Reference	Compound (Dose)	Model	Epigenetic Effects	Other effects (Health related effects)
Tunca, 2012 [21]	Olea europaea leaf extract: OLE (5-2000 μg/ml, 15% oleuropein) Tested the effects in combination with TMZ ¹	In vitro: -T98G human GBM ² cell line	40 miRNAs were screened OLE: ↑miRNA-584, miRNA-210, miRNA-219-1-3b, miRNA- 181b, miRNA-145, miRNA-137 ↓miRNA-24 =miRNA-153, let-7d OLE + TMZ: ↑miRNA-181b, miRNA-153, miRNA-145, miRNA-137, let- 7d	↓ Proliferation Synergistic effect with TMZ (Anti-cancer)
Tezcan, 2014 [22]	Olea europaea leaf extract: OLE (5-2000 μg/ml, 15% oleuropein) Tested the effects in combination with TMZ	In vitro: -T98G, U-138MG and U-187MG human GBM cell lines -GBM stem-like cells (GSCs)	OLE in GSCs 个miRNA-153, miRNA-137 =miRNA-181b, miRNA-145, Let-7d OLE + TMZ in GSCs: 个miRNA-153, miRNA-137, miRNA-181b, miRNA-145, =Let-7d	 ↓ Proliferation(U-138MG and U-187MG) ↑ Apoptosis (T98G,U-138MG and U-187MG) ↓ mRNA of: <i>TP53, OCT-4,</i> <i>SOX2, BCL2, c-myc, c-Met</i> (GSCs) (Anti-cancer)
Casas-Agustench, 2015, [23]	Olive oil as a source of n-9 fatty acids	In vivo: -Female Sprague-Dawley rats	个miRNA-215, miRNA-10b, miRNA-26, miRNA-377-3p, miRNA-21, miRNA-192	No effect on 88 genes related to insulin signaling (Insulin sensitivity)
Di Francesco, 2015 [60]	-EVOO ³ (In vitro: 100 ppm containing 320 mg of total phenols/kg) (In vivo: gavage, 250 μl/300 g)	In vitro: -CaCo-2 human colorectal cancer cells In vivo: -Female Sprague-Dawley rats	In vivo: ↓miRNA-23, miRNA-301a =miRNA-27a, miRNA-29a	↑CB1 ⁴ (protein) ↑mRNA of: CNR1 ↓Proliferation (Caco-2 cells) (Anti-cancer)

Table 1S.Characteristics of selected studies showing the effects of olive oil and/or its phenolic compounds on miRNAs (expression)

Tomé-Carneiro, 2016 [24]	Hydroxytyrosol (HT) (0.03 % HT in diet, long term) (Gavage, 15mg of HT, acute) (in vitro: 10 μM) (Human: 25 mg/d)	In vitro: -CaCo-2, InEpCells ⁵ , mouse primary intestinal organoids or "miniguts" In vivo: -C57BL/6mice (8 weeks) Human trial: -PBMC	In vitro: CaCo2: ↓miRNA-196b-3p InEpCells: ↑miRNA-483-3p, miRNA-1247-5p Miniguts: ↑miRNA-193a-5p, miRNA-1247-5p In vivo: 752 miRNAs screened ↑miRNA-483-3p, miRNA- 135a-1-3p, miRNA-1982-5p miRNA-196b-3p, miRNA-1898 ↓miRNA-346- 5p Human: ↑miRNA-193a-5p in PBMCs	 ↑ plasma, liver and intestine triacylglycerol (mice) mRNA microarrays: ↓ 332 genes including Cd36, Cyp4a10, Gsta3, Hsd3b2, Paqr7, Pdk4 and Slc35e3 ↑ 342 genes including Car2, Crym, Cxcl13, Dusp6, Hsph1 and II33 (Lipid metabolism and Anti- CVD)
D'Amore, 2016 [25]	EVOO (50 mL, 4h) (High phenols: 491 mg/kg) (Low phenols: 270 mg/Kg)	Human trial: -Healthy subjects (n=12) -MetS ⁶ subjects (n=12)	↓8 miRNA: miRNA-146b-5p, miRNA-19a- 3p, miRNA-181b-5p, miRNA- 107, miRNA-769-5p, miRNA- 192-5p 个6 miRNA: miRNA-23b-3p, miRNA-519b- 3p	 ↓ glucose, insulin, HOMA-IR ↓ 1062 genes healthy ↑ 1376 genes healthy ↓ 551 genes MetS ↑ 403 genes MetS (Anti-inflammatory, Anti-CVD and Anti-cancer)
Xu, 2017[26]	Oleuropein (In vitro: 200 μM) (In vivo:drinking water, 1% w/v)	In vitro: -NPC ⁷ HNE1 and HONE1 cell lines In vivo: -xenograft NPC mouse model	个22 different miRNAs 个miRNA-519d	 ↑Radio-sensitivity ↓mRNA and protein levels ofHIF1α⁸, p53 and PDRG1⁹ (Anti-cancer)
D'Adamo, 2017 [27]	Hydroxytyrosol 100 μM	In vitro: -Human primary and C- 28/12 chondrocytes	\downarrow Up-regulation of miRNA-9 induced by H ₂ O ₂	↑Down-regulation of SIRT-1 induced by H ₂ O ₂ (Anti-osteoarthritis and anti- oxidant)
Bigagli, 2017 [28]	Hydryxytyrosol, Oleuropein (10 μM)	In vitro: -RAW264.7 macrophage cells stimulated with LPS	↓ miRNA-146a	 ↓ Oxidative burst ↓ NO and PGE2 ↓ CD11b expression ↑ Nrf2 translocation

				(Anti-inflammatory)
Luceri, 2017 [29]	EVOO (10 g/100 g of diet) (High phenols: 718.8 mg/kg) (Low phenols: 9.3 mg/Kg)	In vivo: -Middle-aged C57BI/6J mice 6 months	个miRNA-484, miRNA-27, miRNA-137, miRNA-30, miRNA-34, miRNA-124	个Motor and cognitive behavior 个Notch1, BMPs, NGFR GLP1R, CRTC3 (Anti-aging)
Xing, 2017 [30]	Oleuropein (In vitro: 200 μM) (In vivo: drinking water, 1% w/v)	In vitro: -Caov3 and Skov3 ovarian cancer cell lines In vivo: -xenograft ovarian cancer mouse model	个10 different miRNAs 个miRNA-299	\uparrow Radio-sensitivity \downarrow mRNA of HPSE1 \downarrow HIF1 α (Anti-cancer)
Abtin, 2018 [31]	Oleuropein (600-1000μg/mL)	In vitro: -Human MCF-7 breast cancer cell line	↓miRNA-21, miRNA-155	 ↑Apoptosis ↓Viability, Migration ↑APAF-1, PTEN, TP53INP-1, and FADD genes (Anti-cancer)
ArunSundar, 2018 [62]	Hydroxytyrosol (In vitro: 100 μM) (In vivo: not reported)	In vivo: -Animal model: Alzheimer's Disease induced in mouse by oA42i ¹⁰ -Organotypic hippocampal slice cultures (OHSCs)	个 miRNA-124	 ↑Cognitive impulsivity ↓Anxiety-like behavior ↓HDAC6, HSP90 (Anti-Alzheimer's Disease)
Nanda, 2019 [61]	EVOO (Thrice a week, 1 g/kg body weight, gavage)	In vivo: -Sprague Dawley rats exposed to DHM ¹¹ (model of colon carcinogenesis)	↑miRNA-143 and miRNA-145 expression ↓ Methylation of promoter region of miR-143 and miR- 145	 ↑body weights ↓tumor or polyp incidence, multiplicity and size ↓mRNA and protein expression of NF-кB, VEGF, MMP-9 ↑mRNA and protein expression of caspase-3 and caspase-9 (Anti-cancer and Anti- inflammatory)

Juli, 2019 [63]	Oleacein (3,4-DHPEA-EDA) (2,5-10 μM)	In vitro: -NCI-H929, RPMI-8226, U266, MM1s and JJN3 MM ¹² cell lines	个miRNA-29b and miRNA-22 in JJN3	 ↓ Viability and clonogenicity of MM cells =viability of normal PBMC ↓ Cell cycle progression ↑ Apoptosis ↓ Sp1 protein expression ↑ in vitro anti-MM activity of the proteasome inhibitor carfilzomib (Anti-cancer)
Benincasa, 2019 [32]	Hydroxytyrosol oleate (5 μM)	In vitro: -HaCat human immortalized keratinocyte cell line	个miRNA-34a, miRNA-21, miRNA-29a	 ↑Viability ↓Intracellular ROS formation ↓SOD and GST enzyme activity ↓MDA (Anti-oxidant)
Lopez De Las Hazas, 2019 [33]	Hydroxytyrosol (0.03 % HT in the Diet)	In vivo: -Mice liver samples obtained from a previous study [24]	247 different miRNAs detected in mouse liver samples 个miRNA-802-5p, miRNA-30a- 5p, miRNA-146b-5p ↓miRNA-423-3p	Expression of several genes and proteins 个Fgf21 and Rora (Lipid metabolism and Anti- CVD)
Tezcan, 2019 [34]	Oleuropein (277.5 and 555 μM) Tested the effects in combination with TMZ	In vitro: -T98G human GBM cell line	个miRNA-181b, miRNA-137 and Let-7d =miRNA-153	↓Viability/proliferation (Anti-cancer)
Scoditti, 2019 [35]	Hydroxytyrosol (1-10 μM)	In vitro: -Human SGBS ¹³ adipocytes stimulated with TNF-α	↓ upregulation of miRNA-34a, miRNA-155 induced by TNF-α ↑let-7c expression level decreased by TNF-α	 ↓TNF-α induced upregulation of mRNA of: MCP-1, CXCL-10, M-CSF, IL-1, VEGF, COX-2, MMP-2, IL-6, PAI-1, ICAM-1, SOD-1, GPX-1 ↑ TNF-α induced downregulation of mRNA of: eNOS, PGC-1α, GLUT-4.

				↓ NFkB activation (Anti-inflammatory)
D'Adamo, 2019 [36]	Hydroxytyrosol (100 μM)	In vitro: -Human primary and C- 28/I2 chondrocytes	Restores the methylation of promoters of miRNA-9 decreased by H ₂ O ₂	(Anti-osteoarthritis and anti- oxidant)
Carpi, 2019 [37]	Oleocanthal (<i>p</i> -DHPEA-EDA) Oleacein (3,4-DHPEA-EDA) 25μM	In vitro: -Human SGBS adipocytes stimulated with TNF-α	Counteract the TNF-α effects in cells and exosomes: ↓ miRNA-34a-5p and miRNA- 155-5p ↑let-7c-5p	=Cell viability ↓TNF-α induced upregulation of mRNA of: IL-1β, COX-2, VEGF/KDR, MMP-2, NADPH oxidase, SOD, GPX, MCP-1, CXCL-10, MCS-F ↑ expression of the anti- inflammatory/metabolic effector PPAR ↓ NFkB activation (Anti-inflammatory)
Terzuoli, 2020 [38]	Hydroxytyrosol-3-O-sulphate (major HT plasma metabolite, 10 μM)	In vitro: -Human umbilical endothelial cells (HUVEC) -Human retinal endothelial cells (HREC) (stimulated withIL-1β)	<i>↑let-7</i> miRNA decreased by IL-1β	 ↓ IL-1β induced endothelial- to-mesenchymal transition (EndMT) ↑ CD31, FGFR1 (protein) ↓ α-SMA, vimentin (protein) ↓ TGF-β signaling ↓ nuclear translocation of SMAD2/3 ↓ ACTA2, ZEB2, SNAI1, VIM, NOTCH3, CNN1, MMP2, MMP9 (mRNA) ↑ CD31, FGFR1 (mRNA) (Anti-inflammatory)

¹Temozolomide, ²Glioblastoma multiforme, ³Extra virgin olive oil, ⁴Type 1 cannabinoid receptor, ⁵Human primary epithelial intestinal cells, ⁶Metabolic syndrome⁷Nasopharyngeal carcinoma, ⁸Hypoxia-inducible factor-1α, ⁹DNA damage-regulated protein, ¹⁰Soluble oligomeric amyloid β₁₋₄₂ plus ibotenic acid, ¹¹1, 2-dimethylhydrazine, ¹²Multiple myeloma, ¹³Simpson-Golabi-Behmel syndrome.

Ref.	Compound (dose)	Model	Epigenetic Effects	Other effects Health related effects
Hoile, 2014 [39]	-Olive oil (4 g daily, "1 g capsules") -n-3 LC-PUFA	Human trial: -29 Chronic kidney disease patients, 8 weeks -Peripheral blood mononuclear cells	DNA methylation of CpGs in 5' regulatory regions of: ↑FADS2 = FADS1, ELOVL2 ↑ELOVL5 in some regions and ↓in others	↓mRNA of: <i>FADS2, FADS1,</i> <i>ELOVL5</i> (only female), <i>ELOVL2</i> (PUFA metabolism)
Rodríguez-Miguel, 2015 [58]	-Low fat -Corn oil (CO) -EVOO ¹ (17% in the diet)	In vivo: -DMBA ² -Induced Breast Cancer in rats	 ↑Global DNA methylation ↓ promoter methylation of <i>RASSF1A</i> and <i>TIMP3 vs.</i> CO ↓ mRNA of <i>DNMT1, DNMT3a</i> <i>DNMT3b vs.</i> CO ↓ DNMT activity vs. CO 	Weak tumor enhancing effect ↓mRNA of: <i>RASSF1A, TIMP3,</i> (Anti-cancer)
Di Francesco, 2015 [60]	-ROO ³ -EVOO (In vitro: 100 ppm containing 320 mg of total phenols/kg) (In vivo: gavage, 250 μl/300 g) -OPE ⁴ (50 μM) -Hydroxytyrosol (50 μM)	In vitro: -CaCo-2 human colorectal cancer cells In vivo: -Female Sprague-Dawley rats (Single dose and 10 days of EVOO)	CNR1 gene promoter DNA methylation: =ROO ↓EVOO (in vitro and in vivo) ↓OPE ↓HT	CB1 ⁵ (mRNA and protein expression): ↑EVOO (in vitro and in vivo) ↑OPE ↑HT ↓Proliferation (OPE, HT) (Anti-cancer)
Liao, 2015 [40]	Fish oil (FO as control) Olive oil (80 g/kg of diet)	In vivo: -Yellow croakers (<i>Larimichthyscrocea</i>) 70 days	Mitochondrial DNA methylation ↑ <i>TR</i> and <i>ND4L</i> ↓ <i>RNR1</i> = <i>D-loop</i> mRNA and protein: ↓ DNMT1, DNMT3B ↑ DNMT3A, HIF1a	个Liver lipid 个Hydroxyl radical scavenging activity (Anti-oxidant)

Table S2. Characteristics of selected studies showing the effects of olive oil and/or its phenolic compounds on DNA methylation

Govindarajah, 2016 [41]	Butter fat Safflower oil Olive oil (40% fat from olive oil)	In vivo: -DMBA-Induced Breast Cancer in rats (prenatal exposure, cancer in prepubertal mammary glands)	个 mRNA expression of DNMT3a, Mbd1	 =Tumor volume, latency, multiplicity ↓mRNA of: Lrrn1, Nf1, Dbf4, Cadm4, ↑mRNA of: Tmem45b, Btn1a1 (Anti-cancer)
Garcìa-Escobar, 2017 [42]	Coconut oil (CO) Sunflower oil (SO) Olive oil (10% fat from oils)	In vivo: -Sprague-Dawley rats -Adipocytes	TNFα promoter methylation ↓ versus SO ↑ versus CO	↓mRNA of TNFα versus CO ↓release of TNFα from adipocytes versus CO (Anti-inflammatory)
Monastero, 2017 [43]	Coconut oil (CO) Sunflower oil (SO) Olive oil (10% fat from oils)	In vivo: -Sprague–Dawley rats	个VEGF promoter methylation versus CO	 ↓ mRNA and protein of VEGFB versus CO (Anti-obesity)
Tezcan, 2017 [44]	Olea europaea leaf extract: OLE (5-2000 μg/ml, 15% oleuropein) Tested the effects in combination with TMZ	In vitro: -Human primary GBM ⁶ tumor cells	个 MGMT promoter methylation	 ↓Proliferation (with TMZ) ↑DNA damage (with TMZ) ↓p53 (protein) (Anti-cancer)
Arpón, 2018 [45]	MedDiet + EVOO (39.6-66.4 g/day) MedDiet + nuts (MN) Low fat (RF)	Human trial: -36 subjects, 5 years -Peripheral white blood cells	223 CpGs screened ↓ DNA methylation of cg17071192–GNAS/GNASAS versus both MN and RF	 ↓ Diabetes ↓ Hypercholesterolemia ↓ Arterial hypertension (Anti-CVD)
Corominas-Faja, 2018 [46]	Oleacein (3,4-DHPEA-EDA) (0,1-20 μM)	In vitro: -SUM-159 Breast Cancer cells (CSC) -MCF-7 In vivo:	 ↓ DNMT1, 3A/3L and 3B/3Lenzyme activity in nuclear extract Act as SAM competitive inhibitor 	Antistemness properties: ↓ALDH ⁺ cells ↓ mammospheres formation ↓ tumorigenicityin vivo ↓mTOR activity ↓44 genes

		-Tumor xenograft and orthotopic transplant studies		个116 genes (Anti-cancer)
Hunter, 2019 [47]	-EVOO (6 g daily, "capsules") -n-3 PUFA	Human trial: -8 subjects (trained male cyclists), 4 weeks -Whole blood isolated from	 =Global DNA methylation =mRNA expression of <i>DNMT3a</i>, <i>DNMT3b</i> ↓ mRNA expression of <i>DNMT1</i> =Methylation of PPARGC1A ↓ Methylation of IL6 =Methylation of TNF 	=mRNA expression of <i>IL6, TNF,</i> <i>PPARGC1A</i> (Anti-inflammatory)
Nanda, 2019 [61]	EVOO (Thrice a week, 1 g/kg body weight, gavage)	In vivo: -Sprague Dawley rats exposed to DHM ⁷ (model of colon carcinogenesis)	↑ methylation of promoter region of NF-κB, VEGF, MMP-9, ↓ methylation promoter region of miR-143, miR-145, caspase-3, caspase-9	 ↑body weights ↓tumor or polyp incidence, multiplicity and size ↓mRNA and protein expression of NF-κB, VEGF, MMP-9 ↑mRNA and protein expression of caspase-3 and caspase-9 (Anti-cancer and Anti- inflammatory)
Garcia-Contreras, 2019 [48]	Hydroxytyrosol (1.5 mg/kg of feed per day)	In vivo: -Sows (maternal supplementation), 65 days -Blood and plasma (maternal and fetal)	个Global DNA methylation of fetus	Undetectable Plasma hydroxytyrosol concentrations ↑total antioxidant capacity (TEAC) ↓ body and visceral weights ↑ diameter of the descending aorta; ↓ Parameters for glycemic index (glucose, fructosamine) and lipid profile =SOD1, CAT, HIF1A, VEGFA, NOS2, IGF1 and UCP2 (mRNA)

				(Anti-intrauterine growth restriction)
Juli, 2019 [63]	Oleacein (3,4-DHPEA-EDA) (2,5-10 μM)	In vitro: -NCI-H929, RPMI-8226, U266, MM1s and JJN3 MM ⁸ cell lines	=Global DNA methylation =mRNA and protein expression of: DNMT1, DNMT3A, DNMT3B	 ↓ Viability and clonogenicity of MM cells =viability of normal PBMC ↓ Cell cycle progression ↑ Apoptosis ↓ Sp1 protein expression ↑ in vitro anti-MM activity of the proteasome inhibitor carfilzomib (Anti-cancer)
Bordoni, 2019 [59]	-EVOO (volumes dissolved in DMSO not reported) <i>-Nigella sativa</i> oil (NG)	In vitro: -THP-1 (stimulated with PMA and LPS)	 ↓mRNA of DNMT3A, DNMT3B =DNMT1 ↑Global DNA methylation versus NG ↓TET2 =TET1, TET3 	=Cell viability \downarrow IL-6 \downarrow IL-1 β \downarrow MCP-1 \downarrow MtDNA copy number \downarrow Membrane fluidity = (GSH/GSSG) Ratio
	athe llang (a) anthug and 30 atticided at			(Anti-inflammatory)

¹Extra virgin olive oil, ²Dimethylbenz(a)anthracene, ³Rectified olive oil, ⁴Olive oil phenolic extract, ⁵Type 1 cannabinoid receptor, ⁶Glioblastoma multiforme, ⁷1,2dimethylhydrazine, ⁸Multiple myeloma **Table 3.**Characteristics of selected studies showing the effects of olive oil and/or its phenolic compounds on Histone modifications

Ref.	Compound (dose)	Model	Epigenetic Effects	Other effects Health related effects
Oliveras-Ferraros, 2011 [49]	-EVOO ¹ phenolic extract from 14 monovarietals (0%, 0.0001, 0.001, 0.01, 0.05 and 0.1 % v/v)	In vitro: -JIMT-1 human breast cancer cell line	个Acetylation of Histone H3 at Lysine 18	 ↓Cell viability ↓Cell cycle (arrest at the G2/M phase) = AKT ↑Stat3 ↑p38MAPK ↑MEK1 ↑NF-kB phosphorylation status (Anti-cancer)
Rodríguez-Miguel, 2015 [58]	-Low fat -Corn oil (CO) -EVOO (17% in the diet)	In vivo: -DMBA ² -Induced Breast Cancer in rats	 ↓ H4K20me3 in tumor tissue ↓ H4K16ac in normal and tumor tissue = H3K4me2 and H3K27me3 in normal and tumor tissue 	Weak tumor enhancing effect ↓mRNA of: <i>RASSF1A, TIMP3,</i> (Anti-cancer)
Luccarini, 2015 [50]	-Oleuropein aglicone (OLE, 100μM) -OLE diet (50 mg/kg of diet)	In vivo: -TgCRND8 ³ AD mouse model In vitro: -pE3-Aβ ⁴ + OLE	个H3K9 and H4K5 acetylation ↓HDAC2 expression	pE3-Aβaggregation modified ↓ pE3-Aβ citotoxicity ↓ Glutaminyl cyclase (QC) ↑ Autophagy ↓ dysfunctions of transgene- induced long-term potentiation(LTP) in the hippocampal area ↑ OLE metabolites in the brain (Anti-Alzheimer's Disease)
Bonvino, 2015 [51]	-Hydroxytyrosol (0-100μM)	In vitro:	↑HDAC6 ↓KDM1A (LSD1)	= acetylated α tubulin

	A commercial topical antimicrobial spray containing the Olivamine 10 ® formulation, which includes a hydroxytyrosol containing olive extract	-purified enzyme LSD1 + hydroxytyrosol Ex vivo: -Tissue sections obtained from the peri wound of a diabetic ulcer patient		(Anti diabetes adverse effects)
ArunSundar, 2018 [62]	Hydroxytyrosol (In vitro: 100 μM) (In vivo: not reported)	In vivo: -Animal model: Alzheimer's Disease induced in mouse by oA42i ⁵ -Organotypic hippocampal slice cultures (OHSCs)	↓ HDAC6	 ↓Cognitive impulsivity ↓Anxiety-like behavior ↓ HSP90 (Anti-Alzheimer's Disease)
Acevedo, 2019 [52]	-Olive oil in the diet	In vivo: -Human Placenta (ALADDIN ⁶ cohort) Cross-sectional study	个H3 acetylation at FOXP3, IL10RA and IL7R promoters	(Immune system)
Verdura, 2019 [53]	-Oleacein (Decarboxymethyl oleuropein aglycone (DOA) (3,4-DHPEA-EDA) (0.01-100μM)	In vitro: -purified enzyme IDH1 + oleacein -MCF10/HCT116 cells expressing R132H IDH1 mutant and their parental cell lines	↓ (H3K9me3)	 ↓ R132H IDH1 ↓ 2HG ↑ PD-L1 ↓ colony formation (Anti-cancer)
Bayat, 2019 [54]	-Oleuropein glucoside (150-2400µg/ml)	In vitro: MCF7 human breast cancer cell line	↓HDAC2 e HDAC3 mRNA expression	 ↓ cell viability ↑ cell apoptosis ↓ cell migration (Anti-cancer)
Juli, 2019 [63]	-Oleacein (3,4-DHPEA-EDA) (2,5-10 μM)	In vitro:	 ↑ H3 and H4 acetylation ↓ I/II HDACs (HDAC1/2/3/4/6) 	 ↓Viability and clonogenicity of MM cells =viability of normal PBMC

		-NCI-H929, RPMI-8226, U266, MM1s and JJN3 MM ⁷ cell lines	=HDAC activity	 ↓ Cell cycle progression ↑ Apoptosis ↓ Sp1 protein expression ↑ in vitro anti-MM activity of the proteasome inhibitor carfilzomib (Anti-cancer)
Cuyàs, 2019 [55]	-Oleacein (3,4-DHPEA-EDA) (0,01-100µM)	In vitro: - Purified enzyme (KDM1A) + oleacein -BT-474 and MCF7 breast cancer cell lines	↓KDM1A (LSD1)	↓SOX2 (Anti-cancer)
Cuyas, 2019 [56]	-Oleacein (3,4-DHPEA-EDA) (1-100µM)	In vitro: -Purified enzyme + oleacein -MCF-7 and BT-474 breast cancer cell lines	↓KDM6A ↓DOT1L	↓NNMT ↓ACLY (Anti-cancer)
Mansouri, 2019 [57]	-Oleuropein glucoside 150-2400µg/ml	In vitro: -MCF-7 breast cancer cell line	↓mRNA HDAC4	 ↓ cell Viability ↑ cell apoptosis ↓ cell migration (Anti-cancer)
Bordoni, 2019 [59]	-EVOO (volumes dissolved in DMSO not reported) <i>-Nigella sativa</i> oil (NG) <u>No phenols</u>	In vitro: -THP-1 (stimulated with PMA and LPS)	↓HDAC1, HDAC3	=cell viability ↓IL-6 ↓IL-1β ↓MCP-1 ↓MtDNA copy number ↓Membrane fluidity = (GSH/GSSG) Ratio (Anti-inflammatory)

¹Extra virgin olive oil, ²Dimethylbenz(a)anthracene, ³Transgenic hemizygous CRND8 mice; ⁴ pE3-Aβ pyroglutamate-amyloid-β; ⁵oligomeric amyloid β_{1-42} plus ibotenic acid; ⁶Assessment of Lifestyle and Allergic Disease During INfancy (ALADDIN) cohort; ⁷Multiple myeloma