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Abstract: Front tracking and enthalpy methods used to study phase change processes are based on a
local thermal energy balance at the liquid–solid interface where mass accommodation methods are
also used to account for the density change during the phase transition. Recently, it has been shown
that a local thermal balance at the interface does not reproduce the thermodynamic equilibrium
in adiabatic systems. Total thermal balance through the entire liquid–solid system can predict the
correct thermodynamic equilibrium values of melted (solidified) mass, system size, and interface
position. In this work, total thermal balance is applied to systems with isothermal–adiabatic boundary
conditions to estimate the sensible and latent heat stored (released) by KNO3 and KNO3/NaNO3

salts which are used as high-temperature phase change materials. Relative percent differences
between the solutions obtained with a local thermal balance at the interface and a total thermal
balance for the thermal energy absorbed or released by high-temperature phase change materials
are obtained. According to the total thermal balance proposed, a correction to the liquid–solid
interface dynamics is introduced, which accounts for an extra amount of energy absorbed or released
during the phase transition. It is shown that melting or solidification rates are modified by using a
total thermal balance through the entire system. Finally, the numerical and semi-analytical methods
illustrate that volume changes and the fraction of melted (solidified) solid (liquid) estimated through
a local thermal balance at the interface are not invariant in adiabatic systems. The invariance of
numerical and semi-analytical solutions in adiabatic systems is significantly improved through the
proposed model.

Keywords: total thermal balance; high-temperature phase change material; thermal energy storage

1. Introduction

High-temperature phase change materials (HTPCMs) represent an appealing ap-
plication as latent heat and sensible heat storage devices used as backup systems for
thermoelectric generation [1,2]. Concentrating solar power (CSP) plants use solar power to
generate superheated steam during the hours of the day with the highest solar irradiance.
Latent heat and sensible heat storage devices are widely used to increase the renewable en-
ergy efficiency of CSP plants by providing thermal energy during the hours of the day with
unusable solar power. On the one hand, extensive research has been performed to improve
mathematical models that can predict the energy density and charging/discharging times
in several configurations of thermal energy storage (TES) units [3–5]. On the other hand,
experimental work has been performed to study the effect of device geometries [6] and
composite based heat storage units [7–9] in order to enhance the heat transfer rates between
the PCM and the heat transfer fluid (HTF). The latent heat and melting temperature of
salts used as HTPCMs have been determined through molecular dynamics and ab initio
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simulations [10]. Mass accommodation methods have been developed to include the effects
of density variations produced by pressure increments during melting of encapsulated
PCMs [4,11–14]. The pressure increments on spherically microencapsulated HTPCMs have
been predicted through models that assume incompressible solid phases [4]. The latent
heat energy density is diminished by pressure increments, and different models have been
proposed to estimate the latent heat during melting of encapsulated PCMs [4,5,14]. The
research has been focused on improving the desired thermodynamic properties of PCMs
to enhance the heat energy transfer rates between the PCM and the HTF, and increase the
thermal energy density of PCMs.

The phase change process related with PCMs lies within the moving boundary type
of problems. Two phase one-dimensional problems have been extensively studied in the
literature, and there are a few cases for which it is possible to find an exact analytical
solution [15,16]. For this reason, different numerical and semi-analytical methods have
been used to find approximate solutions to these type of problems [17,18]. The Finite
Element Method (FEM) is one of the most popular numerical methods used to solve
systems of differential equations. There is an extensive amount of research devoted to
develop more accurate and efficient solutions to heat transfer related phenomena through
the FEM, including the dynamics of first-order phase transitions [17]. Explicit FEMs
have been proposed to find solutions for the temperature distribution in non-linear heat
transfer problems, where the temperature dependence of the thermodynamic variables of
specific heat and thermal conductivity were taken into consideration [19]. Modifications
to the FEM have also been used to find more accurate solutions to the liquid–solid phase
transition [17,20,21].

The non-linearity introduced by the thermal balance at the interface during a first-
order phase transition has also been studied through other numerical and semi-analytical
methods. Explicit and implicit finite difference methods (FDMs) have also been used
to find solutions for the one-dimensional liquid–solid phase transition at constant pres-
sure [18,22,23]. The advantages of FEMs over FDMs rely on the way in which adiabatic
boundary conditions are implemented and the interpolation methods needed to calculate
the temperature in front tracking problems. Adiabatic systems have been used to find
corrections to mathematical models of phase change processes, where total energy conser-
vation plays a key role in these type of systems [23]. On the one hand, adiabatic boundary
conditions do not need to be approximated when using FEMs, allowing well-behaved
solutions at thermodynamic equilibrium. On the other hand, high-order approximations
to the spatial derivative involved in this type of boundary conditions are needed when
using FDMs, in order to reach the expected state of the system at thermodynamic equi-
librium [23]. Semi-analytical approaches have also been used to find solutions for the
liquid–solid interface dynamics through the heat balance integral method (HBIM) [23,24]
and the refined heat balance integral method (RHBIM) [13,14,25]. Finally, the accuracy of
the proposed solutions to the moving boundary problem when the system is subjected
to different types of boundary conditions has been tested with the available similarity
solutions, other numerical solutions, or experimental results [26–28].

This work is concerned with some of the fundamental aspects during liquid–solid
isobaric phase transitions in one-dimensional configurations. The phase change process
is held at constant pressure (isobaric phase transition), where volume changes produced
by the density difference between liquid and solid phases are taken into consideration by
imposing total mass conservation of the liquid–solid sample. The goal is to take a further
step into the estimation of the energy capacity of HTPCMs and charging/discharging
times. Recently, higher-order corrections to the liquid–solid interface dynamics have
been introduced by proposing a total thermal balance through the entire system instead
of the more classical local thermal balance at the interface [29]. These corrections are
not intuitive and could be interpreted through an equivalent latent heat of fusion using
the Leibniz integral rule. In this work, the effects of total thermal balance in the energy
capacity of HTPCMs and charging/discharging times are estimated. The precision of
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the numerical and semi-analytical methods is relevant for estimating the higher-order
contributions from total thermal balance in the thermal energy absorbed or released by a
PCM sample. The RHBIM and FEM are used to find solutions to the proposed and classical
models. The analysis of the thermal energy absorbed/released by the PCM indicates that
the equivalent latent incorporates an extra or missing thermal energy contribution during
the phase transition when compared with the predictions obtained from the classical
model. The equivalent latent heat can be pictured as an apparent latent heat, since it
introduces corrections to the thermal energy absorption/release rates, but the latent heat
absorbed is shown to be related only with the bulk latent heat of fusion. The consistency
of total thermal balance is determined through the invariance of the numerical and semi-
analytical solutions in adiabatic systems, whether the volume changes of the sample are
incorporated by assuming a right or left moving boundary. Additionally, numerical and
semi-analytical solutions to invariant quantities such as volume changes and the fraction of
melted (solidified) solid (liquid) are found to reach the same thermodynamic equilibrium
values in adiabatic (thermally isolated) systems. Finally, the contributions from total
thermal balance are determined through the numerical and semi-analytical solutions to
the total energy absorbed (released) during a charging (discharging) process in KNO3 and
KNO3/NaNO3 salts.

2. Model and Methods
2.1. Description of the Physical System

Consider a sample of size L(t) and cross-section A with a liquid phase in contact with
a solid phase, separated by an interface with position ξ(t) at some melting temperature
Tm. The sample has a left (right) boundary at x`(t)

(
xs(t)

)
, which obeys an equation of

motion that imposes total mass conservation. The net flux of thermal energy through
the interface causes its displacement in time t. The volume changes during the phase
transition are incorporated through the dynamic variable x`(t)

(
xs(t)

)
. The heat transfer

through the system is homogeneous about the perpendicular plane to the heat flux. The
temperature of the sample at some position x along the longitudinal axis and at some time
t is considered to be uniform along the y − z plane. The thermal flux only takes place
along the longitudinal direction x since there are no temperature gradients along the y− z
plane. Under this consideration, the problem becomes one-dimensional, and the interface
dynamics will only take place along the longitudinal x-direction. The thermodynamic
variables of thermal conductivity and specific heat capacity are assumed to be independent
of the temperature. Thermal expansion through temperature-dependent densities is also
neglected; then, natural convection driven by buoyancy is not considered. The shrinkage
or expansion of the sample, due to solidification or melting, is held at constant pressure.
Natural convection induced by pressure gradients within the liquid phase can be neglected.
The liquid (`) and solid (s) phases have a temperature profile Ti(x, t), where i = `, s.
Here, the temperature at any point within the liquid (solid) is above (below) the melting
temperature Tm, which is constant in time and does not depend on the spatial variable x.

2.2. Adiabatic Systems

The system is thermally isolated; therefore, it will be subjected to the following
adiabatic boundary conditions:

∂T`(x, t)
∂x

∣∣∣∣
x=x`(t)

= 0,
∂Ts(x, t)

∂x

∣∣∣∣
x=xs(t)

= 0, (1)

and an isothermal boundary condition at the interface

T`(ξ(t), t) = Ts(ξ(t), t) = Tm, (2)

where ξ(t) represents the position of the liquid–solid interface at some time t. Equation (1)
means that the system is thermally isolated from the surroundings, which implies that
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thermal energy is only transferred between the liquid and solid phases. The boundary
condition at the liquid–solid interface ξ(t), given by Equation (2), is used to describe the
isothermal nature of the phase transition. The melting or solidification process will take
place at a constant temperature equal to the melting temperature Tm of the PCM. The initial
temperature profiles will be assumed to be polynomial functions of x:

Ti(x, 0) = fi(x), with i = `, s, (3)

where fi(x) is a polynomial function that represents the initial temperature distribution at
phase i. The initial temperature profile can be obtained in order to satisfy the boundary
conditions given by Equations (1) and (2). Initially, there is a certain amount of liquid and
solid in the sample so that ξ(0) > 0.

Since the thermodynamic variables are independent of the temperature, the heat
equation in each medium can be written as follows:

∂Ti(x, t)
∂t

= αi
∂2Ti(x, t)

∂x2 , (4)

where αi = ki/(ρi Ci) is the heat diffusion coefficient of phase i, and is defined in terms of
the thermal conductivity ki, specific heat Ci and density ρi.

The thermal energy balance at the liquid–solid interface ξ(t) that is consistent with
mass conservation is given by the following equations:

L f ρ`
dξ(t)

dt
= −k`

∂ T`(x, t)
∂ x

∣∣∣∣
x=ξ(t)

+ ks
∂ Ts(x, t)

∂ x

∣∣∣∣
x=ξ(t)

, or (5a)

L f ρs
dξ(t)

dt
= −k`

∂ T`(x, t)
∂ x

∣∣∣∣
x=ξ(t)

+ ks
∂ Ts(x, t)

∂ x

∣∣∣∣
x=ξ(t)

. (5b)

where L f = (C` − Cs)Tm is the bulk latent heat of fusion, and C` (Cs) is the specific
heat capacity of the liquid (solid) close to the melting temperature Tm. On the one hand,
Equation (5a) is the equation of motion for the interface when xs(t) is chosen as a moving
boundary and x`(t) is constant in time. On the other hand, Equation (5b) is the equation of
motion for ξ(t), when x`(t) is chosen as a moving boundary and xs(t) is constant in time,
as shown in Ref. [23]. Equations (5a) and (5b) result from a local energy balance at the the
liquid–solid interface.

The volume change experienced by the system due to the melting (solidification) of a
small solid (liquid) slab is conceived by imposing total mass conservation of the system.
Assuming that heat transfer is homogeneous in the direction perpendicular to the thermal
flux, mass conservation can be imposed through the following equations of motion [23]:

ρ`
dξ(t)

dt
+ ρs

(
d xs(t)

dt
− dξ(t)

dt

)
= 0, or (6a)

ρ`

(
dξ(t)

dt
− d x`(t)

dt

)
− ρs

dξ(t)
dt

= 0 . (6b)

Equations (5a) and (6a) are used to estimate the amount of melted (solidified) solid
(liquid) and the total volume change of the sample when xs(t) is chosen as the dynamical
variable. Equations (5b) and (6b) are solved when x`(t) is the dynamical variable [23]. The
equation of motion for the left (right) boundary, coupled to the equation of motion for
the liquid–solid interface position, has been able to reproduce the correct thermodynamic
equilibrium values in some cases. Recently, it has been shown that the local thermal balance
at the interface cannot predict thermodynamic equilibrium values for ξeq, system size,
and melted (solidified) mass in high-temperature materials [29]. Total thermal balance
was proposed by forcing energy conservation in adiabatic systems. The energy and mass
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balance proposed resulted in a higher-order contribution to the equation of motion for the
interface as follows:

ρ`

(
L f − (ρs/ρ` − 1)Cs

(
Tm − Ts(x, t)

∣∣
x=xs(t)

)) dξ(t)
dt

= −k`
∂ T`(x, t)

∂ x

∣∣∣∣
x=ξ(t)

+ks
∂ Ts(x, t)

∂ x

∣∣∣∣
x=ξ(t)

, or (7a)

ρs

(
L f + (1− ρ`/ρs)C`

(
T`(x, t)

∣∣
x=x`(t)

− Tm
)) dξ(t)

dt
= −k`

∂ T`(x, t)
∂ x

∣∣∣∣
x=ξ(t)

+ks
∂ Ts(x, t)

∂ x

∣∣∣∣
x=ξ(t)

. (7b)

Equations (7a) or (7b) incorporate the corrections obtained from total thermal balance
when xs(t) or x`(t) is chosen as the dynamical variable. The above equations of motion
take into account an extra amount of thermal energy transfer during the phase change
process. The higher-order contribution obtained by imposing total energy conservation in
adiabatic systems was pictured through an apparent latent heat [29], given by

L∗f = L f − (ρs/ρ` − 1)Cs
(
Tm − Ts(x, t)

∣∣
x=xs(t)

)
, or (8a)

L∗f = L f + (1− ρ`/ρs)C`

(
T`(x, t)

∣∣
x=x`(t)

− Tm
)
. (8b)

Using these definitions, the previous form of the equation of motion for ξ(t) shown through
Equations (5a) or (5b) is recovered. Total thermal balance contributions are incorporated
in the apparent latent heat defined through Equations (8a) or (8b). Total thermal balance
contributions depend on the boundary conditions and relative density difference between
both phases as shown through Equations (8a) and (8b). On the one hand, materials used
for thermoelectric generation, such as salts with high melting temperatures, are subjected
to wide temperature ranges, where the contributions from the apparent latent heat are
significant. On the other hand, PCMs used in thermal shielding applications are subjected
to operating temperatures close to the melting point of the material, and the effects of total
thermal balance are practically negligible.

Thermodynamic equilibrium values for the volume change of the system and fraction
of melted (solidified) solid (liquid) have been previously obtained [23]. These equilibrium
values have been used to identify inconsistencies in the predictions of models proposed
by other authors. The volume change and fraction of melted (solidified) solid (liquid) can
be obtained through an energy balance between the liquid and solid. The energy balance
allows to find the amount of energy ∆ U that will be absorbed (released) by a mass of
solid (liquid) ∆ Ms (∆ M`) to produce the phase transition between an initial state and the
stationary state. The energy used to melt (solidify) a given mass of solid (liquid) ∆ Ms
(∆ M`) is given by

∆ U = ρ` C`

∫ ξ(0)

x`(0)

(
T`(x, 0)− Tm

)
dx− ρs Cs

∫ xs(0)

ξ(0)

(
Tm − Ts(x, 0)

)
dx , (9)

where T`(x, 0)
(
Ts(x, 0)

)
is the initial temperature profile in the liquid (solid) domain. Ther-

modynamic equilibrium values for the volume change and fraction of melted (solidified)
solid (liquid) [23] are given by

∆ Leq =

(
1
ρ`
− 1

ρs

)
∆ U
L f

, and (10)

fieq =
∆ Meqi

Mi(0)
=
|∆ U|

Mi(0) L f
, (11)
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where fi is the fraction of melted solid fseq or solidified liquid f`eq at thermodynamic
equilibrium, and Mi(0) is the initial mass of phase i. According to energy conservation
in adiabatic systems, the values at thermodynamic equilibrium should be independent
of which boundary x`(t) or xs(t) is chosen as the dynamical variable. Numerical and
semi-analytical solutions will be used to illustrate that ∆ L and fs or f` are independent of
which boundary is set as the moving variable.

2.3. Absorbed/Released Thermal Energy

Numerical and semi-analytical solutions will be found for the dynamics of the phase
transition during the charging or discharging process of a HTPCM. Mix boundary condi-
tions can be used to produce full melting or solidification of the system. The solid phase
will be completely melted through the following boundary conditions:

T`(x, t)
∣∣
x=x`(t)

= TH ,

T`(x, t)
∣∣
x=ξ(t) = Ts(x, t)

∣∣
x=ξ(t) = Tm, and

ks
∂ Ts(x, t)

∂ x

∣∣∣∣
x=xs(t)

= 0. (12)

Here the liquid domain is subjected to isothermal boundary conditions, where the
left boundary is kept at the highest operating temperature TH , and the solid domain is
thermally isolated. Total thermal balance through the entire system introduces a correction
through the apparent latent heat [29], which depends on the type of boundary conditions
and the relative density difference between the liquid and solid phase, as follows:

L∗f = L f −
(

ρs

ρ`
− 1
)

Cs

(
Tm − Ts(x, t)

∣∣
x=xs(t)

)
, or (13a)

L∗f = L f +

(
1− ρ`

ρs

)
C` (TH − Tm). (13b)

On the one hand, Equation (13a) describes the apparent latent heat for a system where
xs(t) is the moving boundary. On the other hand, Equation (13b) describes the apparent
latent heat when x`(t) is the dynamical variable of motion [29]. The discharging process of
the PCM is emulated through the following boundary conditions:

k`
∂ T`(x, t)

∂ x

∣∣∣∣
x=x`(t)

= 0,

T`(x, t)
∣∣
x=ξ(t) = Ts(x, t)

∣∣
x=ξ(t) = Tm, and

Ts(x, t)
∣∣
x=xs(t)

= TC. (14)

Here TC represents the lowest operating temperature during the process. The right bound-
ary is in contact with a cold reservoir, which keeps the temperature constant at xs(t).
According to the proposed model in Ref. [29], the apparent latent heat for a solidification
process is given by

L∗f = L f −
(

ρs

ρ`
− 1
)

Cs (Tm − TC), or (15a)

L∗f = L f +

(
1− ρ`

ρs

)
C` (T`(x, t)

∣∣
x=x`(t)

− Tm). (15b)
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Equation (15a) predicts the apparent latent heat value when xs(t) is the moving bound-
ary, and Equation (15b) is the apparent latent heat for a system where x`(t) is cho-
sen as the dynamical variable. Melting and solidification rates are modified by the
contributions from total thermal balance according to Equations (13a) and (13b) and
Equations (15a) and (15b) [29].

The time evolution of the amount of thermal energy absorbed or released during
the charging and discharging processes can be obtained through the enthalpy difference
between the initial state of the system and the transient state at some time t. The thermal
energy absorbed or released is obtained as follows:

h(t)− h(0) = C` ρ`

( ∫ ξ(t)

x`(t)
T`(x, t) dx−

∫ ξ(0)

x`(0)
T`(x, 0) dx

)
+

Cs ρs

( ∫ xs(t)

ξ(t)
Ts(x, t) dx−

∫ xs(0)

ξ(0)
Ts(x, 0) dx

)
, melting (16a)

h(0)− h(t) = C` ρ`

( ∫ ξ(0)

x`(0)
T`(x, 0) dx−

∫ ξ(t)

x`(t)
T`(x, t) dx

)
+

Cs ρs

( ∫ xs(0)

ξ(0)
Ts(x, 0) dx−

∫ xs(t)

ξ(t)
Ts(x, t) dx

)
, solidification (16b)

The apparent latent heat given by Equations (13a) and (13b) and Equations (15a) and (15b)
takes into account the extra energy transfer during the phase transition, which is hidden by
applying a local thermal balance at the interface. The corrections introduced through the
apparent latent heat may change the predicted amount of melted (solidified) solid (liquid)
during the phase change process when compared to the estimated predictions obtained by
using the bulk latent heat in Equations (5a) and (5b). However, the latent heat absorbed or
released must be determined through the bulk latent heat of fusion L f , as will be shown in
the following section.

2.4. Finite Element Method

The problem depends on space x and time t; therefore, both directions are approx-
imated. In this section, we present a hybrid method to solve the problem, where the
FEM is used to solve the spatial part, and an implicit finite difference method is used to
approximate the time derivatives. The space and time dependence of the temperature
distributions in the liquid and solid phases will be explicitly used in this part of the section
to avoid confusion during the description of the FEM used in this work.

2.4.1. Space Discretization: Finite Element Method

The region Ω = {Ω` ∪Ωs} represents the domain where the problem must be solved,
such that Ω` and Ωs corresponds to the domain of the liquid and solid phase, respectively.
For example, the regions Ω` (Ωs) will be discretized into n (m) cubic elements, in such a
way that

Ω` = [x`1, x`2, · · ·, x`3n+1], with x`1 = 0 and x`3n+1 = ξ(t)

Ωs = [xs
1, xs

2, · · ·, xs
3m+1], with xs

1 = ξ(t) and xs
3m+1 = L(t). (17)

Here x`q (q = 1, 2, · · ·, 3n + 1) and xs
p (p = 1, 2, · · ·, 3m + 1) are the coordinates of the nodes

at the liquid and solid phases, respectively. The FEM formulation is the same for both
phases; therefore, the subscript i that appears in Equation (4) will be omitted.
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Suppose that we look for the approximate solution T̃(x, t) at some time t within certain
space of functionsH with dimension 4; and Ψ1, Ψ2, · · ·, Ψ4 constitutes a basis ofH. Then,
the temperature field T̃(x, t) can be written as follows:

T̃(x, t) =
4

∑
d=1

T̂(e)
d (t)Ψd(x) , (18)

where T̂(e)
d (t) is the temperature at node d, associated with element e.

Applying the weighted residual method and Galerkin formulation [30,31], Equation (4)
becomes ∫

Ω

(
α

∂2T̃(x, t)
∂x2 − ∂T̃(x, t)

∂t

)
v(x) dx = 0 , (19)

where v(x) represents the test function. Integrating (19) by parts, the following is obtained

∫
Ω
−α

∂v(x)
∂x

∂T̃(x, t)
∂x

dx +

[
α v(x)

∂T̃(x, t)
∂x

]
Ω

−
∫

Ω
v(x)

∂T̃(x, t)
∂t

dx = 0 . (20)

The integrals over Ω can be expressed as the sum of integrals over each element, and
Equation (20) becomes

k

∑
e=1

∫ xe+1

xe

−α
∂v(x)

∂x
∂T̃(x, t)

∂x
dx +

k

∑
e=1

[
αv(x)

∂T̃(x, t)
∂x

]xe+1

xe

−
k

∑
e=1

∫ xe+1

xe

v(x)
∂T̃(x, t)

∂t
dx = 0 , (21)

where k = n or k = m, depending on the phase. Taking v(x) = Ψ T (x) where the T
represents the transpose, and substituting Equation (18) into Equation (21) the following
is obtained:

k

∑
e=1

K(e)T̂(e)(t) +
k

∑
e=1

M(e)(T̂(e)(t)
)′

=
k

∑
e=1

F(e) , (22)

where

K(e) = α
∫ xe+1

xe

∂Ψ T (x)
∂x

∂Ψ(x)
∂x

dx , (23)

M(e) =
∫ xe+1

xe
Ψ T (x)Ψ(x) dx , (24)

F(e) = αΨ T (x)

[
∂T̃(x, t)

∂x

]xe+1

xe

. (25)

Here
(
T̂(e)(t)

)′
is the time derivative of the temperature at each node. K(e), M(e), and

F(e) represent the element stiffness matrix, element mass matrix, and the element flux
vector, respectively.

After assembling the local matrices the following global representation of the problem
is obtained:

KT̂(t) +M
(
T̂(t)

)′
= F , (26)

where K is the global stiffness matrix and M is the global mass matrix. On the other hand,
F is the global load vector and T̂(t) = [T̂1(t), T̂2(t), · · ·, T̂q(t)]T is the global temperature
vector and represents the temperature at each node [xi

1, xi
2, · · ·, xi

q] at time t, with i = `(s)
for the liquid (solid) phase. Dimension q is related to the elements number k = n(m) used
to discretize Ωi and matches the total number of nodes at each phase.

2.4.2. Shape Functions

Once the region Ωi is discretized, the shape functions Ψ(x), which will be used to
approximate the solution T̃(x, t), are selected. These functions are piecewise polynomials
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defined at each element. Lagrange functions are the most common type of shape functions
in finite element analysis. In this work, we will use cubic Lagrange functions as shape
functions for the FEM implementation. The cubic approach needs four points at every
element e: one at each end of the interval and two more points equally spaced. So, for each
element e, there are four equidistant nodes when using this approach. Four basic functions
(N1(x), N2(x), N3(x), and N4(x)) are needed on each element e. So, K(e) and M(e) are 4× 4
square matrices and Fe = [F1, F2, F3, F4]

T . Dimension q = 3n + 1 (3m + 1). A higher
degree of the shape function implies more exact results but also bigger dimensions for the
system (26). Cubic Lagrange shape functions for element e are

N1(x) =
(x− x2)(x− x3)(x− x4)

(x1 − x2)(x1 − x3)(x1 − x4)
, (27)

N2(x) =
(x− x1)(x− x3)(x− x4)

(x2 − x1)(x2 − x3)(x2 − x4)
, (28)

N3(x) =
(x− x1)(x− x2)(x− x4)

(x3 − x1)(x3 − x2)(x3 − x4)
, (29)

N4(x) =
(x− x1)(x− x2)(x− x3)

(x4 − x1)(x4 − x2)(x4 − x3)
. (30)

Let N = [N1(x), N2(x), N3(x), N4(x)]. Substituting Ψ(x) = N in (23), (24) and (25) we
can compute local matrices K(e), M(e) and local vector F(e):

K(e) = α
∫ xe+1

xe

∂N T (x)
∂x

∂N(x)
∂x

dx ,

M(e) =
∫ xe+1

xe
N T (x)N(x) dx ,

F(e) = αN T (x)

[
∂T̃(x, t)

∂x

]xe+1

xe

.

The integrals over each element are calculated by using Gaussian quadrature.

2.4.3. Time Discretization: Implicit Finite Difference Scheme

Through the FEM, the differential problem (4) has been transformed into a system of
ordinary differential Equations (26). These equations must be solved for each time value
t. The time derivative of the temperature (T̂(t))

′
that appears in Equation (26) will be

approximated by using an implicit finite difference scheme. The temperature T̂ j represents
the temperature distribution or global temperature vector at the jth time level. The time
derivative of the temperature (T̂(t))

′
is approximated by using a backward difference in

time as follows: (
T̂(t)

)′
=

∂T̂(t)
∂t
≈ T̂ j − T̂ j−1

∆t
, (31)

where ∆t is the time step and j represents the jth time level. Substitution of Equation (31)
in Equation (26) leads to the following system of equations

(M+K∆t)T̂ j = MT̂ j−1 + F∆t . (32)

The system of equations must be solved at each time level j. The temperature dis-
tribution T̂ j−1 corresponds to the temperature values at the jth−1 time level, which are
determined in a previous step. The temperatures at each node are obtained by using
the temperature values from the previous step, and the system of equations is solved in
each phase.
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2.5. Refined Heat Balance Integral Method

The equations of motion for the interface position, total mass conservation, and the
heat equation will be solved through a cubic Lagrange implementation of the FEM and
a refined heat balance integral method (RHBIM). The energy absorbed or released by
the PCM will be determined through the numerical (FEM) and semi-analytical (RHBIM)
solutions to the model based on a local energy balance at the interface and the proposed
model that considers total thermal balance.

The RHBIM consists of proposing polynomial temperature profiles in each phase
with time dependent coefficients that are found by solving the resulting set of ordinary
differential equations in time. The method is described in Refs. [13,14], and a brief
description of the semi-analytical method will be given in this part of the section. The liquid
and solid domains are divided into m and n regions, respectively. Quadratic temperature
profiles in the spatial variable x are proposed at each region. Continuity and smoothness
of the temperature distributions between adjacent regions are imposed. The temperature
profiles within each phase and region are given by

T`i
(x, t) = ai(t) (x− xj) + bi(t) (x− xj)

2 + Ti(t), for x`(t) ≤ x ≤ ξ(t)

Tsj(x, t) = cj(t) (x− xj) + dj(t) (x− xj)
2 + Tj(t), for ξ(t) ≤ x ≤ xs(t). (33)

Time-dependent coefficients ai(t), bi(t), and Ti(t) at each region i within the liquid do-
main and cj(t), dj(t), and Tj(t) at each region j within the solid domain are used to
determine the time evolution of the temperature profiles. Continuity and smoothness,
along with the isothermal boundary condition at the interface and the boundary condi-
tions given by Equations (12) and (14), are used to find the time-dependent coefficients
ai(t), cj(t), Ti(t), and Tj(t) in terms of bi(t) and dj(t). The interface position is found by
substitution of the temperature profiles given through Equation (33) into the equation
of motion for the interface, described through Equations (5a) or (5b). Total thermal bal-
ance is considered by using the corresponding expression for the apparent latent heat in
Equations (5a) or (5b). Additionally, local thermal balance is considered by using the bulk
latent heat in Equations (5a) or (5b). The position of the dynamical variable xs(t) or x`(t)
is found through total mass conservation given by Equations (6a) and (6b). Finally, the
heat equation is averaged over the liquid and solid domains by using the temperature
profiles given by Equation (33), resulting in a set of m + n ordinary differential equations
(ODEs) in time for the coefficients bi(t) and dj(t). A first-order approximation for the
time derivatives that appear in the resulting system of ODEs is used to obtain a linear
system of algebraic equations for ξ(t), xs(t)

(
x`(t)

)
, bi(t), and dj(t) at each region in the

next time level t + ∆ t. The linear system of equations was solved by using time steps of
∆ t = 0.5 µ s for the melting of KNO3 salt and ∆ t = 0.1 µ s for the rest of the numerical
examples. The dynamics of the phase transition were determined until the mass fraction of
melted (solidified) solid (liquid) fs ≥ 0.999 ( f` ≥ 0.999).

3. Results and Discussion

KNO3 and the euctectic KNO3/NaNO3 salts are used as HTPCMs to find the thermal
energy absorbed (released) during a charging (discharging) process. The thermodynamic
properties of the salts used are summarized in Table 1 and are the same properties used
in Ref. [29]. The specific heat capacities correspond to their values close to the melting
temperature of the PCM, and the latent heat of fusion is obtained as L f = (C` − Cs) Tm.
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Table 1. Thermodynamic properties of KNO3 and KNO3/NaNO3 salts. Specific heat capacity values
for the liquid and solid phase are close to the melting temperature of the salt.

Salt Ref. Tm k` ks C` Cs ρ` ρs

K W/m · K kJ/kg · K kg/m3

KNO3 [9,10] 607 0.425 0.5 1.517 1.4 1800 1870
KNO3/NaNO3 [10] 496 0.8 1.0 1.5 1.43 2096 2192

3.1. Invariance of Solutions in Adiabatic Systems

The first part of this section is devoted to the discussion of the phase change process
in adiabatic systems. In this section, the HTPCM considered is the KNO3 salt. A wide
temperature range is used to highlight the breaking of the invariance when xs(t) or x`(t) is
chosen as the moving boundary, according to the solutions obtained through a local energy
balance at the interface. Two examples are shown where the initial energy of the liquid–
solid sample produces melting on the one hand and solidification on the other hand. The
initial temperature at x`(t)

(
xs(t)

)
is TH0 = 923 K (TC0 = 535 K) for the melting of KNO3

with an initial interface position ξ(0) = 0.30 m and initial size of L(0) = 1.0 m. The initial
temperature at x`(t)

(
xs(t)

)
is TH0 = 680 K (TC0 = 300 K) for the solidification example,

where ξ(0) = 0.70 m. These conditions are used to determine the initial temperature
distribution in the liquid and solid domains as quadratic functions of the spatial variable x.
The system is subjected to the adiabatic boundary conditions given by Equation (1) and the
isothermal boundary condition at the liquid–solid interface, given by Equation (2). The
total energy is a constant of the motion since the system is thermally isolated. The bar
is expected to reach thermodynamic equilibrium where the system growth (shrinkage)
and the fraction of melted (solidified) solid (liquid) is given by Equations (10) and (11),
respectively.

Figure 1 shows the time evolution of ∆ L and fs ( f`) for KNO3 according to the solu-
tions obtained by assuming the classical local thermal balance at the interface. Figure 1a,b
shows the system growth and fraction of melted solid fs upon melting of KNO3. The
numerical solutions to the classical model when xs(t) or x`(t) is chosen as the moving
boundary do not have the same time-dependent behavior for ∆ L and fs. These solutions
are not invariant when the volume of the system is allowed to change from the right or
left boundary. Additionally, it is realized that solutions for ∆ L and fs ( f`) reach entirely
different thermodynamic equilibrium values when the sample is fixed at the left boundary
and when the sample is fixed at the right boundary. The lack of invariance of the numerical
solutions to the classical model is in contradiction with the predicted thermodynamic
equilibrium values shown through Equations (10) and (11). Figure 1c,d also illustrates
this anomalous behavior when the KNO3 sample shrinks upon solidification of liquid in
adiabatic systems.

Equations (5a) or (5b) are solved through the FEM by imposing energy conservation
through the apparent latent heat L∗f given by Equations (8a) or (8b), whether xs(t) or x`(t)
is the time-dependent boundary. Additionally, total mass conservation is imposed through
Equations (6a) or (6b). The numerical solutions to ∆ L and the fraction of melted (solidified)
solid (liquid) are independent of which boundary is chosen as the dynamical variable,
as illustrated in Figure 2. According to the proposed model, the FEM solutions are observed
to reach the predicted thermodynamic equilibrium values given by Equations (10) and (11).
The solutions during the melting and solidification processes in KNO3 are independent of
which boundary is chosen as the dynamical variable, as illustrated in Figure 2. Figure 2a,b
show the FEM solutions when the initial conditions produce melting of KNO3. The time
evolution of ∆ L and the fraction of melted solid fs are independent of which boundary is
chosen as the dynamical variable. Additionally the thermodynamic equilibrium values
for ∆ Leq = 24.775735 mm and fseq = 0.910129 are well reproduced by the FEM solution

at t = 115.74 days as: ∆ L(FEM)
eq = 24.593533 mm and f (FEM)

seq = 0.903436 mm. Figure 2c,d
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corresponds to the solidification example of KNO3 illustrated in Figure 1. The numerical
solutions are also invariant and well behaved near the thermodynamic equilibrium state of
the system. Finite element method solutions reach the predicted values at thermodynamic
equilibrium ∆ Leq = 19.830973 mm and f`eq = 0.756815 at t = 115.74 days as: ∆ L(FEM)

eq =

19.838997 mm and f (FEM)
`eq

= 0.757121.

Figure 1. Finite element method solutions to the classical model for a liquid–solid sample of KNO3 salt subjected to the adiabatic
boundary conditions given by Equation (1). (a) Time evolution of ∆ L in mm and (b) fraction of melted solid fs, for melting of KNO3

when ξ(0) = 0.30 m. (c) System shrinkage ∆ L in mm and (d) f`, for the solidification case of KNO3 when ξ(0) = 0.70 m.

Total energy in adiabatic systems is a constant of the motion. The initial energy
of the system E(0) must be conserved throughout the melting or solidification process.
Therefore, energy conservation can be used to determine the performance of the numerical
solutions. An average energy error (AEE) for the total energy has been defined as follows
for this purpose:

AEE =
∑n

i=1 |E(0)− E(ti)|
n

, (34)

where E(0) is the initial energy of the system, E(ti) is the total energy of the system at some
time level ti, and n is the number of time partitions.

Three versions of the FEM were implemented: the first one labeled as FEM1 uses
linear Lagrange functions, FEM2 is an implementation of the FEM with quadratic Lagrange
functions, and FEM3 uses the cubic Lagrange shape functions described in Section 2.4.
Table 2 shows the AEE for each implementation of the FEM during melting and solid-
ification of KNO3. Results are shown for ten elements that were used to discretize the
entire spatial domain. The number of elements within the liquid and solid domains was
varied during the phase change process. The number of elements at each phase and in
a given time level was determined from the volume of the liquid and solid phases in
order to have a total number of ten elements in the whole system with the same length.
A total of n = 1× 105 time partitions were used on each of the examples illustrated in
Figures 1 and 2 and Table 2. Increasing the size of n produces negligible changes to the
AEE given by Equation (34) and shown in Table 2. Local matrices obtained for the FEM1,
FEM2, and FEM3 implementations have dimensions of 2, 3, and 4, respectively. Increasing
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the degree of the shape functions produces lower values for the AEE, as expected. Table 2
illustrates how total energy conservation is best behaved through a FEM3 implementation
of the FEM.

Figure 2. Finite element method solutions to the proposed model for the examples shown in Figure 1. (a) Time evolution of the system
growth ∆ L in mm and (b) fraction of melted solid fs, when the initial interface position is ξ(0) = 0.30 m. (c) Shrinkage ∆ L in mm and
(d) fraction of solidified liquid f`, when the initial interface position is ξ(0) = 0.70 m. Solutions are invariant and reach the correct
thermodynamic equilibrium values shown through Equations (10) and (11).

Table 2. Average energy error (AEE) in Giga-Joules (GJ), upon melting and solidification of KNO3

in a sample with adiabatic boundary conditions according to the linear, quadratic, and cubic imple-
mentations of the FEM. The initial energy of the system during the solidification (melting) example
is E(0) = 1.5692 GJ (E(0) = 1.6942 GJ). The AEEs are approximately three, four, and five orders of
magnitude smaller than E(0) according to the FEM1, FEM2, and FEM3 implementations, respectively.
The AEE given by Equation (34) for each implementation of the FEM is illustrated when xs(t) or
x`(t) is the moving boundary.

Melting Solidification

AEE(xs) AEE(x`) AEE(xs) AEE(x`)

FEM1 2.7754 × 10 −3 4.0360 × 10 −3 1.5241 × 10 −4 1.1485 × 10 −3

FEM2 3.5981 × 10 −4 3.7630 × 10 −4 1.3639 × 10 −5 2.7861 × 10 −5

FEM3 1.3529 × 10 −5 4.7084 × 10 −5 7.9583 × 10 −6 6.2626 × 10 −6

3.2. Energy Absorbed/Released

The liquid–solid system is subjected to mixed boundary conditions to produce melting
on the one hand and solidification of the liquid phase on the other hand. Melting examples
are designed through the boundary conditions given by Equation (12), and solidification of
liquid phase is achieved by imposing the boundary conditions through Equation (14). The
system will absorb (release) thermal energy until the solid (liquid) is almost completely
melted (solidified). The total amount of energy absorbed or released by the PCM can be
obtained through Equation (16a) or Equation (16b).



Molecules 2021, 26, 365 14 of 22

The sensible heat absorbed by a PCM can be conceived in four stages, as discussed in
Refs. [14,25]. These stages can be used to show that latent heat is absorbed through the
bulk latent heat L f of the PCM and not the apparent latent heat previously defined [29].
The first stage considers the thermal energy absorbed between t = 0 and some time t by
the initial mass of liquid as

∆ h1 = C` ρ`

∫ ξ(0)

0
T`(x, t) dx− C` ρ`

∫ ξ(0)

0
T`(x, 0) dx, (35)

where it is assumed that x`(t) is constant and equal to x`(t) = 0, and xs(t) is the dynamical
variable used to impose total mass conservation. During a second stage, the amount of
solid mass ∆ ms that will be eventually melted will increase its temperature from its initial
value Ts(x, 0) to the melting temperature Tm, absorbing thermal energy as follows:

∆ h2 = ∆ ms Cs Tm − Cs ρs

∫ xp

ξ(0)
Ts(x, 0) dx, (36)

where xp − ξ(0) is the volume of this amount of solid that will be melted between t = 0
and any later time t and is related with ∆ ms as ∆ ms = ρs

(
xp − ξ(0)

)
. The value of xp can

be obtained through mass conservation as follows:

ρs
(
xp − ξ(0)

)
= ρs

(
xs(0)− ξ(0)

)
− ρs

(
xs(t)− ξ(t)

)
; (37)

then, solving for xp the following expression is obtained xp = ξ(t)− ∆ L, where ∆ L =
xs(t)− xs(0). The third stage considers the energy absorbed by ∆ ms once it has transformed
into liquid phase. Through this stage, this mass of liquid absorbs thermal energy from the
melting temperature Tm, to the temperature of the liquid phase T`(x, t) at time t, as follows:

∆ h3 = C` ρ`

∫ ξ(t)

ξ(0)
T`(x, t) dx− ∆ ms C` Tm, (38)

where ξ(t)− ξ(0) is the volume of ∆ ms, but now in its liquid state. Finally, the mass of
solid that was not melted between the initial state and the state of the system at some later
time t, will absorb thermal energy as sensible heat by raising its temperature from its initial
value Ts(x, 0) to the temperature Ts(x, t) at some later time t as follows:

∆ h4 = Cs ρs

∫ xs(t)

ξ(t)
Ts(x, t) dx− Cs ρs

∫ xs(0)

xp
Ts(x, 0) dx. (39)

Adding the contributions from each stage to the total sensible heat absorbed, the following
expression is obtained:

Qs = C` ρ`

( ∫ ξ(t)

0
T`(x, t) dx−

∫ ξ(0)

0
T`(x, 0) dx

)
+

Cs ρs

( ∫ xs(t)

ξ(t)
Ts(x, t) dx−

∫ xs(0)

ξ(0)
Ts(x, 0) dx

)
−
(
∆ ms (C` − Cs) Tm

)
. (40)

The first two terms correspond to the total enthalpy absorbed by a melting PCM as shown
by Equation (16a) for x`(t) constant and equal to zero, and xs(t) as the moving boundary.
The last term is exactly the latent heat absorbed by the PCM during the phase change
process, which is proportional to the bulk latent heat L f = (C` − Cs) Tm and not the
apparent latent heat. The above discussion shows that even though solidification or melting
rates can be pictured through an apparent latent heat, the latent heat storage capacity of the
PCM depends only on the bulk latent heat and not L∗f . A similar analysis can be performed
for solidification scenarios or when x`(t) is chosen as the dynamical variable.
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The present work estimates the contributions from the sensible and latent heat stored or
released through Equations (16a) and (16b), according to the numerical and semi-analytical
solutions to the old and new models. Figure 3 shows the total energy absorbed and released
by the KNO3 salt. Melting (solidification) examples are illustrated until the fraction of
melted (solidified) solid (liquid) is fs ≥ 0.999 ( f` ≥ 0.999). Numerical and semi-analytical
solutions according to a local thermal balance at the interface and the proposed total thermal
balance are shown. Melting of KNO3 is produced through the boundary conditions given
by Equation (12). The initial position of the liquid–solid interface is ξ(0) = 0.05 m in
Figures 3a,b. The temperature at x`(t) is kept at a constant value of TH = 680 K, and the
initial temperature at the right boundary is TC0 = 240 K. Figure 3a,b shows the numerical
and semi-analytical estimations of the total energy absorbed by the salt according to
both models and for each case, when xs(t) or x`(t) is the moving boundary. The relative
difference between the estimations of both models is practically negligible upon melting of
the solid phase. Alternatively, significant differences are observed when the salt is releasing
thermal energy. Figure 3c,d illustrates the numerical and semi-analytical solutions when
the liquid experiences solidification and the system is subjected to the boundary conditions
given by Equation (14). Initially, a small volume of solid is considered with ξ(0) = 0.95 m.
The right boundary is kept at a constant temperature value of TC = 240 K and the initial
temperature at x`(t) is TH0 = 680 K.

Figure 3. Finite element method and RHBIM solutions to the total energy absorbed and released by the KNO3 salt. Solutions obtained
from the old and new models are shown in each case. (a) Time evolution of the energy absorbed Q = h(t)− h(0) in GJ when x`(t) is
constant in time. Solutions corresponding to the old model were obtained from Equations (5a), (6a), and (4), and according to the
new model by using the apparent latent heat given by Equation (13a). (b) Thermal energy absorbed Q when xs(t) is fixed. Solutions
from local thermal balance are obtained through Equations (5b), (6b), and (4), and the contributions from total thermal balance were
considered through the apparent latent heat given by Equation (13b). (c) Energy released Q = h(0)− h(t) during solidification of the
liquid phase. Thermal energy released according to the new model is estimated from the solutions obtained through the apparent
latent heat given by Equation (15a). (d) Thermal energy released when xs(t) is fixed in time. Predictions from the solutions according
to the new model are obtained through the apparent latent heat given by Equation (15b).

The relative percent difference (RPD) between the old and new models in the total
energy absorbed by the KNO3 salt is shown in Table 3. The small difference can be
understood in terms of the apparent latent heat, which depends on the boundary conditions.
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On the one hand, according to Equation (13a) the corrections to the bulk latent heat are
proportional to the difference between the melting temperature and the temperature at the
right boundary. The temperature at xs(t) is expected to approach Tm as the solid melts;
therefore, this term becomes smaller as the system evolves in time. On the other hand, the
contributions from the apparent latent heat when x`(t) is the moving boundary can be
negligible according to Equation (13b) if the temperature at this boundary is close to Tm.
The RPD between the predictions obtained from the old and new models was determined
as follows:

RPD =

∣∣∆ h(xi)
N − ∆ h(xi)

O

∣∣
(∆ h(xi)

N + ∆ h(xi)
O )/2

× 100 %, (41)

where xi with i = `, s corresponds to which boundary is considered as the dynamical
variable.

Table 3. Melting of KNO3 according to the numerical and semi-analytical solutions to the absorbed
energy ∆ h = h(t)− h(0) estimated through the new and old models. The RPDs are obtained from
the example shown in Figure 3a,b.

FEM RHBIM

Days ∆h(xs)
p (GJ) ∆h(xs)

c (GJ) RPD % ∆h(xs)
p (GJ) ∆h(xs)

c (GJ) RPD %

15.42 0.3769 0.3763 0.1593 0.3794 0.3788 0.1582
30.84 0.5751 0.5836 1.4672 0.5777 0.5768 0.1560
46.26 0.6917 0.6906 0.1592 0.6938 0.6928 0.1442
61.68 0.7664 0.7656 0.1044 0.7684 0.7676 0.1042
77.10 0.8203 0.8197 0.0732 0.8221 0.8215 0.0730

FEM RHBIM

Days ∆h(x`)
p (GJ) ∆h(x`)

c (GJ) RPD % ∆h(x`)
p (GJ) ∆h(x`)

c (GJ) RPD %

15.28 0.3755 0.3757 0.0532 0.3780 0.3782 0.0529
30.56 0.5731 0.5736 0.0872 0.5758 0.5859 1.7388
45.84 0.6893 0.6907 0.2029 0.6915 0.6930 0.2166
61.12 0.7635 0.7663 0.3660 0.7655 0.7683 0.3651
76.40 0.8168 0.8208 0.4885 0.8187 0.8227 0.4873

Higher RPD values are expected for the solidification of KNO3 as illustrated in Table 4
since the temperature at the right boundary is much smaller than the melting point of the
salt. According to Equation (15a), when the system releases energy and xs(t) is the moving
boundary, the corrections introduced through the apparent latent heat are proportional to
Tm − TC. The example shown in Figure 3c illustrates the solidification of liquid at a very
low temperature value of TC = 240 K, well below the melting point of the salt. However,
when x`(t) is the dynamical variable, the contributions from the apparent latent heat are
much smaller since L∗f approaches the bulk latent heat of fusion L f as the system evolves
in time [29].

Finally, the energy absorbed and released by the KNO3/NaNO3 salt is estimated
through the numerical and semi-analytical solutions to both models discussed in this work.
The RPD between both models is highly related to the thermodynamic properties of the
material and the boundary conditions. The salt can be exposed to higher temperature val-
ues, and due to its lower melting temperature as shown in Table 1, the expected difference
between both models should be higher when the salt is absorbing thermal energy. Figure 4
shows the numerical and semi-analytical solutions for the thermal energy absorbed and
released by the KNO3/NaNO3 salt. The charging process is shown in Figure 4a,b. The
initial interface position during the melting process of the salt is 0.05 m. The temperature at
x`(t) is kept constant at TH = 866 K, well above the melting temperature Tm = 496 K of the
salt. The left boundary is thermally isolated, and its initial temperature is TC0 = 300 K. The



Molecules 2021, 26, 365 17 of 22

discharging process starts with a small volume of solid, where the initial interface position
is ξ(0) = 0.95 m. Heat is removed from the right boundary which is kept at a constant
temperature value of TC = 300 K, and the left boundary is initially set at TH0 = 300 K. The
solutions for the thermal energy released during the discharging process are shown in
Figure 4c,d.

Table 4. Released energy ∆ h = h(0)− h(t) during solidification of KNO3 according to the numerical
and semi-analytical solutions to the new and old models. The RPDs are obtained from the example
shown in Figure 3c,d.

FEM RHBIM

Days ∆h(xs)
N (GJ) ∆h(xs)

O (GJ) RPD % ∆h(xs)
N (GJ) ∆h(xs)

O (GJ) RPD %

3.90 0.3675 0.3651 0.6552 0.3624 0.3601 0.6366
7.80 0.5893 0.5860 0.5615 0.5858 0.5826 0.5478

11.70 0.7628 0.7580 0.6312 0.7606 0.7559 0.6198
15.60 0.9021 0.8948 0.8125 0.9075 0.8938 1.5211
19.50 1.0154 1.0019 1.3384 1.0155 1.0020 1.3382

FEM RHBIM

Days ∆h(x`)
N (GJ) ∆h(x`)

O (GJ) RPD % ∆h(x`)
N (GJ) ∆h(x`)

O (GJ) RPD %

3.98 0.3750 0.3754 0.1066 0.3750 0.3746 0.1067
7.96 0.5993 0.6043 0.8308 0.5963 0.6011 0.8017

11.94 0.7734 0.7789 0.7086 0.7717 0.7771 0.6973
15.92 0.9119 0.9174 0.6013 0.9113 0.9168 0.6017
19.90 1.0221 1.0268 0.4587 1.0227 1.0275 0.4682

Figure 4. Finite element method and RHBIM solutions to the total energy absorbed and released by the KNO3/NaNO3 salt. Solutions
obtained from the old and new models are shown in each case. (a) Time evolution of the energy absorbed Q = h(t)− h(0) in GJ when
x`(t) is fixed in time. (b) Thermal energy absorbed Q when xs(t) is fixed. (c) Released energy Q = h(0)− h(t) during a discharge
process when the left boundary is fixed in time. (d) Thermal energy released when xs(t) is constant in time.
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According to Equation (13b), due to the high difference between the melting tempera-
ture of the salt and a maximum charging temperature TH = 866 K, the contributions from
the apparent latent heat are significant in the example shown in Figure 4b. The RPD for
the energy absorbed by the salt and according to both models is shown in Table 5. The
apparent latent heat, according to the new model, predicts lower energy absorption rates
than those estimated by assuming local thermal balance at the interface. This behavior is
observed in Figure 4b, which according to Equation (13b) the PCM should take longer time
values to absorb thermal energy until the sample is completely melted. The asymptotic
time behavior of the apparent latent heat when xs(t) is the moving boundary predicts
lower RPD values, as illustrated in Figure 4a and Table 5.

Table 5. RPD between both models during a charging process of KNO3/NaNO3 salt and according
to the numerical and semi-analytical solutions to the absorbed energy ∆ h = h(t)− h(0).

FEM RHBIM

Days ∆h(xs)
N (GJ) ∆h(xs)

O (GJ) RPD % ∆h(xs)
N (GJ) ∆h(xs)

O (GJ) RPD %

2.6 0.3367 0.3325 1.2552 0.3328 0.3288 1.2092
5.2 0.5185 0.5137 0.9300 0.5157 0.5109 0.9351
7.8 0.6623 0.6572 0.7730 0.6607 0.6556 0.7749
10.4 0.7831 0.7780 0.6533 0.7828 0.7777 0.6536
13.0 0.8868 0.8823 0.5087 0.8882 0.8836 0.5192

FEM RHBIM

Days ∆h(x`)
N (GJ) ∆h(x`)

O (GJ) RPD % ∆h(x`)
N (GJ) ∆h(x`)

O (GJ) RPD %

2.54 0.3298 0.3383 2.5445 0.3267 0.3350 2.5087
5.08 0.5084 0.5197 2.1982 0.5062 0.5173 2.1690
7.62 0.6492 0.6640 2.2540 0.6481 0.6628 2.2427

10.16 0.7667 0.7874 2.6639 0.7668 0.7875 2.6636
12.70 0.8666 0.8970 3.4475 0.8682 0.8988 3.4635

Lower RPD values are expected upon solidification of the KNO3/NaNO3 salt since
thermal energy is drained from the right boundary at temperatures close to the melting
point of the salt. According to Equation (15a) the contributions from total thermal balance
are significantly lower due to the operating temperature value at the right boundary. The
effects of total thermal balance on the released energy are even smaller when x`(t) is the
moving boundary since the apparent latent heat approaches asymptotically to the bulk
latent heat L f , as illustrated in Table 6.

Charging and discharging times are also an important parameter when HTPCMs
are used as backup systems in thermoelectric generation applications. The proposed
model estimates different energy densities of the salts used in this work and different
charging or discharging times. According to the FEM and RHBIM solutions for the thermal
energy absorbed or released by the KNO3 salt, the highest RPD between both models
is found during a discharging process. The result is consistent with Equation (15a) that
predicts significantly smaller energy releasing rates. Then according to the new model,
the PCM should release thermal energy at a faster rate. The behavior can be observed in
Figure 3c. The maximum RPD between discharging times according to the numerical and
semi-analytical solutions is 9.38 % and 9.17 %, respectively. Thermodynamic properties and
operating temperatures used for the example shown in Figure 4 increase the RPD between
both models in a charging process. According to the proposed model, the apparent latent
heat is increased by total thermal balance, as shown through Equation (13b). Maximum
RPD between charging times is expected, as shown in Figure 4b. Equation (13b) predicts
lower energy absorption rates, as illustrated in Figure 4b. The estimated RPD between
charging times according to the numerical and semi-analytical solutions in this example is
9.76 % and 9.58 %, respectively.
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Table 6. RPD between both models and according to the numerical and semi-analytical solutions to
the released thermal energy during a solidification process of the KNO3/NaNO3 salt.

FEM RHBIM

Days ∆h(xs)
N (GJ) ∆h(xs)

O (GJ) RPD % ∆h(xs)
N (GJ) ∆h(xs)

O (GJ) RPD %

3.90 0.3675 0.3651 0.6552 0.3624 0.3601 0.6366
7.80 0.5893 0.5860 0.5615 0.5858 0.5826 0.5478

11.70 0.7628 0.7580 0.6312 0.7606 0.7559 0.6198
15.60 0.9021 0.8948 0.8125 0.9075 0.8938 1.5211
19.50 1.0154 1.0019 1.3384 1.0155 1.0020 1.3382

FEM RHBIM

Days ∆h(x`)
N (GJ) ∆h(x`)

O (GJ) RPD % ∆h(x`)
N (GJ) ∆h(x`)

O (GJ) RPD %

3.98 0.3750 0.3754 0.1066 0.3750 0.3746 0.1067
7.96 0.5993 0.6043 0.8308 0.5963 0.6011 0.8017

11.94 0.7734 0.7789 0.7086 0.7717 0.7771 0.6973
15.92 0.9119 0.9174 0.6013 0.9113 0.9168 0.6017
19.90 1.0221 1.0268 0.4587 1.0227 1.0275 0.4682

4. Conclusions

Volume changes produced by the density difference between liquid and solid phases
are taken into account through imposing total mass, as a constant of the motion. Con-
servation of total mass is incorporated through an equation of motion for the right or
left boundary of the system, allowing the sample to expand or shrink during the phase
transition. Thermodynamic equilibrium values for the volume changes and fraction of
melted (solidified) solid (liquid) in adiabatic systems have been established and shown to
be independent of the direction in which volume changes are taking place. The solutions
obtained from the local thermal balance at the interface are not invariant in adiabatic
systems and predict different thermodynamic equilibrium values, which is in contradiction
with the expected behavior. Total energy conservation was imposed as a constant of the
motion in adiabatic systems. Energy conservation introduced higher-order corrections
to the equation of motion for the interface that were incorporated through an apparent
latent heat. The numerical and semi-analytical solutions, considering energy transfer rates
through the apparent latent heat, are invariant and consistent with previously established
thermodynamic equilibrium values in adiabatic systems.

Thermal balance through the system was considered in samples with other types
of boundary conditions. The corrections from total thermal balance were introduced by
the apparent latent heat. These corrections are deeply related with the type of boundary
conditions, the melting temperature of the material, and the relative density difference
between liquid and solid phases. Significant differences between the local thermal balance
at the interface and the total thermal balance in the energy absorbed (released) are found
in HTPCMs. The magnitude of the correction introduced by total thermal balance to
the thermal energy absorbed (released) is increased by the thermodynamic properties of
HTPCMs and typical operating temperatures. The apparent latent heat only introduces a
change to the energy absorption (release) rates, but it can not be conceived as a correction
to the bulk latent heat of the PCM. Finally, charging (discharging) times are also modified
by considering the proposed total thermal balance. Relative percent differences of 9.58%
between both models in the amount of time needed to melt (solidify) the solid (liquid)
phase are found.
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Abbreviations
The following abbreviations and symbols are used in this manuscript:

PCM Phase change material
HTPCM High temperature phase change material
TES Thermal energy storage
CSP Concentrating solar power plant
HTF Heat transfer fluid
FEM Finite element method
RHBIM Refined heat balance integral method
ODE Ordinary differential equation
RPD Relative percent difference
AEE Average energy error
k` Thermal conductivity of the liquid
ks Thermal conductivity of the solid
α` Thermal diffusion constant of the liquid
αs Thermal diffusion constant of the solid
C` Specific heat capacity of the liquid
Cs Specific heat capacity of the solid
ρ` Liquid density
ρs Solid density
xs(t) Position of the right boundary
x`(t) Position of the left boundary
L(t) System size
ξ(t) Liquid-solid interface position
∆Ms Mass of melted solid
∆M` Mass of solidified liquid
fs Mass fraction of melted solid
f` Mass fraction of solidified liquid
∆ h Absorbed/released enthalpy
Q Absorbed/released thermal energy
L f Bulk latent heat
L∗f Apparent latent heat
Tm Melting temperature
M(0) Initial mass of the system
TC Temperature at the right boundary
TH Temperature at the left boundary
∆ Leq Volume change at thermodynamic equilibrium
fseq Fraction of melted solid at thermodynamic equilibrium
f`eq Fraction of solidified liquid at thermodynamic equilibrium
∆ U Absorbed/released latent heat at thermodynamic equilibrium
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