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Abstract: Enantioselective chromatography is one of the most used techniques for the separation and
purification of enantiomers. The most important issue for a specific successful enantioseparation is
the selection of the suitable chiral stationary phase (CSP). Different synthetic approaches have been
applied for the preparation of CSPs, which embrace coating and immobilization methods. In addition
to the classical and broadly applied coating and immobilization procedures, innovating strategies
have been introduced recently. In this review, an overview of different methods for the preparation
of coated and immobilized CSPs is described. Updated examples of CSPs associated with the various
strategies are presented. Considering that after the preparation of a CSP its characterization is
fundamental, the methods used for the characterization of all the described CSPs are emphasized.

Keywords: chiral selector; click chemistry; coupling agent; dynamic coating; intermolecular polycon-
densation; isocyanate derivatives; photochemical method; radical polymerization; thermal method

1. Introduction

The separation of enantiomers in an analytical and preparative scale is undoubtedly
a matter of crucial importance in diverse research areas [1]. Liquid chromatography
(LC) using chiral stationary phases (CSPs) proved to be the most versatile and useful
approach for the evaluation of enantiomeric purity in quality control [2,3], the preparative
enantioresolution process [4,5], monitoring enantiomeric reactions [6,7], food analysis [8,9],
the stereochemistry determination of natural compounds [10,11], pharmacokinetic [12] and
environmental studies [13,14], among other applications. Over the years, several types
of CSPs have been developed which comprise polysaccharide derivatives, Pirkle-type,
cyclodextrins, crown-ether, proteins, macrocyclic antibiotics, ion-exchange, cyclofructans,
synthetic polymers and molecularly imprinted CSPs [15–17].

To follow the constant challenges on different areas as well as the advances in chro-
matographic instrumentation and technical progress, the development of new CSPs for
LC has been a continuous and evolutionary subject [15]. The strategies encompassed the
development of new chiral selectors, the introduction of new chromatographic supports
and the application of different synthetic approaches for the preparation of CSPs. The first
described CSPs were prepared by coating the chiral selector onto the surface of porous silica
by Davankov [18]. In that time, this achievement was remarkable since it settled a back-
ground for further applications. The advantages inherent to the coating approach include
a fast and simple process for the preparation of the CSP and the manageable optimization
of the loading selector [19]. Since specific requirements for the chromatographic support
are not necessary, coated CSPs are recognised by their reproducibility [20]. Nevertheless,
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coated-type CSPs also have drawbacks such as incompatibility with many organic solvents
used as the mobile phase. Additionally, the swelling of the selector can occur which limits
the lifetime of the column [20,21]. These critical points of the coated-CSPs triggered the
search for other strategies. Since the report of the first immobilized Pirkle-type CSP [22],
this strategy proved to be a feasible alternative. Immobilized CSPs present a superior
resistance for a broader variety of organic solvents which contributed to an expansion of
the enantioseparation applications [21].

In fact, according to the type of chiral selector, immobilization is preferred to the
coating method (Figure 1). Nevertheless, for some types of CSPs, such as protein and
polysaccharide-based ones, immobilized CSPs could present a reduction in the chiral
recognition ability as a consequence of the immobilization process [23]. To minimize this
drawback, some considerations should be taken into account such as the control of the
native support or chiral selector derivatization as well as the degree of immobilization, to
preserve the structure of the chiral selector. Over the last years, diverse immobilization
strategies have been introduced which proved to be efficient and do not considerably
interfere with the chiral recognition ability of the selector.

 

Figure 1. Types of chiral selectors typically coated or immobilized onto the chromatographic support.

It is important to point out that coated CSPs continue to be one of the most applied
approaches in enantioselective LC, also representing an important percentage of the com-
mercialized CSPs [24,25]. The continuous success of some coated CSPs could be attributed
mainly to a superior chiral recognition ability compared with immobilized CSPs [26]. Re-
cently, different immobilization synthetic strategies were introduced in order to simplify
the immobilization process, and to meet the green chemistry principles, in addition to
other goals.

In this review, different methods for the preparation of coated and immobilized CSPs
are described and the progresses on coating and immobilization methods are focused. In
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addition, updated examples of CSPs associated with the different strategies are presented
and the methods used for their characterization are also emphasised.

2. Coating Method

One of the first types of coated CSPs were the polysaccharide-based ones, which
were described by Okamoto et al. [27] using macoporous silica. Later on, the advantage
of the meso (500 Å) or microporous (120 Å) silica as the support for the carbohydrate
carbamate silica was reported [19,28,29], including the application in preparative enan-
tioseparation [30]. Coated CSPs are obtained from a solution of the chiral selector mixed
with the chromatographic support, typically silica or derivatized silica (e.g., aminopropyl
silica) by gently stirring and evaporation of the organic solvent [19,30]. During the coating
process, the porous structure of the silica should be maintained. The coating process could
also be performed, for example, with inorganic oxides instead of silica particles. Alumina,
zirconia and titania were selected since they present a superior stability to a wide range
of pH values than silica. Similar to silica, a polymer could be coated on particles of these
oxides [31,32]. Polymer-coated metal oxides exhibited a good pH stability and chromato-
graphic selectivity, and allowed a remarkable column performance and lifetime [33–35].
Nevertheless, the reduced commercial availability of metal-oxide particles prevented the
generalized use of these materials.

Recently, two polymeric-coated CSPs based on helical poly(phenylacetylene) deriva-
tives were prepared by Okamoto et col. [36] (Figure 2A). The solvent for the coating
procedure was a mixture of trifluoroacetic acid and tetrahydrofuran being the derivatives
coated on aminopropyl-silanized silica gel. The new CSPs presented a noteworthy solvent
tolerability being compatible with chloroform and tetrahydrofuran, which are solvents
typically not tolerate by coated-type CSPs. Nuclear magnetic resonance (NMR) was applied
for the characterization of the obtained CSPs [36].
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In another example, a new CSP was prepared by Li et al. [37] by coating cellulose (3,5-
dimethylphenylcarbamate) onto reduced graphene oxide which was covalently coupled
to microspheres of silica gel. The new CSP presented a superior enantioselectivity perfor-
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mance when compared with classical columns comprising the same cellulose derivative
coated onto silica. CSP characterization was accomplished through an elemental analysis,
transmission electron microscopy (TEM), Fourier-transform infrared spectroscopy (FTIR)
and thermogravimetric analysis (TGA) [37].

New derivatives of chitosan with isopropylthiourea and carbamate groups were
coated onto 3-aminopropyl silanized silica gel by Okamoto et col. [38]. Comparing the
enantioseparation performance of chitosan 2-isopropylthiourea derivatives with the com-
mercial CSP CHIRALCEL OD® and chitosan derivatives with substituents at position 2,
the new CSPs demonstrated a higher enantioselectivity and resolution for some racemates.
CSPs were characterized by NMR, FTIR, elemental analysis and TGA [38].

Shi et al. [39] prepared CSPs based on proline-derived helical poly(phenylacetylene)s
(Figure 2B) coated on porous silica gel. This type of CSPs presented an advantage of
adjusting its resolution ability according with the coating solvent. Coating solvents in-
fluenced the chiral recognition by interfering with the conformation of the helicity of the
polymer. For some racemates, the new CSP demonstrated an improved enantioselectivity
than the commercials columns CHIRALCEL OD-H® and CHIRALPAK AD-H® under the
normal-phase elution mode. CSPs characterization was performed by NMR, elemental
analysis and Raman measurement [39].

Nowadays, in addition to the classical method, there are other approaches for the
coating process to develop new CSPs. A recent example was described by Cong et al. [40],
who first sulfonated porous poly(styrene-divinylbenzene) microparticles being the chitosan
coated onto this chromatographic support. The sulfonated microparticles were added to an
aqueous solution of chitosan proceeded by a washing and a cure step with ultraviolet (UV)
radiation (seed swelling seed polymerization method). The back pressure of this new CSP
was reduced even with a high flow rate of the mobile phase. The CSP was characterized
by scanning-electron microscope (SEM), adsorption–desorption isotherms of N2 and its
surface area was obtained through the Brunauer–Emmett–Teller (BET) theory [40].

More recently, the application of dynamic coating, an in situ technique, for the prepa-
ration of CSPs was described [41]. This procedure consists of the injection of a mobile
phase saturated with the CSP into the column. The concentration of the CSP in the solution
determines the thickness of the stationary phase film [41]. Dynamic coating allows the
replacement of the selector being one of the benefits for this technique [42].

Folprechtová et al. [43] prepared by dynamic coating three new CSPs based on
sulfobutylether-β-cyclodextrin derivatives (Figure 2C), with different degrees of substitu-
tion. The new CSPs presented a great enantioselectivity. It was found that a superior degree
of substitution resulted in a higher enantioresolution performance. CSPs characterization
was performed by a gravimetric analysis [43].

Another example of a dynamic coating procedure was described by Naghdi et al. [42],
specifically, of coating hydroxypropyl-β-cyclodextrin onto porous silica. The new CSP
was prepared in a pillar array column, a feasible alternative to packed bed columns and
monoliths since they allowed a homogeneous flow direction and a reduced back pressure.
In terms of chromatographic performance, the new CSP demonstrated an improved enan-
tioresolution ability, for some racemates, when compared with the equivalent commercial
column CHIRALPAK AD-RH®. SEM was used for the characterization of the CSP [42].

CSPs comprising proteins were also prepared by a coating technique based on mul-
tiple interactions, such as Van der Waals, ionic and hydrogen bonding, between the
chromatographic support and the protein [44]. Despite silica being the most common
chromatographic support [45], some metals could also be applied (titanium, aluminium
or zirconium) [44]. These materials presented a great mechanical strength although their
affinity for some proteins restricted their application [44]. Synthetic polymers are widely
used for protein coating since they allow the adjustment of the reaction conditions accord-
ing to the protein. Polymers also present a considerable thermal and chemical resistance
and their synthesis can be considered simple in general [44]. To guarantee the function of
the protein as chiral selector, the coating procedure should not be aggressive. The stability
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of the column can be compromised since interactions between the selector and chromato-
graphic support are vulnerable [46]. To perform the selector coating, it is necessary to
have suitable functional groups on the surface of both the protein and chromatographic
support [44]. Surface-modifying agents frequently applied for the functionalization of the
chromatographic support are based on derivatives of amino-, diol- and epoxide groups [46].

The coating of a protein on the inner wall of a capillary column has recently been
described by Xing et al. [47]. They used a photosensitive diazo resin (DR) as the coupling
agent, and vancomycin was coated on the inner wall of the column (Figure 3) [47]. The
vancomycin-based coated column proved to be resistant to protein adsorption and chiral
separation to a certain extent. Efficient separations of a mixture of lysozyme, bovine serum
albumin, myoglobin and ribonuclease A were achieved. In addition, promethazine was
also successfully enantioseparated. The coating process was monitored by UV–Vis. Atomic
force microscopy (AFM) was performed for a capillary surface morphology analysis [47].
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Figure 3. Preparation of the diazo resin (DR)/vancomycin coatings on the inner wall of the column
(reprinted from Publication Xing, J.; Wang, F.; Cong, H.; Wang, S.; Shen, Y.; Yu, B., Analysis of proteins
and chiral drugs based on vancomycin covalent capillary electrophoretic coating. Analyst. 2021, 146, (4),
1320–1325. Copyright © 2021, with permission from Royal Society of Chemistry [47]).

3. Immobilization Method

The immobilization process between a chiral selector and a chromatographic support
can be performed using different synthetic strategies which include classical methods,
namely, immobilization using isocyanates, coupling agents, radical polymerization, in-
termolecular polycondensation, or more recent methodologies, such as click chemistry,
photochemical and thermal methods.

3.1. Immobilization Based on Isocyanate Derivatives

Isocyanates were applied to synthetize derivatives that could be used for the fur-
ther immobilization of a chiral selector onto the chromatographic support [48]. The first
immobilization of a polysaccharide derivative onto silica gel using a diisocyanate as a
cross-linker was reported by Okamoto’s group in 1987 [49]. One disadvantage of this
methodology was related with the non-regioselectivity of the isocyanate reagent. In excess,
the diisocyanate could react with additional points of the selector leading to an extreme
degree of immobilization reducing the enantioresolution ability [23].
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In order to minimize disorders in the structure of the selector that could compromise
the enantioresolution capacity, a new strategy for immobilization was introduced by
Okamoto et col., in 1996 [50]. It was an attractive option since this technique allows a
reduced number of chemical bonds (just at a terminal group of the chiral selector). For the
immobilization of polysaccharide derivatives onto silica gel, an isocyanate derivative was
also applied [50].

Recently, a P-helical quinoline oligoamide foldamer was immobilized onto silica by
Noguchi et al. [51] (Figure 4). The P-helicity was promoted by an appended chiral moiety
at the N-terminus. The immobilization onto silica was performed by the introduction
of a trimethoxysilyl group at the opposing terminal position of the foldamer. The new
CSP did not present a wide range of applicability although it demonstrated an enhanced
enantioselectivity for compounds with a similar structure than the chiral selector. An
elemental analysis and NMR were applied for CSP characterization [51].
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Figure 4. Chiral stationary phase comprising a P-helical quinoline oligoamide foldamer immobilized
using an isocyanate derivative.

Our group recently prepared new CSPs comprising chiral derivatives of xanthones
(CDXs) and the strategy used for binding the chiral selectors to the chromatographic sup-
port was through the synthesis of silylated derivatives by a reaction with 3-(triethoxysilyl)
propyl isocyanate, allowing the covalent linkage to the silica (Scheme 1). The CSPs charac-
terization was performed by elemental analysis [52,53]. The CDXs, in addition to interesting
biological activities [54,55], showed enantioselectivity for chiral analytes, under multimodal
elution conditions [52,53].
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By using the same isocyanate derivative, 3-(trietoxysilyl)propyl isocyanate, Gasparrini
et col. [56] recently developed teicoplanin and vancomycin-based CSPs immobilized onto
sub 2 µm fully porous silica. The selector bonding was dependent of the proportion of the
isocyanate linker, temperature and time of reaction. This classical method allowed to obtain
macrocyclic-based CSPs suitable for UHPLC and capable of separating enantiomers from
inorganic cations and anions. An improved enantioselectivity was found when compared
with TeicoShell® and VancoShell® columns. The CSPs were characterized through an
elemental analysis [56].

Another example is the development of the 4,4-stilbene diamido-bridged bis(β-
cyclodextrin)-bonded CSP (Figure 5A) by Shuang et al. [57]. They immobilized the chiral
selector onto mesoporous silica gel after derivatization with an isocyanate derivative.
An enhanced resolution with a reduced analysis time was achieved compared to the na-
tive β-cyclodextrin-based CSP. Mass spectrometry, NMR and FTIR were applied for the
characterization of the developed CSP [57].

Shuang et al. [58] also developed a new β-cyclodextrin-bonded CSP based on a mono-
6-amino-β-cyclodextrin immobilized onto ordered mesoporous silica gel (Figure 5B) using
3-(triethoxysilyl)propyl isocyanate. The introduction of an ureido moiety allowed the pos-
sibility to have a group with a hydrogen-bond accepting and donating properties. It also
prevented hydrolysis usually associated with nitrobenzoate and nitrophenylcarbamate link-
ages. The new CSP demonstrated a superior enantioselectivity in comparison with native
β-cyclodextrin CSP. Besides NMR, SEM, TEM, X-ray diffraction, N2 adsorptio–desorption
isotherm, elemental analysis and TGA were applied on CSP characterization [58].

By using the same immobilization strategy, a per-4-chlorophenylcarbamate-β-
cyclodextrin was immobilized onto silica gel just through one site by a one-step approach
without a diazotization reagent by Sun et al. [59]. This CSP (Figure 5C) was compared
with the commercial 3,5-dimethylphenyl carbamate-β-cyclodextrin-based CSP exhibiting a
superior enantioselectivity due to improved interactions established with analytes. The
new CSP was characterized by SEM, TEM, NMR, FTIR, elemental analysis and TGA [59].

A new cyclodextrin-based CSP was reported by Yi et al. [60] by using phenyl iso-
cyanate to obtain the partially substituted phenylcarbamate-(3-(2-O-β-cyclodextrin)-2-
hydroxypropoxy)-propylsilyl-appended silica particles (Figure 5D). The CSP demonstrated
enantioselectivity for different positional isomers (nitrophenol and nitroaniline) and enan-
tiomers of chiral drugs being operated in multi-mode LC mobile phase conditions. An
improved enantioselectivity was obtained in comparison with commercial columns Cy-
clobond I DMP® and Cyclobond I SN®. An elemental analysis and FTIR were applied for
the characterization of this new CSP [60].

3.2. Immobilization Using Coupling Agents

The immobilization of chiral selectors onto the chromatographic support using cou-
pling reagents was introduced in 1980 by Pirkle’s group [61]. They prepared new CSPs
by linked D-3,5-dinitrobenzoylphenylglycine to aminopropyl silica using the coupling
agent N-ethoxycarbonyl-2-ethoxy-l,2-dihydroquinoline (EEDQ) [61]. The main advantages
associated with this immobilization method are the stability of the CSPs and the simplic-
ity of the procedure; although the degree of racemization could compromise the results.
Another drawback is the reduced yield in the coupling step [62]. Nevertheless, it is one
of the most used method to prepared immobilized CSPs. It is commonly applied when
aminopropyl silica is used as a chromatographic support being the carboxylic acid group
typically presented on the chiral selector [63].

Recently, Agneeswari et al. [64] developed CSPs based on crown-ethers and the chiral
unit 1-(1-naphthyl) using the same coupling agent (EEDQ). For all CSPs, the “matched”
effect that occurs when the chiral recognition is potentiate by the cooperation between the
two chiral units of diastereomeric chiral selectors was evaluated. It was inferred that the
crown-ether unit could be successfully applied as a chiral tethering group. An elemental
analysis and NMR were applied for CSP characterization [64].
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In addition to EEDQ, other coupling reagents were explored. A CSP comprising a
(R)-binaphthol unit was prepared by Wang et al. [65] using the coupling reagent O-(7-
azabenzotriazol-1-yl)-N,N,N’,N’-tetramethyluronium hexafluorophosphate (HATU) to syn-
thetize an amide intermediate, from the acidic chiral selector and γ-aminopropyltriethoxysilane,
and the further immobilization to silica (Scheme 2). The enantioseparation ability of this
new CSP was evaluated under a normal elution mode. FTIR, SEM and elemental analysis
allowed the characterization of this CSP [65].
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Scheme 2. Synthetic route for immobilization of a chiral selector comprising a (R)-binaphthol unit using a coupling
agent (HATU).

Maeda et col. [66] prepared new CSPs by the immobilization of copolymers based
on poly(biphenylylacetylene)s (PBPAs) onto silica gel by cross-linking between hydroxyl
groups of the copolymer chains coated onto silica gel with tetradecanedioic acid using
1-ethyl-3-(3-(dimethylamino)-propyl) carbodiimide (EDC) as a coupling agent (Scheme 3).
This methodology induced helicity which could be switched through an alternated treat-
ment with a solution containing the (R)- or (S)-enantiomer of a chiral alcohol. Some
switchable CSPs demonstrated high enantioselectivity. NMR allowed the CSP’s characteri-
zation [66].
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Scheme 3. Immobilization of copolymers onto silica gel by cross-linking between hydroxyl groups of
the copolymer chains coated onto silica gel with tetradecanedioic acid using a coupling agent (EDC)
(reprinted from Publication Ishidate, R.; Sato, T.; Ikai, T.; Kanoh, S.; Yashima, E.; Maeda, K., Helicity
induction and memory effect in poly(biphenylylacetylene)s bearing various functional groups and their use as
switchable chiral stationary phases for HPLC. Polym. Chem. 2019, 10, (46), 6260–6268. Copyright © 2019,
with permission from Royal Society of Chemistry [66]).

The same group also introduced new poly(diphenylacetylene)-based CSPs with opti-
cally active anilide pendants, which were bonded by using EDC as a coupling agent [67].
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The presence of macromolecular helicity in the polymeric backbone induced during the
synthesis of one CSP contributed towards an enhanced enantiorecognition ability. NMR,
elemental analysis and TGA were applied for CSP characterization [67].

In another study, Ye et al. [68] linked bovine serum albumin on graphene quantum
dots through a coupling reaction using the same coupling reagent (EDC). The original
protein morphology changed after the adsorption on quantum dots exposing the chiral
sites at the surface of the selector. The prepared CSP presented a recognisable biomolecular
homochirality in the recognition of the analysed enantiomers. It was characterized by
FTIR [68].

A new CSP based on poly(ethyleneimine) with N-acetyl-L-phenylalanine moieties
were introduced by Wan et al. [69]. The chiral selector was immobilized onto silica gel
using EDC and N-hydroxysuccinimide (NHS) (Scheme 4). The new CSP was able to enan-
tioseparate warfarin, under the reversed-phase elution mode. FTIR, TGA and elemental
analysis were applied for its characterization [69].
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3.3. Immobilization by Radical Polymerization of Vinyl Groups

The immobilization of a cellulose derivative by radical polymerization was reported
by Kimata et al. [70] in 1993. To improve the immobilization efficiency of the derivatives
with vinyl groups, a vinyl monomer was introduced in the reaction mixture [71]. A
copolymerization reaction occurred; however, if vinyl groups are introduced in excess, it
could result in a decrease on enantioselectivity [48].

Bae et al. [72] prepared a polysaccharide-immobilized CSP by a surface-initiated atom
transfer radical polymerization of cellulose 2,3-bis(3,5-dimethylphenylcarbamate), having
a polymerizable vinyl group, on the surface of a silica support (Scheme 5). It was found
that the prepared CSP was very stable even when using tetrahydrofuran and chloroform
in the mobile phase. Field-emission scanning electron microscopy, X-ray photoelectron
spectroscopy, elemental analysis and thermal analysis were applied for the characterization
of this CSP [72].

Inspired by the radical polymerization of the vinyl groups method, Ren et al. [73]
developed a thermoresponsive CSP functionalized with a copolymer of β-cyclodextrin
(Scheme 6). To trigger the synthesis of this new CSP, the P-nitrophenyl acrylate (PNPA)
monomer was introduced in the reaction to copolymerize with the N-isopropylacrylamide
(NIPAM) on the surface of the silica particles. A superior uniformization of the silica
particles with a reduced size allowed an improvement in the column efficiency and peak
shape. A promising performance for the enantioseparation of hydrophilic and hydrophobic
compounds was achieved when comparing with the YMC CHIRAL β-CD BP® column. For
CSP characterization, NMR, X-ray photoelectron spectroscopy, elemental analysis, FTIR,
TGA and SEM were performed [73].
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3.4. Immobilization by Intermolecular Polycondensation

The strategy of immobilization by intermolecular polycondensation was reported
more recently by Okamoto et col. [74]. The alkoxysilyl groups are known for their easy
polymerization into polysiloxanes in acidic or basic media. Accordingly, this enhanced
reactivity could be used for immobilization onto silica [23]. This technique allows the
maintenance of the structure of the derivatives since the immobilization could be performed
by using a small quantity of reagents, resulting in a reduced degree of cross-linking.
Advantages inherent to this method include a similar recognition ability of the immobilized
CSPs with the coated-type CSPs, the simplicity of the process, the immobilization efficiency
and high degree of chiral recognition [75].

Zhou et al. [76] developed a new CSP based on helical poly(phenylacetylene)s compris-
ing L-phenylalanine ethyl ester pendants immobilized onto silica gel by the intermolecular
polycondensation of triethoxysilyl groups (Scheme 7). In this case, an enhanced enan-
tiorecognition ability and solvent compatibility were achieved when compared with the
correspondent coated CSP. The characterization of the CSP was performed by NMR and
TGA [76].
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Chen et al. [77] prepared 10 β-cyclodextrin derivatives bearing substituted carbamate
or benzoate groups. The new β-cyclodextrin derivatives were immobilized onto silica gel
by intermolecular polycondensation of triethoxysilyl groups. The new CSPs showed an
enantiorecognition capacity similar to commercial immobilized derivatives of cellulose
and amylose. The characterization of the CSPs was performed by NMR and TGA [77].

3.5. Covalent Linkage by Click Chemistry

Click chemistry, introduced in 2001 by Sharpless et col. [78], concerns reactions that
consist on the conjugation of small units through a heteroatom linkage. Some reaction
criteria should be respected which include, to be stereospecific, provision of high yields,
simple isolation of the main product and mild reaction conditions [78]. Click reactions
could be divided into two main types: alkyne–azide cycloaddition and thiol-ene/thiol-yne
reaction [79]. The alkyne–azide cycloaddition is one of the most applied [80].

In the separation field, click chemistry was applied for the preparation of new CSPs
being involved in the linkage of the chiral selector onto the chromatographic support and
in the synthesis of new selectors [81]. During the immobilization of the chiral selector, it
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is possible to control the reaction conditions to prevent side reactions with non-desirable
functional groups [79]. For example, to enhance the potential of cyclodextrin-based CSPs,
click chemistry could be applied on the preparation of the called bridged cyclodextrin-based
CSPs. Bridged cyclodextrins consist of two cavities linked through a chemical bridge, with
different sizes and functional groups, which could establish additional interactions with
the analyte [82]. The bridge also promotes an adjustment of the cyclodextrin contributing
for a superior interaction with the target [82]. The advantages inherent to this type of
CSPs are a remarkable binding capacity due to hydrophobic interactions and an improved
stability of the complex [83]. The preparation of this type of CSP based on click chemistry
proved to be a reliable alternative and selective methodology.

Shuang et al. [84] synthetized a triazole-bridged cyclodextrin-based CSP catalysed
by copper (Scheme 8). Multi elution modes were explored and the new CSP presented
an improved enantioselectivity, reproducibility and chemical stability than the native
cyclodextrin CSP. The two cavities and the bridge interact with the target as a whole,
promoting a synergetic effect which results from a broader separation range. This new CSP
was characterized by FTIR, elemental analysis and TGA [84].
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Li et al. [85] prepared a crown-ether-based CSP bonding the selector onto silica beads
through click chemistry catalysed by copper (Scheme 9). The obtained CSP demonstrated
toughness, chemical stability, and a satisfactory chromatographic performance under
different elution modes. The click reaction proved to be an efficient methodology to link
the chiral selector to the chromatographic support. CSP characterization was performed by
FTIR and elemental analysis [85].

Another example was described by Yin et al. [86], who prepared a cellulose-based
CSP after chemical bonding onto thiol-modified silica gel (Scheme 10). The mixed esters
of cellulose were chemically bonded onto the modified silica gel through a thiol-ene click
reaction. The obtained CSP exhibited an increased resistance to organic solvents. The
immobilization degree was controlled through the amount of acrylate groups introduced
into cellulose chains to obtain cellulose mixed esters. A greater enantiorecognition was
observed when compared with the coated cellulose tris(3,5-dimethylphenylcarbamte) CSP.
For CSP characterization, FTIR and NMR analyses were performed [86].

Lindner et col. [87] compared the performance of anion-exchanger-based CSPs pre-
pared by thiol-ene (Figure 6A) and copper-catalysed alkyne–azide (Figure 6B) reactions.
The immobilization process performed by the thiol-ene reaction was applied to the double
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bond of the cinchona alkaloid while the alkyne–azide reaction was applied to the triple
bond of the carbamoyl moiety [87].
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CSPs presented high retention factors and enantioselectivity which could be explained
by an enhanced interaction with the silica and the linker [87]. For the CSPs obtained by the
thiol-ene process, a lower loading selector was preferred to achieve a superior selectivity
and efficiency. An improved chromatographic performance was observed when compared
with CHIRALPAK QD-AX® and QN-AX® columns. CSPs were characterized by NMR and
elemental analysis [87].

3.6. Photochemical Method

In order to simplify the immobilization process, a photochemical method was intro-
duced by Francotte [88], being motivated by the insolubility of chiral selectors on some
organic solvents. The advantages inherent to this method are the simple procedure and no
need of extra steps of protection and deprotection of functional groups, since no additional
functional group was introduced on the chiral selector [88].

Accordingly, Francotte et al. [89] reported the preparation of a photochemically im-
mobilized 4-methylbenzoyl cellulose-based CSP. The selector previously coated onto the
chromatographic support was irradiated with UV light to promote the immobilization
onto silica gel. The CSP combines a high chiral recognition capacity with a tolerance to a
wide variety of organic solvents as mobile phases. An elemental analysis, NMR, FTIR and
Raman spectroscopy were performed for its characterization [89].
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Another example is the light-assisted preparation of a carboxyl methyl β-cyclodextrin-
based CSP (Figure 7), described by Tang et al. [90] using UV light to link the chiral selector
to silica and to promote the modification of ionic bonds into covalent bonds. This technique
proved to be environmentally friendly and efficient. The performance was evaluated under
reversed-phase and polar organic elution mode demonstrating enantioselectivity potential.
CSP characterization was performed using FTIR, TGA and SEM [90].

A vancomycin-based CSP was recently prepared by Yu et al. [91] using the same
method. After the treatment with UV light, the ionic bonding was converted into covalent
bonding through a photochemical reaction. Different elution modes were explored to
evaluate its performance, showing a promising chiral resolution for a variety of chiral
analytes. SEM, FTIR, NMR and TGA were applied for the characterization of this CSP [91].

3.7. Thermal Method

Concerning the reduction in chemical reagents used during the immobilization pro-
cess, a thermal method was introduced by Francotte [92], in 1997. As in the photochemical
method, the chiral selector should be previously coated onto the chromatographic support
before the immobilization.
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A recent example was reported by Vieira et al. [93] that described the immobilization
of cellulose dodecanoate onto silica particles at a high temperature and without a chemical
agent (Figure 8). It was found out that the particles retained the spherical form and no
agglomeration was observed. The strong retention of the selector onto the chromatographic
support and the reduced cost of this environmentally friendly methodology were empha-
sized. The characterization of the CSP was performed by an elemental analysis, FTIR, SEM
and nitrogen adsorption isotherms with BET and TGA [93].
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4. Summary of the Characterization Methods of CSPs

After the preparation of a CSP, it is fundamental to proceed with the characterization
of the CSP. The characterization step is important since the physicochemical properties,
the morphology and load affect the chromatographic parameters, such as the retention
factor, enantioseparation, resolution, number of theoretical plates, column backpressure
and stability of the CSP [94]. Moreover, the presence of morphological irregularities can
also interfere with the backpressure and the diffusion pattern [95].

As demonstrated by all the examples previously mentioned, CSP characterization
could involve several techniques. Table 1 summarizes the main techniques according with
the property to be evaluated, physical or chemical. Almost all the mentioned techniques,
can be used in combination allowing a complete analysis and characterization of the CSPs.

Table 1. Techniques for characterization of physical and chemical properties.

Characterization of Chemical Properties Characterization of Physical Properties

Technique Parameter Technique Parameter

Elemental analysis Loading/degree of
derivatization SEM Particle morphology

and size

FTIR Identification of functional
groups/derivatization pattern

N2 or argon adsorption
isotherms at the temperature

of liquid nitrogen in
conjunction with BET theory

Surface area
Pore volume

Inductively coupled
plasma-atomic emission

spectrometry
(ICP-AES)

Determination of metallic
impurities in silica or modified

silica materials

Low-angle powder X-ray
diffraction (XRD) Pore size

NMR Structure elucidation of organic and
inorganic compounds Laser particle sizer analysers Particle size

TGA

Determination of silanol groups
quantity, quantification of

organic groups presented and
estimation of thermal stability

Combination of XRD data and
average pore diameter Wall thickness

Diffuse reflectance infrared
Fourier-transform spectrometry

(DRIFTS)

Evaluation of silanol density and
water adsorption on silica surface TEM Pore size

5. Conclusions

To follow the constant challenges on different areas as well as the advances in the
chromatographic instrumentation and technical progress, the development of new CSPs
for LC has been a continuous and evolutionary subject. Recent reports related with the
introduction of new strategies for the preparation of CSPs were presented. The referred
strategies comprised modifications of the traditional coating technique and the introduction
of new methods for immobilization onto chromatographic supports. The main focus was
to obtain new CSPs with an increased efficiency, stability and cost-effectiveness as well as
the introduction of more environmentally friendly approaches. Some of the implemented
strategies allowed the possibility to use non-conventional solvents as mobile phases, in
coated-type CSPs, resorting to polymeric coatings. An improved resistance to a wide
range of pH values, compared with already existing CSPs, was also focused on being
introduced into coatings on inorganic oxides. A dynamic coating was also revolutionized
being the only in situ technique described. Principles of green chemistry sustained some
works, which also motivated the introduction of some new strategies. In this topic, it is
important to highlight the immobilization based on the click chemistry, photochemical and
thermal methods.
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Despite the selection of the most appropriate chiral selector as well as the chromato-
graphic support, the choice of the technique applied for the preparation of the CSP could
compromise the chromatographic performance. It is crucial to decide on the most suitable
technique for preparation (coating or immobilization) according with the chiral selector
and the final application. In a future perspective, we believe that the classical and broadly
applied coating and immobilization procedures will continue to be described for the prepa-
ration of new CSPs. Nonetheless, the trend will be to explore in a more meaningful way
the innovating strategies herein presented. Moreover, considering that, recently, new types
of materials are being introduced as chromatographic supports and/or chiral selectors
(monoliths, metal–organic frameworks, covalent–organic frameworks, among others), our
opinion is that new synthetic strategies will be designed for allowing the development of
the desired CSPs.

The characterization of the products for the packing column is also an important
aspect of this area of research, as the degree of coating and/or immobilization and the
morphology of material significantly affect the chromatographic parameters. According
to the examples reported, the main techniques applied include NMR, TGA, FTIR and
elemental analysis.

The preparation of diverse CSPs using different strategies is an important trigger
aiming to achieve new CSPs with a high versatility and an extended range of analytical
and preparative applications. The development of more efficient chromatographic tools for
enantioselective LC has beneficial outcomes in a large variety of areas.
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