-1H-pyrazol-5-amine 1e (0.002M)—2; 3-methyl-4-thiocyanato-1H-pyrazol-5-amine 1f (0.002M)—3; mixture 

NH4SCN/azole 1e (1:1) with the reverse scan from 0.60 V—4; the same on the reverse scan from 1.45V—5; (B) NH4SCN 

(0.002M)—1; 2-methyl-5-thiophen-2-yl-7-(trifluoromethyl)pyrazolo[1,5-a]pyrimidine 10e—2; 

2-methyl-3-thiocyanato-5-thiophen-2-yl-7-(trifluoromethyl)pyrazolo[1,5-a]pyrimidine 10f—3; mixture NH4SCN/ azole 

10e (1:1) on the reverse scan from 1.20 V—4; the same on the reverse scan from 2.10 V—5. 

3.2.2. Electrosynthesis 

Electrolyses were carried out in 0.1M solution of NaClO4 in MeCN (MeCN–H2O) in 

undivided or divided cells (UC or DC) in controlled-potential or galvanostatic mode 

(CPE or GE), passing a theoretical or excess amounts of electricity (Q/Qt = 1–3). Pt or 

glassy carbon (GC) electrodes were used. 

The amino compounds 1e–6e gave thiocyanates 1f–6f with yields 64–89% (under 

CPE at EpoxSCN-) and 57–71% (under GE) at Q/Qt = 1 (Table 4, entries 1–6) when imple-

menting approach A (see Scheme 14).  

Table 4. C–H An thiocyanation of pyrazole derivatives (Az‒H) via (SCN)2 (approach A) 1. 

Entry Az–H, Az–SCN (Yield, %) [22,122,123,126] Entry Az–H, Az–SCN (Yield, %) [22,122,123,126] 

1 
 

1e 
 

1f (83 2,5,6, 72 2,4,6, 74 2,5,7, 69 3,5,7) 

6 

6e  
6f (86 2,4,6) 

2 

 
2e 

 
2f (87 2,5,6, 78 2,5,7, 71 3,5,7) 

7 

7e 
 

7f (83 2,4,6, 80 2,4,7, 75 2,5,7, 77 3,4,7, 

71 3,5,7) 

3 

3e 3f (65 2,4,6, 57 3,4,6) 8 

8e 
 

8f (85 2,4,6, 82 2,5,6) 4 

4e 4f (75 2,4,6, 68 3,4,6) 

9 

9e 
 

9f (75 2,4,6, 66 2,5,6) 

5 

5e 5f (89 2,4,6, 64 2,5,6) 
1 Electrolysis in 50–85 mL of 0.1M solution of NaClO4 in MeCN-H2O (entries 1–2), MeCN (entries 3–5, 7–9), MeCN–MeOH 

(entry 6), 20–25 °C, NH4SCN (3–20 mmol), pyrazole (entries 1–5, 7–9) or its hydrochloride (entry 6) (1–6 mmol), divided 

cell (entries 1–2), undivided cell (entries 3–9), Qt = 193–985 C, Q/Qt = 1 (entries 1–6), Q/Qt = 2 (entries 7–9). All yields were 

determined for the isolated and purified products; 2 CPE—controlled potential electrolysis (Eanode = 0.70–1.00 V); 3 

9e

Molecules 2021, 26, x  11 of 24 
 

 

  
(A) (B) 

Figure 1. CV curves on Pt working electrode in 0.1M NaClO4 in MeCN,  = 0.10 V‧s−1. (А) NH4SCN (0.002M)—1; 

3-methyl-1H-pyrazol-5-amine 1e (0.002M)—2; 3-methyl-4-thiocyanato-1H-pyrazol-5-amine 1f (0.002M)—3; mixture 

NH4SCN/azole 1e (1:1) with the reverse scan from 0.60 V—4; the same on the reverse scan from 1.45V—5; (B) NH4SCN 

(0.002M)—1; 2-methyl-5-thiophen-2-yl-7-(trifluoromethyl)pyrazolo[1,5-a]pyrimidine 10e—2; 

2-methyl-3-thiocyanato-5-thiophen-2-yl-7-(trifluoromethyl)pyrazolo[1,5-a]pyrimidine 10f—3; mixture NH4SCN/ azole 

10e (1:1) on the reverse scan from 1.20 V—4; the same on the reverse scan from 2.10 V—5. 

3.2.2. Electrosynthesis 

Electrolyses were carried out in 0.1M solution of NaClO4 in MeCN (MeCN–H2O) in 

undivided or divided cells (UC or DC) in controlled-potential or galvanostatic mode 

(CPE or GE), passing a theoretical or excess amounts of electricity (Q/Qt = 1–3). Pt or 

glassy carbon (GC) electrodes were used. 

The amino compounds 1e–6e gave thiocyanates 1f–6f with yields 64–89% (under 

CPE at EpoxSCN-) and 57–71% (under GE) at Q/Qt = 1 (Table 4, entries 1–6) when imple-

menting approach A (see Scheme 14).  

Table 4. C–H An thiocyanation of pyrazole derivatives (Az‒H) via (SCN)2 (approach A) 1. 

Entry Az–H, Az–SCN (Yield, %) [22,122,123,126] Entry Az–H, Az–SCN (Yield, %) [22,122,123,126] 

1 
 

1e 
 

1f (83 2,5,6, 72 2,4,6, 74 2,5,7, 69 3,5,7) 

6 

6e  
6f (86 2,4,6) 

2 

 
2e 

 
2f (87 2,5,6, 78 2,5,7, 71 3,5,7) 

7 

7e 
 

7f (83 2,4,6, 80 2,4,7, 75 2,5,7, 77 3,4,7, 

71 3,5,7) 

3 

3e 3f (65 2,4,6, 57 3,4,6) 8 

8e 
 

8f (85 2,4,6, 82 2,5,6) 4 

4e 4f (75 2,4,6, 68 3,4,6) 

9 

9e 
 

9f (75 2,4,6, 66 2,5,6) 

5 

5e 5f (89 2,4,6, 64 2,5,6) 
1 Electrolysis in 50–85 mL of 0.1M solution of NaClO4 in MeCN-H2O (entries 1–2), MeCN (entries 3–5, 7–9), MeCN–MeOH 

(entry 6), 20–25 °C, NH4SCN (3–20 mmol), pyrazole (entries 1–5, 7–9) or its hydrochloride (entry 6) (1–6 mmol), divided 

cell (entries 1–2), undivided cell (entries 3–9), Qt = 193–985 C, Q/Qt = 1 (entries 1–6), Q/Qt = 2 (entries 7–9). All yields were 

determined for the isolated and purified products; 2 CPE—controlled potential electrolysis (Eanode = 0.70–1.00 V); 3 

9f (75 2,4,6, 66 2,5,6)
5

Molecules 2021, 26, x  11 of 24 
 

 

  
(A) (B) 

Figure 1. CV curves on Pt working electrode in 0.1M NaClO4 in MeCN,  = 0.10 V‧s−1. (А) NH4SCN (0.002M)—1; 

3-methyl-1H-pyrazol-5-amine 1e (0.002M)—2; 3-methyl-4-thiocyanato-1H-pyrazol-5-amine 1f (0.002M)—3; mixture 

NH4SCN/azole 1e (1:1) with the reverse scan from 0.60 V—4; the same on the reverse scan from 1.45V—5; (B) NH4SCN 

(0.002M)—1; 2-methyl-5-thiophen-2-yl-7-(trifluoromethyl)pyrazolo[1,5-a]pyrimidine 10e—2; 

2-methyl-3-thiocyanato-5-thiophen-2-yl-7-(trifluoromethyl)pyrazolo[1,5-a]pyrimidine 10f—3; mixture NH4SCN/ azole 

10e (1:1) on the reverse scan from 1.20 V—4; the same on the reverse scan from 2.10 V—5. 

3.2.2. Electrosynthesis 

Electrolyses were carried out in 0.1M solution of NaClO4 in MeCN (MeCN–H2O) in 

undivided or divided cells (UC or DC) in controlled-potential or galvanostatic mode 

(CPE or GE), passing a theoretical or excess amounts of electricity (Q/Qt = 1–3). Pt or 

glassy carbon (GC) electrodes were used. 

The amino compounds 1e–6e gave thiocyanates 1f–6f with yields 64–89% (under 

CPE at EpoxSCN-) and 57–71% (under GE) at Q/Qt = 1 (Table 4, entries 1–6) when imple-

menting approach A (see Scheme 14).  

Table 4. C–H An thiocyanation of pyrazole derivatives (Az‒H) via (SCN)2 (approach A) 1. 

Entry Az–H, Az–SCN (Yield, %) [22,122,123,126] Entry Az–H, Az–SCN (Yield, %) [22,122,123,126] 

1 
 

1e 
 

1f (83 2,5,6, 72 2,4,6, 74 2,5,7, 69 3,5,7) 

6 

6e  
6f (86 2,4,6) 

2 

 
2e 

 
2f (87 2,5,6, 78 2,5,7, 71 3,5,7) 

7 

7e 
 

7f (83 2,4,6, 80 2,4,7, 75 2,5,7, 77 3,4,7, 

71 3,5,7) 

3 

3e 3f (65 2,4,6, 57 3,4,6) 8 

8e 
 

8f (85 2,4,6, 82 2,5,6) 4 

4e 4f (75 2,4,6, 68 3,4,6) 

9 

9e 
 

9f (75 2,4,6, 66 2,5,6) 

5 

5e 5f (89 2,4,6, 64 2,5,6) 
1 Electrolysis in 50–85 mL of 0.1M solution of NaClO4 in MeCN-H2O (entries 1–2), MeCN (entries 3–5, 7–9), MeCN–MeOH 

(entry 6), 20–25 °C, NH4SCN (3–20 mmol), pyrazole (entries 1–5, 7–9) or its hydrochloride (entry 6) (1–6 mmol), divided 

cell (entries 1–2), undivided cell (entries 3–9), Qt = 193–985 C, Q/Qt = 1 (entries 1–6), Q/Qt = 2 (entries 7–9). All yields were 

determined for the isolated and purified products; 2 CPE—controlled potential electrolysis (Eanode = 0.70–1.00 V); 3 

5e

Molecules 2021, 26, x  11 of 24 
 

 

  
(A) (B) 

Figure 1. CV curves on Pt working electrode in 0.1M NaClO4 in MeCN,  = 0.10 V‧s−1. (А) NH4SCN (0.002M)—1; 

3-methyl-1H-pyrazol-5-amine 1e (0.002M)—2; 3-methyl-4-thiocyanato-1H-pyrazol-5-amine 1f (0.002M)—3; mixture 

NH4SCN/azole 1e (1:1) with the reverse scan from 0.60 V—4; the same on the reverse scan from 1.45V—5; (B) NH4SCN 

(0.002M)—1; 2-methyl-5-thiophen-2-yl-7-(trifluoromethyl)pyrazolo[1,5-a]pyrimidine 10e—2; 

2-methyl-3-thiocyanato-5-thiophen-2-yl-7-(trifluoromethyl)pyrazolo[1,5-a]pyrimidine 10f—3; mixture NH4SCN/ azole 

10e (1:1) on the reverse scan from 1.20 V—4; the same on the reverse scan from 2.10 V—5. 

3.2.2. Electrosynthesis 

Electrolyses were carried out in 0.1M solution of NaClO4 in MeCN (MeCN–H2O) in 

undivided or divided cells (UC or DC) in controlled-potential or galvanostatic mode 

(CPE or GE), passing a theoretical or excess amounts of electricity (Q/Qt = 1–3). Pt or 

glassy carbon (GC) electrodes were used. 

The amino compounds 1e–6e gave thiocyanates 1f–6f with yields 64–89% (under 

CPE at EpoxSCN-) and 57–71% (under GE) at Q/Qt = 1 (Table 4, entries 1–6) when imple-

menting approach A (see Scheme 14).  

Table 4. C–H An thiocyanation of pyrazole derivatives (Az‒H) via (SCN)2 (approach A) 1. 

Entry Az–H, Az–SCN (Yield, %) [22,122,123,126] Entry Az–H, Az–SCN (Yield, %) [22,122,123,126] 

1 
 

1e 
 

1f (83 2,5,6, 72 2,4,6, 74 2,5,7, 69 3,5,7) 

6 

6e  
6f (86 2,4,6) 

2 

 
2e 

 
2f (87 2,5,6, 78 2,5,7, 71 3,5,7) 

7 

7e 
 

7f (83 2,4,6, 80 2,4,7, 75 2,5,7, 77 3,4,7, 

71 3,5,7) 

3 

3e 3f (65 2,4,6, 57 3,4,6) 8 

8e 
 

8f (85 2,4,6, 82 2,5,6) 4 

4e 4f (75 2,4,6, 68 3,4,6) 

9 

9e 
 

9f (75 2,4,6, 66 2,5,6) 

5 

5e 5f (89 2,4,6, 64 2,5,6) 
1 Electrolysis in 50–85 mL of 0.1M solution of NaClO4 in MeCN-H2O (entries 1–2), MeCN (entries 3–5, 7–9), MeCN–MeOH 

(entry 6), 20–25 °C, NH4SCN (3–20 mmol), pyrazole (entries 1–5, 7–9) or its hydrochloride (entry 6) (1–6 mmol), divided 

cell (entries 1–2), undivided cell (entries 3–9), Qt = 193–985 C, Q/Qt = 1 (entries 1–6), Q/Qt = 2 (entries 7–9). All yields were 

determined for the isolated and purified products; 2 CPE—controlled potential electrolysis (Eanode = 0.70–1.00 V); 3 

5f (89 2,4,6, 64 2,5,6)
1 Electrolysis in 50–85 mL of 0.1 M solution of NaClO4 in MeCN-H2O (entries 1–2), MeCN (entries 3–5, 7–9), MeCN–MeOH (entry 6),
20–25 ◦C, NH4SCN (3–20 mmol), pyrazole (entries 1–5, 7–9) or its hydrochloride (entry 6) (1–6 mmol), divided cell (entries 1–2), undivided
cell (entries 3–9), Qt = 193–985 C, Q/Qt = 1 (entries 1–6), Q/Qt = 2 (entries 7–9). All yields were determined for the isolated and purified
products; 2 CPE—controlled potential electrolysis (Eanode = 0.70–1.00 V); 3 GE—galvanostatic electrolysis (janode = 2.50–12.50 mA·cm−2);
4 Pt electrodes; 5 GC electrodes; 6 milligram scale of electrosynthesis; 7 gram scale of electrosynthesis.
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15f (69 3,5, 63 4,5, 47
4,6)

1 Electrolysis in 60 mL 0.1 M solution of NaClO4 in MeCN, 20–25 ◦C, undivided cell, Qt = 193 C. All yields was determined for the isolated
and purified products; 2 it was determined by CV (working electrode—Pt, reference electrode—SCE, ν = 0.10 V·s−1); 3 Approach B: KSCN
(4 mmol), ZnCl2 (2 mmol), pyrazole (1 mmol), CPE (Eanode = 1.00 V), Qt =193 C, Q/Qt = 3; 4 Approach C: NH4SCN (4 mmol), pyrazole
(1 mmol), CPE (Eanode = 1.75–1.88 V), Q/Qt = 3; 5 Pt electrodes; 6 GC electrodes.

3.2.1. CV studies and the Choice of Optimal Approach

Figure 1 shows CV curves of NH4SCN and its mixtures with 3-methyl-1H-pyrazol-5-
amine (1e), 2-methyl-5-thiophen-2-yl-7-(trifluoromethyl) pyrazolo[1,5-a]pyrimidine (10e),
as well as curves of individual compounds and their thiocyanato products (1e,10e,1f,10f)
[125,126]. The CV of NH4SCN (curve 1, Figure 1A,B) has the anodic peak A1 (Ep

ox = 0.70 V)
of the thiocyanate ion and a cathodic peak B1 (Ep

red = 0.34 V) of the thiocyanogen. The peak
B1 disappeared after the addition of pyrazole 1e and did not change after the addition of
pyrazole 10e (cf. corresponding curves 1 and 4). This clearly shows that pyrazole 1e reacts
rapidly with (SCN)2 (see Scheme 13, route B1) and approach A (Scheme 14) is suitable for
its thiocyanation. From the other side, the pyrazole 10e does not react with (SCN)2 and
approaches B and C may be suitable for its thiocyanation. Note also that on full scans,
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peaks A3 of thiocyanates 1f,10f were observed, in addition to the peaks A2 of pyrazoles
1e,10e (see curve 5, Figure 1A,B).
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1H-pyrazol-5-amine 1e (0.002M)—2; 3-methyl-4-thiocyanato-1H-pyrazol-5-amine 1f (0.002M)—3; mixture NH4SCN/azole
1e (1:1) with the reverse scan from 0.60 V—4; the same on the reverse scan from 1.45V—5; (B) NH4SCN (0.002M)—1;
2-methyl-5-thiophen-2-yl-7-(trifluoromethyl)pyrazolo[1,5-a]pyrimidine 10e—2; 2-methyl-3-thiocyanato-5-thiophen-2-yl-
7-(trifluoromethyl)pyrazolo[1,5-a]pyrimidine 10f—3; mixture NH4SCN/ azole 10e (1:1) on the reverse scan from 1.20 V—4;
the same on the reverse scan from 2.10 V—5.

3.2.2. Electrosynthesis

Electrolyses were carried out in 0.1M solution of NaClO4 in MeCN (MeCN–H2O) in
undivided or divided cells (UC or DC) in controlled-potential or galvanostatic mode (CPE
or GE), passing a theoretical or excess amounts of electricity (Q/Qt = 1–3). Pt or glassy
carbon (GC) electrodes were used.

The amino compounds 1e–6e gave thiocyanates 1f–6f with yields 64–89% (under CPE
at Ep

ox
SCN

−) and 57–71% (under GE) at Q/Qt = 1 (Table 4, entries 1–6) when implementing
approach A (see Scheme 14).

From the less reactive pyrazolo[1,5-a]pyrimidines 7e–9e, products 7f–9f were obtained
with yields 66–85% at Q/Qt = 2 (entries 7–9). The electrode material affected things
differently: the yield of thiocyanate 2a (entry 1) was 83% (GC) and 72% (Pt), while the yield
of thiocyanate 2g (entry 7) was 64% (GC) and 89% (Pt). Most of the processes (entries 3–9)
were successfully carried out in an undivided cell. The possibility of scaling the process
was also shown (entries 1, 2 and 7).

It was noted [121–123,125] that approach A is not suitable for the thiocyanation of
hardly oxidizable (Ep

ox > 1.70 V) pyrazoles 10e–15e with acceptor substituents (Table 5)
and leads to trace amounts of target thiocyanates 10f–15f and polythiocyanogen (see
Scheme 13, route B3). In this case, the process proceeds quite efficiently with an increase
in the reactivity of the thiocyanogen (Scheme 14, approach B) or the initial pyrazole
(approach C). As a result, CPE in the presence of ZnCl2 activating additives (approach B)
allowed us to obtain products 10f–15f with yields 69–81% [121,123], while metal-free CPE
at Ep

ox
AzH with Q/Qt = 3 (approach C) also led to the products 10f–15f with smaller yields

of 47–65% [122,123].
Note that the possibility of approach C realization can also be tested by CV: a decrease

in the peak B1 is observed on the full scan (cf. curves 5 and 1, Figure 1B), which corresponds
to the interaction of the thiocyanate ion and the pyrazole cation radical via the ECE
mechanism [122,123,132] (see Scheme 14, approach C, and Scheme 3, route I).

In addition to approaches A–C, an equally effective approach was developed [41]
based on the HCl-catalyzed condensation of previously obtained 4-thiocyanatopyrazoles
1e, 2e (see entries 1 and 2, Table 4) with 1,3-dicarbonyl compounds or their derivatives
(Scheme 15). As a result, 3-thiocyanatopyrazolo[1,5-a]pyrimidines both without sub-
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stituents and with donor (acceptor) substituents in the pyrimidine ring were obtained with
yields of 77–96% [126].
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Scheme 15. Synthesis of 3-thiocyanatopyrazolo[1,5-a]pyrimidines and pyrazolo[1,5-a]pyrimidine-3-thiols.

Developing this direction, the opportunity of transformation of the SCN group into
the SH group [94,123] was shown, which opens the way to thiols as promising nucleophiles
for C–H functionalization (e.g., see [133–135]). Hydrolysis with HCl was the most effective
(yields of thiols 7g, 16g, 18g were 61–77%), while the use of chemical reductants or strong
acids (LiAlH4, NaBH4, Zn in AcOH, HClO4, H2SO4) was ineffective.

Thus, a series of thiocyanates of substituted pyrazoles and pyrazolo[1,5-a]pyrimidines
were obtained on the basis of electrolysis of the “thiocyanate ion/pyrazole” mixture.

In addition, during the development of research on the electrosynthesis of aryl thio-
cyanates [22] and N-arylpyrazoles [131,136–138] we showed [124] the possibility of synthe-
sizing new molecules with pyrazole and thiocyanate fragments (Scheme 16) as promising
hybrid polyfunctional [139] structures.
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Scheme 16. N–H An arylation of 4-nitropyrazole followed by C–H An thiocyanation of resulting
N-arylazoles.

The N–H arylation of pyrazole 1h was carried out by activating its N–H bond (i) fol-
lowed by the introduction of electrolysis with N-methylpyrrole or N,N-dimethylaniline
(ii). In the latter case, the reaction proceeded selectively at the Me group without affecting
the aromatic ring. Subsequent C–H An thiocyanation (iii) of the isolated N-arylazoles 1i,
2i led to the target products 1j, 2j.

3.3. Antifungal and Antibacterial Activity of Thiocyanated Pyrazole Derivatives

Tests for antifungal (C. albicans, A. niger) and antibacterial (S. aureus, E. coli) ac-
tivity [91,94,123,124] showed that thiocyanate-pyrazoles are more active against fungi
than bacteria. The greatest activity is observed against A. niger at thiocyanate 7f [94]
and thiocyanatoazolylaniline 2j [124], whose minimum inhibitory concentration (MIC) is
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0.24–0.48 µg/mL (it is superior to the antifungal drugs amphotericin B and fluconazole
and is comparable to itraconazole).

The contribution of thiocyanate and pyrazole fragments to antifungal and antibacte-
rial activity was clearly shown in the individual examples (Figure 2). Thus, the activity
of compound 1j increased more than 2000-fold for A. niger and more than 16-fold for
C. albicans after the introduction of the SCN group. The presence of 4-nitropyrazole in
4-thiocyanatoaniline 2j’ provided a selective increase in antifungal activity by a factor of
16–64, while N-arylazole 2i was inactive in all cases.
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Therefore, this Section is devoted to the efficient C–H An thiocyanation of various
pyrazole derivatives (in some cases, their N–H An arylation), leading to pharmacolog-
ically active target mono- and polyfunctional products. The next Section is devoted to
the N–H functionalization of amino pyrazoles followed by their N–N coupling and
obtaining azopyrazoles.

4. (Electro)oxidative N–N Coupling of Aminopyrazoles

Azoarenes are widely used in practice: from dyes and pharmaceuticals [140–142]
to reagents in syntheses [143,144] and energy-rich materials [145,146]. One of the most
popular methods for the synthesis of azoarenes is the oxidation of corresponding amines
(Scheme 17), predominantly by chemical oxidants (BaMnO4 [147], Pb(OAc)4 [148], HgO [149],
K2FeO4 [150], TCICA [151], t-BuOI [152]) or oxidation systems (CuBr-pyridine-O2 [153], I2-t-
BuOOH [154], t-BuOCl-NaI [155]). The synthesis of polyfunctional azopyrazoles by silver
catalyzed cascade conversion of diazo compounds [156] is also of interest.
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At the same time, a more promising electrochemical approach is poorly studied. In par-
ticular, electrosyntheses of azobenzene on the Pt anode [157,158] or N,N’-bis(morpholino)di-
azene on the NiO(OH) anode [159] are described. Note that NiO(OH) is one of the popular
electrogenerated redox mediators [80,159]. The use of such redox-mediators is a trend in
modern electroorganic chemistry [18], since it allows the processes to be carried out under
milder conditions, increasing their efficiency and selectivity. This Section describes the orig-
inal approaches to the synthesis of azopyrazoles using electrogenerated redox mediators
NiO(OH) [160–162] and Br2 [163], or electrogenerated hypohalites as oxidants [164,165].

4.1. (Electro)oxidative N-N Coupling of Aminopyrazoles: Approaches and General Patterns

One-stage Approach A (Scheme 18) is carried out in alkaline medium via the an-
odic dissolution of the Ni and the formation of adsorbed Ni(OH)2, followed by its an-
odic oxidation to adsorbed NiO(OH). It oxidizes aminopyrazoles (Az–NH2) to azopy-
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razoles (Az–N = N–Az) and forms Ni(OH)2, after which the cycle repeats [80,161]. In
Approach B, the metal-free oxidant is Br2 [164], which is effectively electro(re)generated
on the ruthenium–titanium oxide anode (RTOA).
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and Br2 (Approach B).

In addition, special voltammetric tests showed that an increase in the Ni(OH)2 peak
(Figure 3, A, peak A1, Ep

ox = 0.46 V) or a decrease in the Br2 peak (Figure 3B, peak
B2, Ep

red = 0.69 V) after the adding of aminopyrazole is proportional to the process effi-
ciency [162,164].
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Figure 3. CV curves, ν = 0.10 V·s−1. (A) On Ni working electrode in 0.2M aq. NaOH: electrogenerated Ni(OH)2—1; after
addition of 1-methyl-1H-pyrazol-3-amine 1k (0.002M)—2; (B) on Pt working electrode in 1M aq. NaNO3: NaBr (0.3M)—1;
after addition of 1-methyl-1H-pyrazol-3-amine 1k (0.002M)—2.

Two-stage approaches (Scheme 19) include preliminary electrogeneration of hy-
pogalites followed by addition of aminopyrazoles [164,165]. Note, that hypohalites exist in
equilibrium forms: predominantly HOCl (HOBr) in a neutral medium, and predominantly
NaOCl (NaOBr) after adding NaOH (approaches C, D, C’, D’, respectively).
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Scheme 19. Two-stage N–N coupling of aminopyrazoles using electrogenerated HOCl (HOBr) or
NaOCl (NaOBr) (Approaches C, D, C’, D’, respectively).

According to the data [80,152,154,155,159,163–165], the possible mechanisms (Scheme 20)
involve the oxidation of 1-methyl-1H-pyrazol-3-amine 1k (step 1k→[Az–NH2]·+) or its
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N–H halogenation (step 1k→[NH–X]) followed by N–H amination to hydrazopyrazole
[NH–NH] and its oxidation to the target azopyrazole 1k–1k (see also Schemes 3 and 9).
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(steps 1k′→[NH–X]’→[NH–NH]′→1k′–1k′(1k′′–1k′′)). These patterns are consistent
with the experimental results below.
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1k’’-1k’’ (87 2) 

4 

 
2k 

 
2k-2k (712, 735) 

10 

 
8k 

 
8k-8k (52 2) 

 
2k’ (25)  

2k’-2k’ (6 5) 
11 

 
9k  

9k-9k8 (67 2) 
5  

3k 
  

3k-3k (86 2) 

12 
 

10k  
10k-10k (93 4, 86 6) 

6 
 

4k  
4k-4k (88 2, 62 3, 70 4) 

1 Electrolysis in 100 mL of supporting electrolyte, 20–25 °C, undivided cell galvanostatic electrolysis; 2 Approach A: 0.5M 

aq. NaOH, NiO(OH) anode, pyrazole (3 mmol), janode = 6 mA‧cm−2, Qt = 579 C, Q/Qt = 1–4; 3 Approach B: 2M aq. NaBr, 

RTOA, pyrazole (3 mmol), janode = 100 mA‧cm−2, 48% HBr additives during electrolysis until reaching pH~7 (entries 1, 8), 

Qt= 579 C, Q/Qt = 1–4; 4Approach C: 1. electrogeneration of NaOBr (HOBr) in 2M aq. NaBr, RTOA, janode = 100 mA‧cm−2, Q 

= 661–1983 C; 2. pyrazole (2 mmol), NaOBr (HOBr) (2–4 mmol), 5h; 5 Approach C’: see Approach C, but with NaOH (6 

mmol) additives; 6 Approach D: 1. electrogeneration of HOCl (NaOCl) in 4M aq. NaCl, RTOA, janode = 161.5 mA‧cm−2, Q= 

588–1764 C; 2. Pyrazole (2 mmol), HOBr (NaOBr) (2–4 mmol), 5h; 7Approach D’: see Approach D, but with NaOH (6 

mmol) additives; 8 it was identified after preparation and isolation of the corresponding methyl ester. 

Nevertheless, approaches C’ and D’ (entries 1 and 4) allow to obtain rather selec-

tively azopyrazoles 1k–1k and 2k–2k (yields 72–75%), and approaches C and D (entry 8) 

open the way to azohalogenopyrazoles 6k”–6k” and 6k”–6k” (yields 79–80%). 

Moreover, the approach A is useful for previously unexplored chemical and elec-

trochemical N–N cross-coupling of aminopyrazoles [162] (Table 7), and yields of the 

target azo compounds 1k–2k and 4k–5k were 48–50%. Such results create prospects for 

obtaining useful multifunctional azo compounds [152,156]. 

Table 7. N–N cross-coupling of aminopyrazoles (Az–NH2) using approach A 1. 

Entry Az1–NH2 H2N–Az2 Az1–N=N–Az2 Yield, % 

1 
 1k 2k 1k-2k 

50 (1k-2k) 

36 (1k-1k) 

37(2k-2k) 

2 

 4k  5k 
4k-5k 

48 (4k-5k) 

29 (1k-1k) 

23(2k-2k) 

1 Electrolysis in 100 mL of 0.5 M aq. NaOH, 20–25 °C, undivided cell,; 2 Approach A: NiO(OH) anode, Ti cathode, pyra-

zole (1.5 mmol), galvanostatic electrolysis (janode = 6 mA‧cm−2), Q = 2Qt= 579 C. 

  

2k
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chemical N–N cross-coupling of aminopyrazoles [162] (Table 7), and yields of the target
azo compounds 1k–2k and 4k–5k were 48–50%. Such results create prospects for obtaining
useful multifunctional azo compounds [152,156].
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Table 7. N–N cross-coupling of aminopyrazoles (Az–NH2) using approach A 1.

Entry Az1–NH2 H2N–Az2 Az1–N=N–Az2 Yield, %
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open the way to azohalogenopyrazoles 6k”–6k” and 6k”–6k” (yields 79–80%). 

Moreover, the approach A is useful for previously unexplored chemical and elec-

trochemical N–N cross-coupling of aminopyrazoles [162] (Table 7), and yields of the 

target azo compounds 1k–2k and 4k–5k were 48–50%. Such results create prospects for 

obtaining useful multifunctional azo compounds [152,156]. 

Table 7. N–N cross-coupling of aminopyrazoles (Az–NH2) using approach A 1. 

Entry Az1–NH2 H2N–Az2 Az1–N=N–Az2 Yield, % 

1 
 1k 2k 1k-2k 

50 (1k-2k) 

36 (1k-1k) 

37(2k-2k) 

2 

 4k  5k 
4k-5k 

48 (4k-5k) 

29 (1k-1k) 

23(2k-2k) 

1 Electrolysis in 100 mL of 0.5 M aq. NaOH, 20–25 °C, undivided cell,; 2 Approach A: NiO(OH) anode, Ti cathode, pyra-

zole (1.5 mmol), galvanostatic electrolysis (janode = 6 mA‧cm−2), Q = 2Qt= 579 C. 

  

4k-
5k

48 (4k-5k)
29 (1k-1k)
23 (2k-2k)

1 Electrolysis in 100 mL of 0.5 M aq. NaOH, 20–25 ◦C, undivided cell,; 2 Approach A: NiO(OH) anode, Ti cathode, pyrazole (1.5 mmol),
galvanostatic electrolysis (janode = 6 mA·cm−2), Q = 2Qt = 579 C.

5. Conclusions

This review is the first step in summarizing the data on promising, but poorly studied
electrooxidative functionalization of C-H and N-H bonds in pyrazole derivatives. It paves
the way for the efficient synthesis of C-Cl, C-Br, C-I, C-S and N-N coupling products using
cheap, affordable and environmentally promising electric currents.

Additional advantages are the predominantly galvanostatic electrolysis mode and
the reusability of commercially available electrodes, salts and solvents, as well as the gram-
scalability of the processes. In half of the cases, a simple isolation of pure target products
without chromatography is also possible. Moreover, the key regularities of the correspond-
ing processes are considered, including the dependence of the efficiency of functionalization
of pyrazoles on their structure and oxidation potential. An increasingly important role is
played by cyclic voltammetry, which makes it possible both to study mechanisms and to
predict the efficiency of synthesis.

All this makes the electrooxidative functionalization of pyrazole-type compounds
very viable for further application and development.
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