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Abstract: On the basis of the finding that various aminoalkyl-substituted chromene and chromane
derivatives possess strong and highly selective in vitro bioactivity against Plasmodium falciparum,
the pathogen responsible for tropical malaria, we performed a structure–activity relationship study
for such compounds. With structures and activity data of 52 congeneric compounds from our
recent studies, we performed a three-dimensional quantitative structure–activity relationship (3D-
QSAR) study using the comparative molecular field analysis (CoMFA) approach as implemented
in the Open3DQSAR software. The resulting model displayed excellent internal and good external
predictive power as well as good robustness. Besides insights into the molecular interactions and
structural features influencing the antiplasmodial activity, this model now provides the possibility to
predict the activity of further untested compounds to guide our further synthetic efforts to develop
even more potent antiplasmodial chromenes/chromanes.

Keywords: aminoalkyl benzopyran; aminoalkyl chromene; aminoalkyl chromane; Plasmodium falciparum;
malaria; structure–activity relationship; 3D-QSAR

1. Introduction

Malaria is one of the most life-threatening infectious diseases. It is caused by eu-
karyotic blood parasites of the genus Plasmodium and spread by an insect vector, female
Anopheles mosquito. The World Health Organization (WHO) estimated a worldwide
229 million cases and 409,000 deaths by malaria in 2019 [1]. The decline in these figures
observed in the last decade has been slowed down, at least partly because of the COVID-
19 pandemic, so that higher than expected malaria morbidity and mortality have been
predicted for coming years by the WHO [1].

Increasing resistance of the parasites, in particular Plasmodium falciparum (Pf ) causing
tropical malaria, against existing therapies leads to a rise in treatment failures. Continuous
efforts are therefore necessary to discover new chemical entities with antiplasmodial
activity.

2H-Chromene (2H-1-benzopyran) and chromane (3,4-dihydro-2H-1-benzopyran)
derivatives with aminoalkyl substituents at C-6 were recently discovered by some of
us to possess strong and selective activity against Pf [2–4]. Starting from the natural prod-
uct encecalol angelate (compound 51 in the present study, see Table 1), which had attracted
our attention in a natural product-oriented search for chemical entities with antiprotozoal
activity [5,6], a series of over 50 congeneric compounds of this type was synthesized and
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tested for antiprotozoal activity up to the present. Several of these compounds have demon-
strated impressive in vitro antiplasmodial activity at half-maximal inhibitory concentration
(IC50) values in the nanomolar range, accompanied by high selective toxicity towards the
parasites in comparison with mammalian cells [2–4].

Table 1. Structures and activity against Plasmodium falciparum (pIC50) values of the compounds under study. Note that the
compounds are tabulated and numbered in the order of decreasing activity. Unless otherwise stated, the C-1′ (R)-enantiomer
was used in case of compounds with a chiral center at this position (see the Materials and Methods section).
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28 25 [4] B PhCH2NH(CH2)3‒ OH H 6.01 

29 12o [2] A Ph(CH2)3N(CH)3CH(CH3)‒ OCH3 - 5.91 

30 R-10 [3] A PhCH2N(CH3)C*H(CH3)‒ [*(R)] OCH3 - 5.91 

31 S-10 [3] A PhCH2N(CH3)C*H(CH3)‒ [*(S)] OCH3 - 5.89 

32 14d [2] B Ph(CH2)4NHCH(CH3)‒ OCH3 H 5.87 

33 12d [2] A Ph(CH2)4NHCH(CH3)‒ OCH3 - 5.85 

34 14a [2] B PhCH2NHCH(CH3)‒ OCH3 H 5.82 

35 14c [2] B Ph(CH2)3NHCH(CH3)‒ OCH3 H 5.67 

36 12k [2]a A 
(C2H5)2N(CH2)3C*(CH3)NHC**H(CH3)‒ [*(S), 

**(R)] 
OCH3 - 5.62 

Compound Number Number in [Reference] Type R1 R2 R3 pIC50

1 15b [2] A Ph(CH2)3NHCH(CH3)- OH - 8.00

2 8b [4] B Ph(CH2)2NHCH2- - OH 8.00

3 19c [4] B Ph(CH2)3NHCH2CH(OH)- OH H 7.77

4 R-2 [3] A PhCH2NHC*H(CH3)- [*(R)] OH - 7.59

5 9c [4] B Ph(CH2)3NHCH2- OH H 7.42

6 8a [4] B PhCH2NHCH2- - OH 7.28

7 9d [4] B Ph(CH2)4NHCH2- OH H 7.15

8 10b [4] A Ph(CH2)2NHCH2- OH H 7.12

9 10d [4] A Ph(CH2)4NHCH2- OH H 7.10

10 10c [4] A Ph(CH2)3NHCH2- OH H 7.09

11 9b [4] B Ph(CH2)2NHCH2- OH H 7.09

12 9a [4] B PhCH2NHCH2- OH H 7.00

13 19a [4] B PhCH2NHCH2CH(OH)- OH H 7.00

14 8c [4] B Ph(CH2)3NHCH2- H OH 6.82

15 10a [4] A PhCH2NHCH2- OH H 6.80

16 8d [4] B Ph(CH2)4NHCH2- H OH 6.75

17 12d [4] C PhCH2NHCH2- - - 6.68

18 12b [4] C Ph(CH2)2NHCH2- - - 6.62

19 R-1 [3] A PhCH2NHC*H(CH3)- [*(R)] OCH3 - 6.55

20 12c [4] C Ph(CH2)3NHCH2- - - 6.43

21 12g [2] A PhC*H(CH3)NHCH(CH3)- [*(S)] OCH3 - 6.43

22 12a [4] C PhCH2NHCH2- - - 6.33

23 12f [2] A PhC*H(CH3)NHCH(CH3)- [*(R)] OCH3 - 6.14

24 S-1 [3] A PhCH2NHC*H(CH3)- [*(S)] OCH3 - 6.13

25 12c [2] A PhCH2NHCH(CH3)- OCH3 - 6.07

26 S-2 [3] A PhCH2NHC*H(CH3)- [*(S)] OH - 6.05

27 12e [2] A p-OCH3-PhCH2NHCH(CH3)- OCH3 - 6.03

28 25 [4] B PhCH2NH(CH2)3- OH H 6.01

29 12o [2] A Ph(CH2)3N(CH)3CH(CH3)- OCH3 - 5.91

30 R-10 [3] A PhCH2N(CH3)C*H(CH3)- [*(R)] OCH3 - 5.91

31 S-10 [3] A PhCH2N(CH3)C*H(CH3)- [*(S)] OCH3 - 5.89

32 14d [2] B Ph(CH2)4NHCH(CH3)- OCH3 H 5.87

33 12d [2] A Ph(CH2)4NHCH(CH3)- OCH3 - 5.85
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Table 1. Cont.

Compound Number Number in [Reference] Type R1 R2 R3 pIC50

34 14a [2] B PhCH2NHCH(CH3)- OCH3 H 5.82

35 14c [2] B Ph(CH2)3NHCH(CH3)- OCH3 H 5.67

36 12k [2] a A (C2H5)2N(CH2)3C*(CH3)NHC**H(CH3)- [*(S), **(R)] OCH3 - 5.62

37 12k [2] a A (C2H5)2N(CH2)3C*(CH3)NHC**H(CH3)- [*(R), **(R)] OCH3 - 5.62

38 12b [2] A Ph(CH2)2NHCH(CH3)- OCH3 - 5.62

39 (S,R)-8 [3] A tertC4H9S+*(O−)NHC**H(CH3)- [*(S), **(R)] OCH3 - 5.61

40 12l [2] A cyclo-C6H11-CH2NHCH(CH3)- OCH3 - 5.61

41 14b [2] B Ph(CH2)2NHCH(CH3)- OCH3 H 5.60

42 14e [2] B CH3(CH2)3NHCH(CH3)- OCH3 H 5.49

43 12j [2] A CH3(CH2)3NHCH(CH3)- OCH3 - 5.38

44 12h [2] A Ph(E)CH=CHCH2NHCH(CH3)- OCH3 - 5.36

45 12i [2] A CH3NHCH(CH3)- OCH3 - 5.09

46 9a [2] A PhCH2OCH(CH3)- OCH3 - 5.02

47 12m [2] A N-morpholino-CH(CH3)- OCH3 - 5.00

48 11a [2] A PhCONHCH(CH3)- OCH3 - 4.94

49 (R,S)-8 [3] A tertC4H9S+*(O−)NHC**H(CH3)- [*(R),**(S)] OCH3 - 4.80

50 12n [2] A N-pyrrolidino-CH(CH3)- OCH3 - 4.79

51 1 [6] A ageloyloxy-CH(CH3)- OCH3 - 4.72

52 11b [2] A PhCH2CONHCH(CH3)- OCH3 - 4.51

53 9b [2] A Ph(CH2)2OCH(CH3)- OCH3 - 4.22
a Compound 12k in reference [3] was obtained and tested as racemic mixture. Two of the four possible stereoisomers, differing in the
configuration at C-3′ of the side chain, were included as separate structures in the current model, both (R)-configured at C-1′, consistent
with the other compounds. * Definition of chiral center denoted * in the same line. ** Definition of chiral center denoted ** in the same line.

With the structures and activity data of 52 congeneric compounds of this series in
hands, we then performed a three-dimensional quantitative structure–activity relationship
(3D-QSAR) study. For this purpose, we chose an approach based on comparative molecular
field analysis (CoMFA), in which the compounds’ interaction energies with virtual probes
in the surrounding space were calculated as molecular interaction fields (MIFs), which
were then analyzed by partial least squares (PLS) regression modeling for correlations with
the activity data. Here, we present the 3D-QSAR model resulting from this study.

2. Results and Discussion
2.1. 3D-QSAR Modeling

Three-dimensional (3D) molecular models of 52 congeneric aminoalkyl chromenes
and chromanes from our previous studies ([2–4,6], for structures, see Table 1) were created
and geometry optimized with the MMFF94x force field as implemented in the Molecular
Operations Environment (MOE, The Chemical Computing Group, Montreal, QC, Canada).
For each structure containing a basic amino group, we created a model of the unprotonated
base as well as for the protonated form. The neutral bases and the protonated salts were
treated as separate data sets. Since 3D-QSAR and the CoMFA method is known to be very
sensitive to molecular alignment, various structural alignments were thus performed (see
the Material and Methods section). An automatic alignment based on pharmacophore
properties as implemented in MOE, on visual inspection, turned out to yield the most
coherent overlap between the structures (see Figure 1B). A manual superposition based
on five atoms within the benzofuran core (Figure 1A) as well as an automatic alignment
using the Open3DAlign program (not shown) yielded much less coherent results. The
aligned molecular models were exported to the Open3DQSAR software [7]. The biological
activity data (originally determined in vitro as half-maximal inhibitory concentrations (IC50
values against Pf in µmol/L) were transformed to pIC50 values, i.e., the negative decadic
logarithm of the IC50 in mol/L, and combined with the structures for the 3D-QSAR study.
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In the 3D-QSAR analyses, molecular interaction fields (MIFs) were generated with an
electrostatic and a steric probe (for details, see the Materials and Methods section) and the
MIF data analyzed for correlations with activity using partial least squares (PLS) regression
and the variable selection methods implemented in Open3DQSAR. Each 3D-QSAR model
was validated with respect to its internal predictivity by leave-one-out cross validation
(LOO-CV) and for its external predictivity by activity predictions for the test set compounds.
A series of models using all 52 structures as training set was initially computed in order to
assess (a) the best molecular alignment and (b) the influence of protonation on the model
quality. It was found that the pharmacophore-based alignment of the non-protonated
structures (Figure 1B) obtained with MOE yielded the best model. It should be noted that
the data set with protonated structures yielded models of much inferior statistical quality
so that only the non-protonated structures were further considered. In order to assess
the 3D-QSAR models’ external predictivity, we divided the compounds into 20 different
training (n = 39) and test sets (n = 14) using different splitting schemes (A-T, see the
Supplementary Materials). Considering various such splits of the data sets is also useful in
terms of assessing the stability of the model, i.e., its sensitivity to the composition of the
training set. All models obtained with the various training/test sets for the non-protonated
molecules in the pharmacophore-based alignment were compared with respect to their
internal and external predictivity (coefficients of determination for the internal predictions
during LOO-CV (Q2) as well as for test set predictions (P2)). The results are shown in
Table 2.
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Figure 1. Molecular alignments generated before 3D-QSAR modeling: (A): manual alignment of
lowest-energy conformers, based on superposition of the benzopyran core; (B): alignment based on
pharmacophore properties generated with the Pharmacophore Elucidate function of MOE. The latter
was used for the 3D-QSAR models.

Table 2. Comparison of the statistical quality of the 3D-QSAR models obtained with the non-protonated molecules in
alignment B (Figure 1) and 20 different training/test set divisions. For a detailed description of the training/test set divisions,
see Table S1.

Model PC R2 (SDEC) F-Test Q2 (SDEPint) P2 (SDEPext)
Progressive Scrambling (Critical

Value: 0.85; Fit Order: 2) [8]

Fitted Qs
2* Q0

2*

A 5 0.9935 (0.0733) 1006.9488 0.7847 (0.4212) 0.4507 (0.6872)

B 5 0.9820 (0.1254) 360.5910 0.8099 (0.4080) 0.3893 (0.6749)

C 5 0.9779 (0.1303) 291.6092 0.7531 (0.4354) 0.6760 (0.6094) 0.5933 0.6980

D 5 0.9750 (0.1406) 257.3185 0.7241 (0.4670) 0.7385 (0.5461)

E 5 0.9801 (0.1294) 325.3210 0.7680 (0.4420) 0.6713 (0.5280) 0.6349 0.7469

F 5 0.9926 (0.0817) 891.0630 0.8849 (0.3233) 0.2737 (0.6719)

G 5 0.9796 (0.1306) 316.6972 0.8126 (0.3957) 0.6935 (0.5140) 0.6284 0.7393

H 4 0.9737 (0.1485) 314.1282 0.8029 (0.4062) 0.5954 (0.5892)
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Table 2. Cont.

Model PC R2 (SDEC) F-Test Q2 (SDEPint) P2 (SDEPext)
Progressive Scrambling (Critical

Value: 0.85; Fit Order: 2) [8]

Fitted Qs
2* Q0

2*

I 4 0.9610 (0.1806) 209.2875 0.6316 (0.5547) 0.7668 (0.4477)

J 5 0.9805 (0.1275) 332.5837 0.8040 (0.4047) 0.6968 (0.5097) 0.6307 0.7420

K 5 0.9806 (0.1273) 333.7178 0.8139 (0.3943) 0.7076 (0.5018) 0.6501 0.7648

L 5 0.9797 (0.1302) 318.8622 0.7008 (0.5001) 0.6731 (0.5304)

M 5 0.9806 (0.1294) 334.3370 0.7922 (0.4240) 0.6600 (0.5099) 0.6157 0.7244

N 5 0.9802 (0.1310) 326.0172 0.8126 (0.4026) 0.5481 (0.5882)

O 3 0.9186 (0.2605) 131.6544 0.7038 (0.4969) 0.5791 (0.6035)

P 5 0.9791 (0.1346) 309.5729 0.8096 (0.4064) 0.4710 (0.6365)

Q 5 0.9852 (0.1111) 440.3674 0.7923 (0.4165) 0.5436 (0.6282)

R 5 0.9909 (0.0836) 721.4217 0.8681 (0.3190) 0.5098 (0.7076)

S 5 0.9928 (0.0755) 903.8373 0.8857 (0.2999) 0.5039 (0.6936)

T 5 0.9810 (0.1264) 341.2076 0.7502 (0.4587) 0.6616 (0.5324) 0.5995 0.7053

mean 4.8 0.9782 (0.1289) 423.3272 0.7853 (0.4188) 0.5905 (0.5855)

All 20 subset divisions yielded models with high R2 and high or at least acceptable
Q2 values. The average number of significant PLS components (PC) was 4.8, i.e., most
models comprised five significant components. The average values of R2 (coefficient of
determination for the training set calibration data), Q2, and P2 among the 20 models were
0.98, 0.79, and 0.59, respectively. Low relative standard deviations (<10%) of these values
indicate low sensitivity to the setup of the training and test sets.

2.2. Assessment of Model Robustness and Applicability Domain (AD)

In order to apply more rigorous validation criteria beyond cross validation, we applied
the progressive scrambling method as implemented in Open3DQSAR, originally proposed
by Clark and Fox [8], to models yielding both Q2 > 0.75 and P2 > 0.65 (seven models,
highlighted in bold letters in Table 1). This method yields a Q0

2* value that is a measure
for model robustness and can be interpreted in analogy to the normal Q2 (i.e., the closer
to 1, the better) [8]. The average Q0

2* of the seven models investigated in this way was
0.73, with model K yielding the best value of 0.77. Model K was hence considered the best
model obtained in this study. A plot of predicted vs. measured activity data in model K is
shown in Figure S1.

Following the recommendations of the OECD (Organization for Economic Coopera-
tion and Development) [9], definition of the AD for model K was achieved through the
leverage method (a distance-based method) [10–13]. The corresponding Williams plot is
shown in Figure 2. It can be observed that none of the compounds exceeded the critical
leverage, h*, whereupon all the compounds can be characterized as being within the AD of
the model. However, compound 18 appeared at a relatively high leverage value, which
would indicate that it has a strong influence on the model (being part of the training set).
On the other hand, two compounds from the training set (2 and 3) and two from the test
set (26 and 53) showed high error in their predictions (residuals above 2σ). For the former
group, the activity was underestimated, whereas for the latter group, it was overestimated.
The limited capacity of the model to correctly predict their antiplasmodial activity might
be simply related to the fact that 2, 3, and 53 possess extreme activity values. In the case
of 26, the excessively overestimated prediction may suggest that this compound behaves
somewhat differently compared to the rest, becoming therefore an outlier to the model.
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The model’s statistical quality in terms of predictive capability, robustness, and ap-
plicability can thus be considered sufficient to make reasonable activity predictions for
untested compounds.

2.3. Interpretation of 3D-QSAR Model K

3D-QSAR based on comparative molecular field analysis has the advantage that the
molecular interactions contributing significantly to the investigated biological activity
can easily be visualized by mapping the PLS coefficients of the most relevant regions in
the MIFs back into the space surrounding the molecules. Thus, visual inspection of the
compounds’ structural features that favorably or unfavorably contribute the activity is
rather straightforward. Such MIF-coefficient plots obtained from model K are depicted in
Figure 3A for the total molecular ensemble as well as for the two most active congeners and
two compounds with very low activity in the data set (compounds 1 and 2, Figure 3B,C,
and compounds 49 and 53, Figure 3D,E).

It should be mentioned here that variables from the steric and electrostatic MIFs
contributed 65 and 35% to the overall model, respectively. Thus, it can be expected that
steric interactions are more important for the interference of these compounds with a
putative common target structure in plasmodia.

The isolated steric maps (Figure 3B,D) showed a rather large green region (labelled S1
in the figure) in which steric/hydrophobic interactions, resulting mainly from the aromatic
moiety in the side chain, led to an enhancement of activity. Compounds not possessing an
aromatic system in this region generally had weak activity. On the other hand, a relatively
large white contour, besides two smaller ones, indicated that steric bulk in the region
denoted S2 will decrease activity. In the steric interactions plot showing compounds 49 and
52, very weak antiplasmodial agents (Figure 3D), e.g., the methoxy substituent in position
R2 (compare Table 1), interacted with region S2 so that this may in part be held responsible
for the low activity. Similarly, compounds of skeletal type C in Table 1 with an additional
pyran ring extended this ring into region S2. All these compounds were only of medium
activity (pIC50 < 7).
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Figure 3. Comparison of MIF regions of the 3D-QSAR model K with strong impact on antiplasmodial activity. In the
structures, only polar hydrogens are shown. Steric interactions are shown in green and white, indicating positive and
negative impact of steric bulk/Van der Waals interactions on activity, respectively. Electrostatic interactions are shown in
blue and red. Blue indicates regions where interaction of positive partial charge (electron deficient partial structure) on the
ligand has a positive impact, red indicates regions where interaction of a negative partial charge (electron rich structure
element) on the ligand has a positive impact on activity, and vice versa for detrimental effects. (A) Superposition of all
compounds; (B,C) superposition of the most active congeners, 1 and 2 (pIC50 = 8.0 in both cases); (D,E) compounds with
very low activity, 49 and 52 (pIC50 = 4.9 and 4.5, respectively).

In the electrostatic interaction maps, favorable interactions with the blue regions E1
and E2 were noticed with the OH protons at positions R2 and R3 of the benzopyran core
(compare Table 1). This is, of course, in line with the initial observation of Harel et al. [2,3], in
that free phenols of this type had much stronger antiplasmodial activity than the methoxy-
substituted congeners. This is evident in Figure 3B, where the structures of the two most
active phenols (compound 1 with R2 = OH and compound 2 with R3 = OH) are shown with
their OH protons pointing in the directions of E2 and E1, respectively. Two relatively large
red contours (E3 and E4) on both sides of the benzene ring of the core structure indicate
activity-enhancing electrostatic interactions with the oxygen atoms of the phenolic OH
groups and, possibly, with the mentioned aromatic system, which is more electron-rich in
case of free phenols than in case of methoxylated chromanes/chromenes. A further region
of interest is E5, which is responsible for detrimental effects of electron rich groups, such
as, e.g., the carbonyl and sulfinyl oxygen atoms in case of the two depicted compounds
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(sulfinamide 49 and carboxamide 52, respectively). Amino-substituted compounds of this
series were, consistently, generally found to be much more active than ester, ether, or amide
derivatives [2]. Some smaller regions of electrostatic interactions existed around the side
chain aromatic system, which were rather difficult to attribute with general SAR features
and rather reflected peculiarities of single compounds of the series.

Overall, the main features of the interaction maps of model K (which were found to
be very similar to those of the other six “good” models (C, E, G, J, M, and T in Table 2))
were in very good agreement with the general qualitative SARs established earlier. Natu-
rally, however, this 3D-QSAR model lent itself to a quantitative meaning to each of these
structural contributions to activity and provided, as shown above, a means of predicting
the activity of untested congeners with good certainty. The model can thus guide further
synthetic efforts in a rational manner.

3. Materials and Methods
3.1. 3D Molecular Models

Molecular models of all compounds were generated with MOE v. 2018.01 (Chemical
Computing Group, Montreal, QC, Canada). The biological activity of most compounds
with a center of chirality at C-1′ in the side chain had been determined with racemic
mixtures. In several cases where enantiomerically pure compounds had been obtained
and tested, the C-1′-R-enantiomer was found to be much more active (e.g., compounds
(R)-4 and (S)-26 (∆pIC50 = 1.54) and to a lesser extent (R)-19 and (S)-24 (∆pIC50 = 0.42)),
so that the other compounds were built in the form of their R-enantiomers. In the case of
one compound (12k in [2]), where an additional center of chirality was present in the side
chain, structures 36 and 37 were considered separately: both R-configured at C-1′ but R-
and S- configured, respectively, at C-3′, using the same pIC50 value for both structures.

The models were geometry optimized with the MMFF94x force field implemented
in MOE.

3.2. Superposition of Molecular Models
3.2.1. Manual Superposition

The molecules were individually aligned by superposing five atoms of the chro-
mane/chromene skeleton (O-1, C-4, C-4a, C-6, C-8) of the most active compound 1. The
resulting superposition is shown in Figure 1A. It showed very divergent orientation of
the side chains, and therefore it was not considered a good starting point for 3D-QSAR
modeling.

3.2.2. Automatic Superposition Based on Pharmacophoric Properties

The module “pharmacophore elucidate” of MOE was used with default settings.
Compound 1 was used as template. This calculation in MOE yielded a series of possible
alignments scored by coverage of automatically generated 3-, 4-, and 5-point pharma-
cophores. Visual inspection of these alignments focusing on a coherent positioning of
the side chains led us to select the superposition shown in Figure 1B for the 3D-QSAR
modeling. The compounds were divided into 20 different training sets and test sets with
39 (74%) and 14 (26%) compounds, respectively, using various schemes. The assignment of
compounds to the individual training and test sets is reported in Table S1.

3.3. 3D-QSAR Modeling

The aligned molecular models were exported from MOE in SD format, including
the bioactivity data (pIC50 = −log IC50 (mol/L) and read into Open3DQSAR (v. 2.3; P.
Tosco and T. Balle, http://open3dqsar.sourceforge.net/ accessed on 28 August 2021; [7]).
The box size around the molecular ensemble (23 × 26 × 18 Å) and the grid step size
(1.0 Å) were chosen as suggested by the software. Molecular interaction fields were then
calculated with a steric probe (an sp3 alkyl carbon) as well as an electrostatic probe (a
sizeless positive point of charge +1). The number of variables was reduced by applying

http://open3dqsar.sourceforge.net/
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cutoff limits (±30 kcal/mol) and elimination of zero value variables. In order to assign
equal weights for the steric and electrostatic interaction fields, which naturally comprise
variables with rather different energy values, we submitted the remaining variables to
the block unscaled weighting algorithm implemented in Open3DQSAR. Then, a variable
selection procedure using Smart Region Definition and Fractional Factorial Design, both as
implemented in the Open3DQSAR software, was carried out (thus, e.g., of 28,512 calculated
MIF variables, 1737 were used in model K). 3D-QSAR models were then computed with
the various training sets by partial least squares (PLS) regression. The best model K (see
below) consisted of 797 steric and 940 electrostatic variables, which contributed 65 and
35%, respectively, to the overall model.

3.4. Model Validation

Each PLS model was internally cross-validated by LOO-CV. The resulting coefficients
of determination for the predicted vs. experimental pIC50 values (R2 for the model cali-
bration, Q2 for predictions in LOO-CV) along with the standardized errors of calibration,
SDEC, and internal prediction, SDEPint, are reported in Table 2. External validation was
performed in each case by calculating predicted values for the respective test sets. Coeffi-
cients of determination for the predicted vs. experimental pIC50 values of the test set (P2)
and standardized errors of external predictions (SDEPext) are reported in Table 2. All of the
20 different training/test set divisions provided statistically reasonable models (Table 2).
Those yielding both Q2 > 0.75 and P2 > 0.65 were further investigated by the progressive
scrambling method [8] as implemented in Open3DQSAR. A critical value of s = 0.85 was
used, and a polynomial of order 2 was used for curve fitting [8]. The “fitted q2 values” as
output by the software (Qs

2* in [8]) were normalized by dividing by s to yield the Q0
2*

values as recommended in [8]. These values are also reported in Table 2. On the basis of its
Q0

2* value, model K was somewhat superior to the other models and hence chosen as the
“best model”.

3.5. Assessment of the Applicability Domain (AD) of Model K

AD definition was carried out by the leverage method [10–13]. Leverages retrieved
from the PLS regression of model K and standardized residuals for the predicted antiplas-
modial activity were used to build the corresponding Williams plot. The critical leverage h*
was used to evaluate whether a compound could be included or not within AD (h* = 3w/N,
where w is the total sum of leverages and N is the number of compounds).

3.6. Model Visualization

The PLS coefficients of model K were exported to MOE and visualized as MIF contours
using the module “grid analyzer”. The graphic representations shown in Figure 3 were
generated with isocontour values at PLS coefficients of −0.0009 (white) and +0.0009 (green)
for the steric field and −0.00058 (red) and +0.00058 (blue) for the electrostatic field.

4. Conclusions

The 3D-QSAR study presented here resulted in a statistically sound model with good
predictive capability and explanatory value. The various structural features with major
influence on antiplasmodial activity can thus be further explored by in silico design of
hitherto untested congeners. The model can then be used to predict the activity of such
new chemical entities in order to guide further synthetic efforts. Studies in this direction
are under way.

Supplementary Materials: The following are available online: Figure S1: Plot of predicted vs.
experimental pIC50 values of model K. Table S1: Test sets in models A–T.
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