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Abstract: Melatonin (MT) is a molecule of paramount importance in all living organisms, due to its
presence in many biological activities, such as circadian (sleep–wake cycle) and seasonal rhythms
(reproduction, fattening, molting, etc.). Unfortunately, it suffers from poor solubility and, to be used
as a drug, an appropriate transport vehicle has to be developed, in order to optimize its release in the
human tissues. As a possible drug-delivery system, β-cyclodextrin (βCD) represents a promising
scaffold which can encapsulate the melatonin, releasing when needed. In this work, we present
a computational study supported by experimental IR spectra on inclusion MT/βCD complexes.
The aim is to provide a robust, accurate and, at the same time, low-cost methodology to investigate
these inclusion complexes both with static and dynamic simulations, in order to study the main
actors that drive the interactions of melatonin with β-cyclodextrin and, therefore, to understand its
release mechanism.

Keywords: melatonin; β-cyclodextrin; inclusion complex; DFT; molecular dynamics; drug-delivery
system

1. Introduction

Melatonin (N-acetyl-5-methoxytryptamine, MT) is a ubiquitous molecule, present in
all living organisms [1], produced in the pineal gland and secreted as a hormone. Indeed,
in humans, MT is involved in the regulation of various neuroendocrine physiologic cellular
processes [2] and has a wide range of beneficial effects. Firstly, it is directly involved in
the circadian cycle, in order to induce the correct sleep–wake cycle [3–5]. Melatonin has
also been recently studied as a powerful inhibiter of free radicals, able to prevent, at least
partially, aging [6,7]. Finally, recent publications assign to melatonin an important role
as a therapeutic application for Alzheimer disease [8], cardiac disease, cancer and as an
immunomodulator [5].

However, its employment is limited by a low water solubility (0.002 mol/kg) [9]
and by its relative sensitivity to light [10]. For these reasons, the studies in the last years
have turned towards the creation of a drug-delivery system (DDS) between melatonin and
β-cyclodextrin [11–13], based on their host–guest interaction, maximized with the use of
cyclodextrins with seven units of α-D-glucose.

Cyclodextrins feature a hydrophilic outer surface and non-polar cavity that enable
melatonin to form complexes through the insertion of the hydrophobic portion of the
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molecule inside the non-polar cavity. Cyclodextrins (CDs) are cyclic oligosaccharides
composed of different α-D-glucose units [14]. The three more important CDs are the α-,
β- and γ-cyclodextrin, respectively formed by six, seven and eight single units of glucose.
All of these show a toroidal symmetry, making it like a truncated hollow cone, with different
molecular dimensions depending on the specific type of cyclodextrin [15,16].

CDs are chemical compounds with a marked tendency to form inclusion complexes
with a variety of substrates. In fact, host–guest phenomena regarding inclusion complexes
formed through non-covalent interactions are important in different disciplines, such as
chemistry, biology and pharmacy [17]. Most of the pharmacologically active molecules
have comparable molecular sizes, compatible with the dimension of the β-cyclodextrin
cavity. With a height of 7.8 Å and a diameter of the internal cavity of about 7.5 Å [18],
β-cyclodextrin is often the perfect host partner for a certain number of guest molecules of
biological interest [19–27].

Previous studies investigated the formation of non-covalent complexes between
a guest and β-cyclodextrin with different computational methods and at different levels of
theory. These kinds of complexes have been computationally investigated since the end of
the XX century, treated at the classical mechanics or semi-empirical level [18,28–31], usually
used as a complementary tool to experimental techniques, such as NMR [26,32–36], fluo-
rescence [37] and X-ray diffraction [35,36], depending on the nature of the guest molecule.
More recently, DFT methods have become the method of choice in computational chemistry
because, at a reasonable computational cost, they are able to provide accurate geometrical
parameters, properties, such as IR spectra, and complexation energies for a wide variety of
systems, including organic systems. Therefore, they were used extensively to study these
host–guest partners [20,22,38–40], often accompanied by experimental techniques, showing
a good agreement, in particular between experimental and calculated IR spectra [21,24,41].
In recent years, to increase the complexity and realism of the studied systems, DFT methods
have been often replaced by cheaper semi-empirical and force-field-based methods. Mod-
ern force-fields are used to perform large-scale molecular dynamics simulations [42,43],
whose cost at the DFT level would be too high.

A new candidate, aimed at bridging the gap between the accuracy of DFT and the
speed of semi-empirical methods, which received particular attention for a more efficient
and less expensive treatment of a general system, is the recently developed semiempirical
xTB-GFN2 method by Grimme’s group. Based on a revised version of Tight-Binding
methodology (and on the novel D4 London dispersion correction), it is capable to provide
accurate results at a reduced computational cost, orders of magnitude lower with respect to
DFT. It has been recently employed in a large variety of systems, also including substrates
different from cyclodextrin, demonstrating a good accuracy, comparable with DFT [44–46].
In addition, also xTB-GFNFF, based on a completely automated partially polarizable
generic force-field, has been developed. This particular force-field has the great advantage
that it does not require any information about the topology of the system, but only the
coordinate file in XYZ format, and, accordingly, this method does not need any pre-
production procedure.

In the present paper, we use inclusion MT/βCD complexes as a testing ground
for these novel methods, validating them against more standard DFT-based approaches,
in terms of structure, energetics and IR spectra prediction. The aim is to define a robust,
accurate and, at the same time, low-cost methodology to investigate these complexes,
towards an understanding of the main factors determining the host–guest interaction and
the efficacy of the drug-delivery system.

2. Results and Discussion
2.1. Melatonin: From the Isolated Molecule to the Crystal Structure

The structure of melatonin (MT, see Scheme 1a and Figure 1) can be divided into two
parts: the indole aromatic ring (Ar) and the aliphatic chain. The former is planar and the
methoxy group is oriented in the same plane of the ring due to mesomeric effects (the
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Ar-O presents a partial character of double bond), while the chain, thanks to the double
-CH2- group, affords mobility and variety on the conformational space of the molecule.
Intermolecular interactions among melatonin molecules are dominated by hydrogen bonds:
carbonyl and methoxy groups act as hydrogen bond acceptors (red zones of the electrostatic
potential map of Figure 1b), while the N-H indole and amide groups are hydrogen bond
donors (blue zones of Figure 1b). Other possible interactions concern the aromatic rings,
which interact with each other via van der Waals forces (π-π interactions among ring planes,
red zone on the top of the indole ring). Intramolecular hydrogen bonds are not possible
because the aliphatic chain is too short to allow for this kind of interaction. A search
for the lowest energy minimum of this molecule was performed and benchmarked with
different methods.

Scheme 1. Schematic 2D representation of (a) melatonin, and (b) β-cyclodextrin.

Figure 1. (a) PBEh-3c optimized structure of the extended conformer of melatonin in vdW represen-
tation. (b) Ball and stick representation overlapped to the ElectroStatic Potential (ESP) map plotted
on the electron density (ISO electron density value = 10−3 au). Atom colors: H white, C grey, N blue,
O red.

2.1.1. Melatonin: Conformational Analysis

With the aim of finding the lowest energy minimum of melatonin, we started from the
results by Fogueri at al. [47], where the conformational space of melatonin was investigated
at the CCSD(T)/cc-pVTZ level. The 52 stable conformers were re-optimized at the xTB-
GFN2 level and compared with the reference (see Table S1, Supplementary Materials).
Fifteen out of fifty-two xTB-GFN2 conformers (within 2 kcal/mol of relative energy with
respect to the most stable structure) were reoptimized with the methodologies cited in
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the Methods section, i.e., B3LYP-D3BJ(ABC)-gCP (hereafter called B3LYP), PBEh-3c and
xTB-GFNFF. There are some “outliers” in Table 1, namely MT18, MT21 and MT22, i.e., some
structures which, according to CCSD(T) calculations, are higher in energy with respect
to the 15 selected structures. Therefore, some intermediate structures are missing: MT08,
MT12, MT13 and MT14. Every method provided a different lowest energy minimum
of melatonin, as shown in Figure 2, with different relative energies, highlighting the
general complexity of finding the low-energy conformational minimum also for relatively
small molecules.

Figure 2. (a–d) Optimized low-energy minima of isolated gas phase melatonin (MT). In the notation
MTXX, the number XX corresponds to the structure number according to the CCSD(T) ranking
calculated by Fogueri et al. [47]. Atom colors: H white, C grey, N blue, O red.

Table 1. Energetic ranking of the low-energy conformers of melatonin (MT). The numbers of MT
structures correspond to the CCSD(T) ranking calculated by Fogueri et al. [47]. Values are in kcal/mol.

MT Structure N◦ Relative Energy (Kcal/Mol)

B3LYP PBEh-3c GFN2 GFNFF B3LYP PBEh-3c GFN2 GFNFF

03 00 10 01 0.00 0.00 0.00 0.00
00 01 11 00 0.28 1.32 0.00 0.59
02 03 07 02 0.30 1.36 0.01 2.02
15 02 04 15 0.86 1.77 0.06 2.73
05 04 15 05 1.07 2.47 0.07 2.73
09 15 05 04 1.20 2.47 0.08 2.77
04 05 00 11 1.53 2.48 0.12 2.93
11 09 06 10 1.74 3.02 0.17 2.93
01 07 09 07 1.80 3.12 0.65 2.95
07 10 02 03 1.83 3.12 0.93 3.10
10 11 18 06 1.89 3.12 0.98 3.29
22 06 21 09 2.73 3.12 0.98 5.84
21 22 22 18 4.75 3.86 1.01 5.92
18 18 01 21 5.40 3.87 1.15 5.93
06 21 03 22 5.85 3.88 1.53 5.95

B3LYP is the only functional which finds an extended structure as a most stable
conformer (see Figure 2a), i.e., with the chain which does not point towards the indole
ring. For the PBEh-3c and GFN2 (Figure 2b,c) cases, the linear chain folds on the top of
the indole ring, thus maximizing dispersive intramolecular interactions and the difference
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between the two minima concerning the relative position of CO and NH groups with
respect to the indole ring. It is worth mentioning that PBEh-3c is the only functional
capable of reproducing the lowest energy minimum found by Fogueri et al. [47], with the
carbonyl moiety pointing directly towards the ring, while with GFN2, its place is taken
by the amidic -NH. GFNFF (Figure 2d) provided a more planar structure, where one of
the indole -CH- interacts with the CO with a weak hydrogen bond (-CH···OC-). In Table 1,
the relative energies for each structure compared to the lowest energy minimum of the
corresponding method are listed. The window of energetic range changes considerably
from one method to another. GFN2 is the method which presents the smallest energetic
span (such as that at the CCSD(T) level, despite that the structure ordering is different),
resulting in a 1.53 kcal/mol difference between the most and the least stable structures,
the majority of which is almost energetically indistinguishable (the first 8 structures are
within 0.17 kcal/mol). PBEh-3c is the functional showing the best accordance with the
CCSD(T) energy ranking, and it expands the energetic range with respect to GFN2. DFT-
B3LYP and GFNFF are the methods which have the best agreement with one another,
both in terms of structural and energetic ranking. These results show that the exploration
of the conformational space of a relatively small organic molecule, even if it does not
present a large number of degrees of freedom, is a very challenging matter, also for DFT
methods which are usually considered able to provide accurate results in terms of structure
and energetics for these kinds of systems.

2.1.2. Melatonin: Dimer

As melatonin presents two hydrogen bond donors and acceptors, its dimer (DIM)
was built in three different orientations, starting from the linear extended structure: head–
head (Figure 3b), tail–tail (Figure 3d) (the two melatonin molecules are in an antiparallel
conformation with respect to each other) and head–tail (Figure 3c) (melatonin molecules
in parallel conformation), with the aim of investigating the possible interactions between
two molecules of melatonin, maximizing all the possible hydrogen bonds (the starting
and optimized structures are shown in Figure 3). The major features for these cases are
(see Figure S1, Supplementary Materials for a comparison of the structure obtained with
each method):

• Head–Head (HH): Both the amidic N-H groups of the two melatonin molecules
donate a hydrogen bond to the methoxy groups. The hydrogen bonds calculated by
PBEh-3c are weaker (2.20–2.21 Å), and, accordingly, the interaction energy is lower
(−2.0 kcal/mol, see Table 2) with respect to the other methods (2.05–2.11 Å, −4.0 < E
< −7.5 kcal/mol of interaction energy).

• Head–Tail (HT): In this case, the indole -NH- donates a hydrogen bond to the methoxy
group, while the amidic -NH- to the amidic -CO- (see Figure 3f). In this case, the struc-
tural (1.94–2.02 Å and 1.97–2.11 Å are the ranges of the two hydrogen bonds) and ener-
getic accordance (−3.9 < E < −8.6 kcal/mol) among the methods is good. B3LYP short-
ens the hydrogen bonds and presents the highest interaction energy (−8.6 kcal/mol).

• Tail–Tail (TT): The hydrogen bond donors are the indole -NH- groups, while the
acceptors are the amidic -CO- (see Figure 3g). The steric hindrance of -CH- and -CH2-
groups led to a conformation with the two planes of the indoles in perpendicular
orientation with one another. In this way, the two melatonin molecules can maximize
their interactions; indeed, the hydrogen bonds are shorter (1.89–2.02 Å) with respect
the previous cases, and the TT adduct is more stable with respect to both HH and
HT (−9.0 < E < −11.3 kcal/mol). B3LYP is the only method which does not find
a minimum in the structure described above, leading the two indole rings to interact
with each other (Indole–Indole) through the π-electrons of the aromatic rings (π-π
interaction), keeping the -NH···OC- hydrogen bonds (see Figure 3h).

• Indole–Indole (II) was then reoptimized with the other methods for consistency. For
all the methods, the hydrogen bonds are the shortest (1.90–1.99 Å); moreover, the π-π
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interaction leads to an extra-stabilization which makes this dimer the most stable one
(−11.9 < E < −18.8 kcal/mol).

Table 2. Dimerization energy (∆E), enthalpy (∆H) and free energy (∆G) of melatonin dimers (DIM),
in all the studied conformations: Head–Head (HH), Head–Tail (HT), Tail–Tail (TT) and Indole–Indole
(II). Values are in kcal/mol.

GFN2 GFNFF PBEh-3c B3LYP

System ∆E ∆H ∆G ∆E ∆H ∆G ∆E ∆H ∆G ∆E

DIM-HH −4.0 −2.7 9.2 −7.5 −5.3 7.2 −2.0 −9.6 5.2 −5.4
DIM-HT −6.0 −4.6 6.7 −5.0 −3.3 10.4 −3.9 −11.2 3.2 −8.6
DIM-TT −9.3 −8.0 3.9 −11.3 −9.0 3.1 −9.0 −16.3 −1.4 –
DIM-II −15.0 −13.6 0.8 −16.6 −14.1 0.3 −11.9 −19.1 −2.4 −18.8

Figure 3. (a) Schematic representation of the two sides (Head and Tail) of the molecule with accep-
tor/donor groups. (b–d) Starting structures of melatonin dimers. (e–h) Optimized (OPT) structures
of melatonin dimers. Bond length notation: GFN2, (GFNFF), {B3LYP}, [PBEh-3c]. Bond distances are
in Å. Atom colors: H white, C grey, N blue, O red.
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2.1.3. Melatonin: Crystal

The crystal structure of melatonin belongs to the P21/c space group. The lattice is
monoclinic (a = 7.714 (7.429) Å, b = 9.276 (9.286) Å, c = 17.118 (17.208) Å, α = β = 90◦,
γ = 96.91◦ (97.93), the numbers in parenthesis are the PBEh-3c optimized ones) and its
PBEh-3c optimized structure is shown in Figure 4. Along the (100) and (010) crystallo-
graphic planes (Figure 4b,c), a number of hydrogen bonds are established with amidic
and indole -NH- groups as donors and the CO as a simultaneous double acceptor. In the
(001) plane, in contrast, only van der Walls interactions between the indole rings are estab-
lished, creating a “sandwich-like” structure (Figure 4a). The calculated cohesive energy is
−33.5 kcal/mol (∆H = −32.1 kcal/mol and ∆G = −14.5 kcal/mol), which is about three
times the dimerization energy of DIM-II (∆E = −11.9 kcal/mol).

Figure 4. (a–c) View from (001), (100), (010) crystallographic plane respectively. PBEh-3c optimized
structure of the melatonin crystal. Bond distances are in Å. Atom colors: H white, C grey, N blue,
O red. Unit cell in blue.

2.1.4. FTIR Spectroscopy

Harmonic frequencies and relative intensities for melatonin, its dimer and its crys-
tal were computed and compared with the experimental spectrum of the solid phase.
In Figure 5, the spectra presenting the best agreement with the experiment are shown:
the crystal structure was simulated at the PBEh-3c level of theory (CRY/PBEh-3c), while
the dimer with GFN2 (DIM/GFN2). The spectrum of the dimer was also calculated with
PBEh-3c; however, the NH bands are fairly blue-shifted with respect to the experiment
(see Supplementary Figure S2), at variance with GFN2, which locate the -NH- bands at the
same wavenumbers as CRY/PBEh-3c. Moreover, an anharmonic correction was included
to the IR spectra of Figure 5. Due to the high computational cost of this correction, it was
performed on the melatonin molecule, and then the anharmonic shift calculated on the
molecule was applied to the frequencies of the crystal structure. Of course, the anharmonic
correction will be different for H-bearing moieties whether they are involved in possible
hydrogen bonds. In our specific case, as one can see in Figure 5, the NH and CH stretching
region is slightly red-shifted upon anharmonic correction. The frequency zone between
1000 and 1700 cm−1 is very well-represented, with a root mean square deviation of 16 and
49 cm−1 for CRY/PBEh-3c and DIM/GFN2, respectively.

The experimental broad band relative to the N-H stretching (amide and indole) is
found around 3280 cm−1, while the computed spectra shift towards lower frequencies by
about 100 cm−1. This zone is influenced by the effect of anharmonic vibrations, particularly
important for bonds involving hydrogen atoms. Without corrections, the same peaks would
be located at 200 cm−1 higher frequencies, highlighting the anharmonic effect. Between
3000 and 2800 cm−1, the vibrational modes regarding C-H stretching, both aromatic and
aliphatic, are located. Including the anharmonicity corrections, the positions and the shapes
of the peaks show an almost perfect match with the experiment.



Molecules 2021, 26, 5881 8 of 20

The CO moiety is particularly important in FTIR spectra, due to the fact that it is
usually in a clean zone of the spectrum and has high intensity, and accordingly, it is easily
identifiable; experimentally, it appears at 1617 cm−1, with CRY/PBEh-3c at 1649 cm−1

and with DIM/GFN2 at 1706 cm−1, thus confirming the increasing agreement of the com-
puted spectrum going from the molecular case to the crystal, which is a more realistic
model of the system. Stretching of aromatic C=C double bonds also shows good accor-
dance with experimental results: the peak is located at 1551 cm−1 and the computed shifts
at 1545 cm−1 for CRY/PBEh-3c and at 1539 cm−1 for DIM/GFN2 (very low intensity).
At 1488 cm−1, the bending frequencies of the aliphatic C-H group are located, and the
shifts with respect to the computed spectrum are low for both PBEh-3c/CRY (1474 cm−1)
and DIM/GFN2 (1452 cm−1). The peak of the Ar-O bond appears at 1210 cm−1 in the
experimental plot, showing a perfect agreement with CRY/PBEh-3c (1210 cm−1) and a big
shift with DIM/GFN2 (1162 cm−1), also due to the corrections applied. This bond has
a percentage of double bond character, which leads to planarity (-OCH3 is always on the
same plane of the indole ring). Lastly, good accordance is found for the O-CH3 stretching,
placed at 1040 cm−1 in the experiment, at 1032 cm−1 in the computed CRY/PBEh-3c spec-
trum and at 1057 cm−1 for DIM/GFN2. The normal symmetric and antisymmetric modes
of these last two signals are located a few cm−1 from the frequencies described above.

Figure 5. Experimental (red line) vs. computed melatonin IR spectra with anharmonic corrections.
CRY/PBEh-3c corresponds to the calculated spectrum of the crystal structure at the PBEh-3c level
(pink line), while DIM/GFN2 to the spectrum of the Indole–Indole dimer at the GFN2 level (blue line).

2.2. β-Cyclodextrin

β-cyclodextrin (βCD) has a cyclic structure made by seven units of D-glucose bonded
with a glycosidic bridge (Scheme 1b), providing the covalent skeleton to the molecule. Each
monosaccharide has three hydroxyl groups: two of them, on C2 and C3, are located on the
outermost top part of the βCD ring, while the -OH group on C6 in the outermost bottom
part has high flexibility due to the free rotation on C6 (see Supplementary Figure S3). In this
case, the hydrogen bonds that can be established between -OH groups have a crucial role
in stabilizing the molecule, with a symmetric pattern of intramolecular forces that affords
regularity and structural stability to the ring. A single molecule of βCD can form up to
14 internal hydrogen bonds, 7 with the C2 hydroxyl group behaving as a hydrogen bond
donor and the C3 -OH on the following glucose as an acceptor, and the other 7 among the
hydroxymetil group on C6, depending on the conformer. The other hydroxyl <<<<group
on C3 is involved in hydrogen bonds (both as donors and acceptors) in the crystal structure
of βCD. The two isomers analyzed in the present work (namely CD1 and CD2, see Figure 6)
were taken from [48], where a deeper analysis of the possible CD conformers is available.
The two conformers have the difference that in CD1, the hydrometil group on C6 atoms
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interact among each other, thus reducing the hole diameter from 6.4 to 9.6 in CD2. Results
in Table 3 show that there is a good agreement between results at B3LYP and GFN2 levels
(CD1 more stable by about 7 kcal/mol), however, at PBEh-3c level CD2 conformer is more
stable than CD1 by 4.4 kcal/mol. These results show that the conformational exploration
of a relatively simple organic molecule has to be treated carefully.

Moreover, we also optimized both the conformers in implicit solvation at GFN2 and
GFNFF levels. In all the cases, the most stable structure results to be CD2 (see Figure S4,
Supplementary Materials for a comparison of the structure obtained with each method).
According to these results, we used CD2 as a host structure for the melatonin molecule,
as the experiments were carried out in water solution.

Figure 6 shows the electrostatic potential maps (ESP) of the two βCD conformers
studied in this work, highlighting the cavity in the center of βCD, where small and medium-
size organic molecules can be placed. The majority of negative potential (red zone) is found
in correspondence to the hydroxyl groups, and they indeed act as strong hydrogen bond
donors and acceptors; in contrast, the glycosidic oxygens are shielded by aliphatic groups,
even if they can accept one hydrogen bond (small green zones inside the ring). These
features are particularly important to provide a proper starting orientation to the guest
molecule, thus maximizing all the stabilizing interactions.

Table 3. Energy difference between stable CD isomers.

Method Solvent Energy
Difference CD2–CD1

PBEh-3c Gas phase ∆E −4.4
B3LYP Gas phase ∆E 7.4

GFN2

Gas phase
∆E 7.0
∆H 7.1
∆G 3.7

Water
∆E −5.0
∆H −5.0
∆G −10.1

Acetonitrile
∆E −4.4
∆H −4.4
∆G −8.7

GFNFF

Gas phase
∆E 5.3
∆H 4.6
∆G 0.7

Water
∆E −5.0
∆H −5.0
∆G −10.1

Acetonitrile
∆E −4.4
∆H −4.4
∆G −8.7

2.3. Inclusion Complex

The inclusion complex between melatonin and βCD was formed with the manual
insertion of a guest molecule into the cavity, using the molecular modeling software
MOLDRAW [49], with the aim of maximizing the electrostatic host–guest interactions
(both having donor and acceptor hydrogen bond groups). As a first case, to compare the
results obtained with xTB and DFT methods, the extended structure of melatonin was
inserted inside the βCD and the geometry was optimized. Further inclusion complexes
were then considered employing only the xTB-GFN method. In addition to the evaluation
of the complexation energy, thermodynamic corrections were also calculated and discussed.
FTIR computed spectra were used as a tool to validate the approach with the novel xTB
method. The inclusion of implicit solvation effects was probed by performing molecular
dynamics simulations in both gas and liquid (water and acetonitrile) phases on the most
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stable complex, with the aim of studying the inclusion and evolution of the MT/βCD
complex, and the melatonin wash-out process.

Figure 6. (a) Optimized structure of β-cyclodextrin. Bond length notation: GFN2, (GFNFF), {B3LYP},
[PBEh-3c]. (b,c) β-cyclodextrin structure superimposed on the ElectroStatic Potential (ESP) maps
plotted on the electron density (ISO electron density value = 10−3 au). Bond distances are in Å. Atom
colors: H white, C grey, N blue, O red.

2.3.1. Extended Melatonin Inclusion Complex: Method Benchmark

The complex with extended melatonin was studied both with DFT and xTB methods,
in order to make a comparison in terms of complexation energy. The complexation ener-
gies have been obtained with a single-point calculation with all the previously described
methodologies on the GFN2 optimized geometry (Figure 7). In this way, we can determine
how the different methodologies evaluate the interactions of the MT/βCD complex at fixed
geometry. In Table 4, the complexation energies are shown. Values show a good agreement
among the methods, considering the large differences both in terms of accuracy and com-
putational cost. GFN2 reports the lowest complexation energy (∆Edisp = −30.3 kcal/mol),
while GFNFF overestimates this interaction (∆Edisp = −41.3 kcal/mol). DFT-based methods
stay in between, obtaining very similar results (∆Edisp = −34.5 kcal/mol for PBEh-3c and
∆Edisp = −35.3 kcal/mol for B3LYP). Moreover, we also separated the electrostatic from
the dispersive contributions, in order to understand the main forces responsible for the
MT/βCD interaction. Of course, each method includes by definition a certain amount of
dispersion, and therefore, the dispersive contribution will be different from one method to
another. From Table 4, it can be seen that a large part of the interaction is indeed driven by
dispersion, thus highlighting the importance of taking into account a correct treatment of
weak forces.

xTB computational performances are the major strength of this method: on an 8-core
CPU, a geometry optimization and frequency calculation for the inclusion complex took
about 7 min for the GFN2 level and about 1 min with GFNFF. The same calculations require
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approximately 9 h for PBEh-3c and 30 h for B3LYP on a 24-core CPU. Agreement between
these low-cost methods is not perfect, but in most cases, the errors are acceptable, in par-
ticular considering the good results of the computed GFN2 IR spectra. Moreover, GFN2
allows to perform large-scale molecular dynamics simulations, following the evolution of
this system over a timescale which would be unaffordable for DFT methods.

Figure 7. xTB-GFN2 optimized structure of the inclusion complex of extended melatonin into
β-cyclodextrin.

Table 4. Complexation energy (with (∆Edisp) and without (∆EnoD) dispersive contribution) calculated
at the xTB-GFN2 optimized geometries with different methods. Values are in kcal/mol.

Method ∆Edisp ∆EnoD

GFN2 −30.3 −13.3
GFNFF −41.3 −18.1
PBEh-3c −34.5 −19.9
B3LYP −35.3 −6.4

2.3.2. Melatonin/β-Cyclodextrin Complexes

With the purpose of exploring different possible intermolecular host–guest interac-
tions, three different starting positions of the most stable melatonin conformer, found by
xTB-GFN2, were built. In Table 5, the complexation energies (also including thermody-
namic corrections) in gas phase and in the presence of the solvent are reported for all
the cases at the GFN2 level (data at the GFNFF level are available in Table S2, Supple-
mentary Materials), i.e., the extended (EXT) melatonin inclusion and the three studied
cases (MT-βCD1, MT-βCD2, MT-βCD3). In Figure 8, the optimized structures are reported.
The most stable conformer is MT-βCD2 (∆E = −39.5 kcal/mol, Figure 8b), which presents
the strongest hydrogen bonds among the three structures. As one can see from Table 5,
thermal corrections (∆H) do not substantially affect the complexation energy. The inclusion
of entropic effects does not favor the complexation process (∆GMT-βCD2 = −16.9 kcal/mol),
which in all cases is still favored with respect to the two isolated structures. Not sur-
prisingly, when the effect of the solvent is also considered, the free complexation energy
becomes positive in all cases, and this explains the usage of water and acetonitrile as
solvents to wash-out the melatonin from the inclusion complex.
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GFNFF tends to overestimate the energies compared with GFN2, except for MT-
βCD2, whose complexation energy results very similar to that calculated at the GFN2 level
(∆E = −40.6 kcal/mol). Curiously, according to GFNFF results, these three structures are
almost indistinguishable from an energetic point of view, with the values of complexation
energy varying from −39.4 to −41.2 kcal/mol.

Figure 8. xTB-GFN2 optimized geometries of the studied MT-βCD inclusion complexes. Bond length
notation: GFN2, (GFNFF). Bond distances are in Å. Atom colors: H white, C grey, N blue, O red.

Table 5. Complexation energy (∆E), enthalpy (∆H) and free energy (∆G). Values are in kcal/mol.
Legend: MT = melatonin, βCD = β-cyclodextrin, GP = gas phase, W = water, ACN = acetonitrile.

Method Structure ∆E ∆H ∆G

PBEh-3c EXT −39.4 −38.5 −18.2

GFN2—GP

EXT −30.3 −28.7 −11.0
MT-βCD1 −25.6 −23.7 −6.3
MT-βCD2 −39.5 −37.2 −16.9
MT-βCD3 −25.3 −23.4 −4.9

GFN2—W

EXT −12.5 −10.2 7.2
MT-βCD1 −14.2 −12.5 6.4
MT-βCD2 −15.4 −12.7 4.7
MT-βCD3 −13.5 −11.1 7.2

GFN2—ACN

EXT −7.4 −5.3 10.4
MT-βCD1 −7.0 −4.9 11.9
MT-βCD2 −7.5 −5.2 12.4
MT-βCD3 −5.5 −4.3 11.4

2.3.3. FTIR Spectroscopy

Harmonic frequencies and relative intensities for the most stable inclusion complex
(MT-βCD2) were calculated, and the IR spectrum was plotted and compared with the
experimental hyper-crosslinked inclusion complex of melatonin and β-cyclodextrin in the
form of a nano-sponge, obtained in our laboratories.

The computed IR spectrum of Figure 9 can be used as a yardstick to evaluate the
quality of results and the reliability of computational methods used. Owing to the high
calculation cost of frequencies, this was only possible with xTB methods.

The very broad band at about 3300 cm−1 is relative to all the possible N-H and O-H
stretching modes: the former is present only in melatonin molecules while the latter is
found in cyclodextrin. The computed GFN2 spectrum finds a series of peaks with different
intensity, centered approximately in the same zone as the experiment. The experimental
peak related to C-H stretching (aliphatic and aromatic) looks like a broad band in the range
3000–2800 cm−1, with a very low intensity. Once again, the GFN2 peak is located almost at
the same frequencies. However, between the OH/NH and CH regions, there are two intense
lonely peaks related to two hydroxyl groups which are involved in very strong hydrogen
bonds. Stretching C=O is present with an intense peak at 1708 cm−1 in the experimental
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spectrum, and at 1726 cm−1 at the GFN2 level. Stretching of aromatic C=C double bonds is
present in computed spectra, differently from the experiment where these signals, typical
of isolated melatonin, are probably covered by the larger amount of cyclodextrin C-H and
O-H bending and by C-O stretching modes. The fingerprint area is dominated by wide
and quite intense peaks, especially in the range between 1500 and 1000 cm−1: they are
combined modes referring to C-O and C-C vibrations of the cyclodextrin glucose rings.
GFN2 shows a blue-shift of about 60 cm−1 with respect to the experiment. Despite the
complexity of the system, in general, there is a good agreement between calculated and
experimental spectra, thus confirming the excellent trade-off between the accuracy and the
computational cost of GFN2.

Figure 9. Experimental (red line) vs. GFN2-computed (blue line) spectra of the most stable inclusion
complex (MT-βCD2).

2.3.4. Molecular Dynamics Simulations

Thanks to the low computational cost and to the accuracy of results obtained with the
GFN2-xTB method, molecular dynamics simulations were performed in gas phase (GP) to
observe the evolution of the inclusion complex over time, and in the two solvents (water
(W) and acetonitrile (ACN)) to study the wash-out process.

In Figure 10, the evolution of hydrogen bonds and their moving average of 0.5 ps
are shown (left part), while the histograms report the hydrogen bond distribution over
the entire MD (right part). The average number of hydrogen bonds mainly oscillates
between 1 and 2 in gas phase (Figure 10a), confirming that melatonin usually remains
connected to cyclodextrin by at least one H-bond. At approximately 75 ps, the number of
hydrogen bonds decreases to 0–1, maximizing the dispersive forces, but always staying
in the cavity. The count of hydrogen bonds points out that for much of the simulation
(40 ps), one hydrogen bond is present, and for 29 ps, two hydrogen bonds, thus covering
the majority of the simulation time. Only for 25 ps were no hydrogen bonds established
between melatonin and cyclodextrin. Three H-bonds were reached for 5.3 ps and even
four intermolecular interactions for 0.5 ps, involving in this case all the possible donor
and acceptor groups present in the melatonin molecule (more details in Supplementary
Figure S5).

It is interesting to observe what happens when implicit water and acetonitrile are
included in the simulation (Figure 10c–f). As one can see, in water, melatonin tends to
exit from cyclodextrin at about 20 ps (Figure 10c), losing some of the hydrogen bonds,
even if it still interacts with the cyclodextrin, at least with dispersive forces. In acetonitrile,
within 10 ps of MD, melatonin loses all the interactions with cyclodextrin, and does not
go back as in water, getting farther and farther from cyclodextrin (see Supplementary
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Figures S6 and S7). These results are in line with the statically computed free energies of
complexation, which are positive for the complex in the presence of the solvent, and also
with the experimental wash-out setup.

Figure 10. Left panels: Moving average (black line) and single values (blue line) of the hydrogen
bonds’ evolution in the inclusion complex MT-βCD2. Right panels: Hydrogen bond distribution
during the MD. H-bond threshold parameters: distance cutoff 3.2 Å, angle cutoff 180 ± 25◦.

3. Materials and Methods
3.1. Computational Details

The initial structure of linear melatonin was obtained from the Crystallographic Open
Database, resolved by A. Mostad and C. Romming [50], while the β-cyclodextrin crystal
structure was found in the Cambridge Crystallographic Data Center [51]. Starting from the
original .cif file, with the molecular modeling program MOLDRAW [49], it was possible to
obtain the .xyz file, used as inputs for computational software.

All the calculations have been performed employing different codes (xTB, ORCA,
CRYSTAL and Gaussian16), in order to test the reliability of the semiempirical functional
implemented in the xTB code. More details about the different computational software
used will be provided in the next sections.

3.1.1. xTB

Simulations with xTB code [52,53] (v. 6.4.0) were carried out at two different lev-
els of theory: semiempirical with xTB-GFN2 [54] and force-field with xTB-GFNFF [55].
The acronym stands for Geometry, Frequency, Noncovalent, eXtendend Tight-Binding,
highlighting the accuracy of this method in providing reasonable structures, vibrational
properties and a good description of weak interactions, at a reduced computational cost,
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as it relies on Tight-Binding methodology. More specifically, GFN2 uses a minimal atom-
centered basis set and a Tight-Binding-based Hamiltonian. On the contrary, the GFNFF
method describes molecules with the rules of classical mechanics, with a self-parametrized
force-field. Both support the possibility of simulating solvent effects, using the Analytical
Linearized Poisson-Boltzmann (ALPB) implicit solvation model [56]. Therefore, geome-
try optimization and molecular dynamics simulations were also simulated in water and
acetonitrile.

For all the calculations (geometry optimizations, frequency calculations and molec-
ular dynamics), the default settings were used (energy convergence Econv = 5 × 10−6 Eh,
gradient convergence Gconv = 1 × 10−3 Eh·α−1, accuracy for integral cutoffs and SCF crite-
ria = 1.0). Vibrational frequencies were calculated at room temperature (298 K) to include
thermal corrections to enthalpy and free energy and to verify that the optimized geometries
are minimum structures on the potential energy surface (check for no imaginary modes).

The dimerization and complexation energies (∆E) were calculated as follows:

∆E = Ecomplex − (EMT + EβCD) (1)

where Ecomplex, EMT and EβCD represent the relative energies of complex (or dimer), free
melatonin and free βCD respectively, at their optimized geometry. In the same way as
in Equation (1), the corresponding complexation enthalpy and free energy were also
calculated.

MD simulations were performed using a Berendsen thermostat at 298 K in the NVT
ensemble, with timesteps of 2 fs and total time of simulation of 100 ps. The H atom mass and
SHAKE algorithm were fixed to the default parameters, respectively 4 amu and algorithm
#2 (i.e., all the covalent bonds were fixed). The analysis of trajectories and image editing
and rendering were performed with the VMD package [57].

3.1.2. ORCA

The structures of melatonin, β-cyclodextrin and the corresponding inclusion com-
plexes were optimized in gas phase with DFT-based methods, using the ORCA (v. 4.2.1)
code [58]. For the DFT calculations, two different functionals were used: PBEh-3c and
B3LYP. PBEh-3c belongs to the composite DFT methods, which consist of low-cost methods
based on a small basis set (def2-mSVP in the specific case), with some empirical a posteriori
corrections (3c), which ensure a good accuracy in structural and electronic properties:
(i) the D3 [59] correction, using the Becke-Johnson (BJ) damping scheme [60], and includ-
ing the Axilrod-Teller-Muto three-body term (ABC) [61,62], the geometrical counterpoise
gCP [63,64] and small modifications of the basis set to account for its incompleteness
in order to obtain a good match with experimental bond lengths. On the other hand,
B3LYP [65] employs the well-known hybrid exchange Becke (3 parameters) and the cor-
relation Lee-Young-Parr [66] functionals, and all the atoms were described through the
Ahlrichs def2-TZVP [67] basis set, which was chosen according to its intrinsic accuracy and
small basis set superposition error. The same empirical corrections developed by Grimme
as for PBEh-3c were applied, i.e., D3BJ ABC and gCP. The DFT integration grid was set
to Grid4 (optimization) FinalGrid5 (single-point calculation after geometry optimization).
The tolerance on energy convergence of the self-consistent field (SCF) procedure was set
to the default, while on gradients and displacements of the geometry optimizer, it was
tightened to 0.00003 au and 0.0006 bohr, respectively. Due to the high computational cost
of B3LYP/def2-TZVP, the calculation of vibrational frequencies was performed only with
the PBEh-3c functional. The dimerization and complexation energies (∆E) were calculated
as in Equation (1).

3.1.3. CRYSTAL

Calculations on the crystal structure of melatonin were performed with the CRYS-
TAL17 [68,69] periodic code, using the cost-effective PBEh-3c method to be consistent with
molecular calculations. The tolerances on energy for the convergence of the SCF procedure
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were set to 10−8 and 10−10 for geometry optimizations and frequency calculations respec-
tively, while on RMS gradients and displacements of the geometry optimizer, they were
tightened to 0.00003 au and 0.00012 bohr, respectively. Tolerances in the integral calculation
were set to 10−7 Hartree for Coulomb overlap, Coulomb penetration, exchange overlap
and exchange pseudo-overlap in the direct space, and to 10−25 Hartree for the exchange
pseudo-overlap in the reciprocal space. The Pack-Monkhorst/Gilat shrinking factors for
the reciprocal space were set to 2. Vibrational frequencies were computed at the Γ point by
numerical differentiation of analytical first derivatives (three displacements for each atom
of the unit cell, one for each cartesian direction) [70,71]. Intensities were computed through
the Berry Phase approach in order to simulate the IR spectrum. The cohesive energy of the
crystal was calculated as:

∆Ecohesive =
1
4

Ecrys − Emol

where Ecrys and Emol are the total energy of the crystal and the isolated molecule, respec-
tively. The normalization factor is due to the number of melatonin molecules in the crystal
structure.

3.1.4. Gaussian

The Gaussian code was used in order to evaluate the anharmonic correction to the
vibrational frequencies. Due to the high cost of this calculation, the anharmonic correction
was calculated only on the free melatonin molecule. Unfortunately, composite methods
(such as PBEh-3c) are not available in Gaussian, and therefore, the anharmonic correction
was calculated at a good level of theory, i.e., B3LYP-D3BJ/TZVP, and then applied to the IR
spectrum computed by CRYSTAL at the PBEh-3c level.

3.2. Experimental Details
3.2.1. Synthesis of Inclusion Complex

Melatonin was purchased from Sigma-Aldrich (3050 Spruce Street, Saint Louis, MO
63103, USA) and used as-received. β-cyclodextrin was donated by Roquette Italia S.p.A.,
Cassano Spinola (AL) and Roquette Frères, Lestrem (Francia), and dried before use with
oven treatment at 100 ◦C. Solid MT/βCD inclusion complex was prepared in the form of
a nano-sponge, similar to the β-cyclodextrin pure citric nano-sponge previously synthe-
sized in our laboratories [72]. βCD (5 g), melatonin (0.1025 g), catalyst sodium hypophos-
phite monohydrate (0.9075 g) and cross-linking agent citric acid (6.75 g) were dissolved
in a beaker with stirring in 40 mL of water at 50 ◦C on a hot plate, until the solution was
clear. Next, the solution was transferred to an oven and maintained at 140 ◦C for 1 h and
at 100 ◦C for 16 h. The presence of an insoluble precipitate, recovered in crystal form,
indicates the completeness of the crosslinking reaction. The product was then crushed until
a powder was obtained and stored at room temperature.

3.2.2. FTIR Spectroscopy

FTIR spectra were recorded with a PerkinElmer Spectrum 100 with DTGS (triglycine
sulfate deuterated) detector. Parameters used were: spectral window from 4000 to 650 cm−1,
resolution 4 cm−1, pressure applied on sample 100–120 N and with 16 scans per spectrum.

The FTIR spectra were performed on a powder sample of melatonin, used without
further purification, and on the experimental hyper-crosslinked inclusion complex between
melatonin and β-cyclodextrin in the form of a nano-sponge, synthesized with the procedure
described in Section 3.2.1.

4. Conclusions

In the present work, both MT and βCD bare structures were studied, as well as possible
guest structures of inclusion complexes, by means of static and dynamic simulations using
different computational methods, from molecular mechanics, to semiempirical, to ab initio.
The idea was to find a cost-effective methodology with an accurate description of the
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intermolecular forces acting on this system. We do not claim to provide the actual structure
of MT/βCD complex: the idea was to create a cheap but accurate method, capable of
managing more complex and realistic systems, i.e., a structural model of a nano-sponge,
comprised of several βCD units linked to each other through the molecule used as a cross-
linker agent, also including micro-solvation water molecules. An accurate analysis of the
different methods was performed, as well as a comparison with experimental IR spectra.
Results clearly show that the xTB-GFN2 method provides very accurate results in good
agreement with the experiment, in the same way as DFT methods do, but at a reduced
computational cost, 2/3 orders of magnitude less than a typical DFT functional. Molecular
dynamics simulations have been performed in gas phase to provide an atomistic view of the
real inclusion process, while the use of water and acetonitrile was modeled to simulate the
wash-out process. Future steps include the adoption of substituted βCDs in order to reach
the desired control of the timescale of the release process, the analysis of solvation effects
through explicit water molecules and possibly the modeling of a realistic nano-sponge.

Supplementary Materials: Table S1: CCSD(T) vs. GFN2 ranking of the 52 melatonin conformers.
In yellow, the 15 structures used for the benchmark. Table S2: Complexation energy (∆E), enthalpy
(∆H) and free energy (∆G). Values are in kcal/mol. Legend: MT = melatonin, βCD = β-cyclodextrin,
GP = gas phase, W = water, ACN = acetonitrile. Figure S1: Superimposed optimized structures of
melatonin dimer. Color legend: GFN2 blue, GFNFF red, PBEh-3c yellow, B3LYP pink. Figure S2:
Computed spectra for the Indole–Indole dimer at PBEh-3c (blue line) and GFN2 (orange line).
Figure S3: Top and side view of βCD. The symmetry irreducible atoms are in ball and stick. Atom
color: H white, C grey, O red. Figure S4: Superimposed optimized structures of melatonin dimer.
Color legend: GFN2 blue, GFNFF red, PBEh-3c yellow, B3LYP pink. Figure S5: H bond evolution
during the molecular dynamics simulation on the MT/βCD complex. Figure S6: Selected snapshots
of the molecular dynamics simulation in implicit water solvation of the MT/βCD complex. Figure S7:
Selected snapshots of the molecular dynamics simulation in implicit acetonitrile solvation of the
MT/βCD complex.
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