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1. Fitting of 1H NMRD profiles and 17O NMR relaxivity data 

 

From the two contributions (inner sphere (r1,IS) and outer-sphere (r1,OS)) to the longitudinal proton 

relaxation rate (r1) (eq. 1), the former one is considered for the fitting of 1H NMRD profiles (1).  

 

𝑟1 = 𝑟1,𝐼𝑆 + 𝑟1,𝑂𝑆             (1) 

 

According to the Solomon–Bloembergen theory, the r1,IS is dominated by the dipolar interaction 

(eqs. 2 and 3), where q is the number of water molecules directly coordinated to the Mn-ion, T1M is 

their longitudinal relaxation time, τM is the water-exchange correlation time (2-4).  
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Here, rMnH is the distance between the proton of a bound H2O molecule and Mn-ion (fixed at 3.0 Å), 

μ0/4π) is the magnetic permeability in vacuum, S is the electron spin (7/2), γI and γS are the 

gyromagnetic ratios, and ωI and ωS are the Larmor frequencies of the proton and electron, resp. Tie 

(i = 1,2) represents electronic relaxation time that contributes to τdi
-1 = τM

-1 + τR
-1 + Tie

-1, expressed 

by eqs. 4 and 5 due to zero-field splitting (ZFS) (5). 
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Here, Δ2 represents the mean-squared fluctuation of the ZFS, τv is the correlation time for the 

instantaneous distortion of the coordination polyhedron of Gd-ion. The outer-sphere contribution to 

the relaxivity (r1,OS) is described by eqs. 6 and 7, where NA is the Avogadro’s number, aGdH the 

distance of diffusing water molecule in the closest approach to Gd-ion (fixed at 4.0 Å), DGdH is 

diffusion coefficient and Jos(ωS, Tje) (j = 1, 2) are spin density functions (6). 
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All correlation times 𝜏 (X = R, M, V) exhibit an exponential dependence (eq. 8), where EX are 

activation energies (fixed at EV = 1 kJ mol-1, ER = 1 kJ mol-1) and R is the gas constant, leading to a 

temperature dependent diffusion coefficient D (fixed at 2.24×10-5 cm2 s-1 for 298.15K).  
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Mn-induced water 17O longitudinal and transverse relaxation rates (1/T1r and1/T2r) and angular 

frequencies (Δωr) were calculated using eqs. 10 and 11 (7-8). 
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2. Computational modeling 

 

Table S1: Calculated bond distances for Mn complexes with AMPTA. 

Mn((S)-AMPTA) Distance (Å) Mn((R)-AMPTA) 

2.093 Mn-Owater 2.093 

2.138 Mn-N2 2.137 

2.074 Mn-N1 2.075 

2.020 Mn-O 2.021 

2.008 Mn-O1 2.008 

2.054 Mn-O2 2.054 

 

 

Table S2: Calculated bond distances for Mn complexes with AMPDA-HB. 

Mn((S)-AMPDA-HB) Distance (Å) Mn((R)-AMPDA-HB) 

2.103 Mn-Owater 2.103 

2.145 Mn-N2 2.145 

2.078 Mn-N1 2.078 

2.042 Mn-O 2.042 

2.000 Mn-O1 2.000 

2.067 Mn-O2 2.067 
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3. NMR Spectra 

 
Figure S1. 1H NMR spectrum in CDCl3 of protected salicylaldehyde 1. 

 

 

 
Figure S2. 13C NMR spectrum in CDCl3 of protected salicylaldehyde 1. 
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Figure S3. 1H NMR spectrum in CDCl3 of intermediate 2 (signals from residual EtOH at 3.67 and 1.22 ppm 

are also observable).  

 

 
Figure S4. 13C NMR spectrum in CDCl3 of intermediate 2 (signals from residual EtOH at 18.4 and 57.8 ppm 

are also observable). 
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Figure S5. 1H NMR spectrum in CDCl3 of intermediate 3. 

 

 

 
Figure S6. 13C NMR spectrum in CDCl3 of intermediate 3. 
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4. HPLC-MS  

 

Analytical HPLC gradient conditions for AMPDA-HB and (R)-AMPTA: 

Solvent A = H2O (TFA 0.1%); solvent B = ACN (TFA 0.1%); flow = 1 mL/min;  

Time (min) Solvent A (%) Solvent B (%) 

0 99 1 

2,00 99 1 

16,00 0 100 

19,00 0 100 

 

 
 

Figure S7. ESI+ MS (bottom), UV (254 nm, middle) and specific ion (M+H+, top) HPLC chromatograms of 

AMPDA-HB (tR = 10.9 min) prepared according to the new method. 
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Figure S8. ESI+ MS (bottom), UV (254 nm, middle) and specific ion (M+H+, top) HPLC chromatograms of 

(R)-AMPTA (tR = 9.5 min). 
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5. Equilibrium studies of the Mn(II) complexes 

 
Figure S9. Absorption spectra (A) and absorbance values at 295 nm (B) of Mn2+-AMPDA-HB system as a 

function of pH ([Mn2+] = [AMPDA-HB] = 1.010-4 M, l = 1.0 cm, 0.15 M NaCl, 25 C). 
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Figure S10. Species distribution and relaxivity values () of Mn2+-CDTA system as a function of pH ([Mn2+] 

= [CDTA] = 1.0 mM, 20 MHz, 0.15 M NaCl, 25 °C). 

 

 


