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Abstract: A series of 12 silica gel-bound enaminones and their Cu(II) complexes were prepared and
tested for their suitability as heterogeneous catalysts in azomethine imine-alkyne cycloadditions
(CuAIAC). Immobilized Cu(II)–enaminone complexes showed promising catalytic activity in the
CuAIAC reaction, but these new catalysts suffered from poor reusability. This was not due to the
decoordination of copper ions, as the use of enaminone ligands with additional complexation sites
resulted in negligible improvement. On the other hand, reusability was improved by the use of
4-aminobenzoic acid linker, attached to 3-aminopropyl silica gel via an amide bond to the enaminone
over the more hydrolytically stable N-arylenamine C-N bond. The study showed that silica gel-
bound Cu(II)–enaminone complexes are readily available and suitable heterogeneous catalysts for
the synthesis of 6,7-dihydro-1H,5H-pyrazolo[1,2-a]pyrazoles.

Keywords: 1,3-dipolar cycloadditions; 2,3-dihydropyrazolo[1,2-a]pyrazoles; copper-catalyzed azome-
thine imine-alkyne cycloaddition (CuAIAC); azomethine imines; ynones

1. Introduction

1,3-Dipolar cycloadditions of azomethine imines are important reactions to obtain pyra-
zoles with variable degree of saturation [1,2]. Since the end of the 20th century, this field
has gained much attention; most azomethine imines have been recognized as stable com-
pounds that are easy to prepare, store, and handle [1,2]. In this context, 1-alkylidene-3-
oxopyrazolidin-1-ium-2-ides (3-oxopyrazolidin-1-azomethine imines), accessible by condensa-
tion of 1,2-unsubstituted pyrazolidin-3-ones with aldehydes or ketones, have been extensively
used for regio- and stereoselective synthesis of pyrazolo[1,2-a]pyrazoles (bicyclic pyrazo-
lidinones). Bicyclic pyrazolidinones exhibit antibiotic [3–5] and anti-Alzheimer activity [6],
as well as inhibition of lymphocyte-specific protein tyrosine kinase [7,8] and Plasmodium
falciparum dihydroorotate dehydrogenase (PfDHODH) [9]. The most prominent examples of
bioactive bicyclic pyrazolidinones are Eli Lilly’s γ-lactam antibiotics, which exhibit antibiotic
activity similar to that of penicillins and cephalosporins (Figure 1) [3–5]. These antibiotics are
based on 6,7-dihydro-1H,5H-pyrazolo[1,2-a]pyrazole scaffold, which is accessible by [3 + 2]
cycloaddition of 3-oxopyrazolidin-1-ium-2-ides to acetylenes [1,2]. In this context, copper-
catalyzed azomethine imine-alkyne cycloadditions (CuAIAC) [1,2,10–16] provide easy access
to 6,7-dihydro-1H,5H-pyrazolo[1,2-a]pyrazoles in a regio- and stereoselective manner under
mild conditions that are compliant with requirements of “click” chemistry (Figure 1) [17–23].
In contrast to the CuAAC reaction, which is catalyzed only by Cu(I), the azomethine imine
analogue (CuAIAC) is also catalyzed by Cu(II) [10–12,24–27]. This is a major advantage in
terms of catalyst scope and simplicity of workup as the use of reducing agent, such as
sodium ascorbate, can be avoided when Cu(II) catalyst is used (Figure 1).
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Figure 1. Examples of bioactive bicyclic pyrazolidinones (left) and CuAIAC reaction (right).

Alkyl 2-substituted-3-(dimethylamino)propenoates and related enaminones are readily
available and stable enamino-masked β-keto aldehydes, which are useful 1,3-dielectrophilic
reagents in synthetic organic chemistry. Acid-catalyzed reactions with N-, C-, and O-
nucleophiles take place under mild conditions by substitution of the dimethylamino group
to give β-functionalized propenoates. With ambident nucleophiles, enaminones undergo
cyclization into different heterocyclic systems [28–33]. Enaminones are also used as alkenes
in cycloaddition reactions [34–38] and as bidentate N, O ligands [39–49] and tetradentate
acacen-type ligands [27,50–54] to coordinate metal ions.

In recent years, an important part of our ongoing research on the chemistry of 3-
pyrazolidinones [55] has been focused on CuAIAC reactions catalyzed by Cu(0) [56,57],
Cu(I) [58–61], and Cu(II) [27]. In extension, we were interested in the use of immobilized
Cu(II) complexes with enaminone-type ligands attached to the solid support in CuAIAC
reactions. In contrast to the rather extensive use of immobilized copper complexes in azide-
alkyne cycloadditions (CuAAC) [62], their applications in CuAIAC reactions are almost
unknown [26]. 3-Aminopropyl silica gel-immobilized Cu(II)-enaminone complexes would
be easy to prepare via a transamination reaction [28–33,63,64], could serve as heterogeneous
Cu(II) catalysts for the synthesis of pyrazolo[1,2-a]pyrazoles, and would complement well
the known examples of heterogeneous Cu(0)- [41], Cu(I)- [65–69], and Cu(II)-catalysts [26]
in the CuAIAC reaction. Herein, we report the results of this study confirming the suitability
of these new enaminone-based heterogeneous copper catalysts in regioselective [3 + 2]
cycloadditions of 1-benzylidene-5,5-dimethyl-3-oxopyrazolidin-1-ium-2-ides to methyl
propiolate leading to methyl 1-aryl-7,7-dimethyl-5-oxo-6,7-dihydro-1H,5H-pyrazolo[1,2-
a]pyrazole-2-carboxylates.

2. Results
2.1. Synthesis and Catalytic Activity of Silica Gel-Bound Cu–Enaminone Complexes 5a–g

First, the starting enaminones 2a–g were prepared from active methylene compounds
1a–g by treatment with N,N-dimethylformamide dimethylacetal (DMFDMA) or tert-butoxy-
bis(dimethylamino)methane (TBDMAM) at 20–110 ◦C following literature procedure [27].
Next, the enaminones 2a–g were reacted with equimolar amount of 3-aminopropyl silica gel
(3) in methanol for 48 h to give the immobilized enaminones 4a–g. Subsequent treatment
of 4a–g with one equivalent of Cu(OAc)2·H2O in methanol at room temperature for 48 h
then furnished the desired complexes 5a–g. The complex 3-Cu was prepared by treatment
of 3 with Cu(OAc)2·H2O in methanol (Scheme 1). Absorption bands at around 1600 cm−1

(C = O/C = N) in the IR spectra of compounds 5a–h, the results of combustion analyses
for compounds 5a–g, and the results of characterization of the catalyst 5f by SEM and



Molecules 2021, 26, 400 3 of 18

EDX spectroscopy were in line with attachment of copper–enaminone complexes to 3 (For
characterization details see the Supporting Information).

Scheme 1. Reaction conditions: (i) DMFDMA or TBDMAM, CH2Cl2 or toluene, 20–110 ◦C; (ii) 3-aminopropyl silica gel (3),
MeOH, 20 ◦C, 48 h; (iii) Cu(OAc)2·H2O, MeOH, 20 ◦C, 48 h.

Compounds 5a–g and 3-Cu were then evaluated for their catalytic activity in [3 +
2] cycloaddition of (Z)-3,3-dimethyl-5-oxo-2-(3,4,5-trimethoxybenzylidene)pyrazolidin-2-
ium-1-ide (6a) to methyl propiolate (7). The reaction was performed in CH2Cl2 at room
temperature for 5 h with 30 mg (~20 mol%) catalyst loading (Table 1). Quantitative
conversion was obtained only with 2-indanone-derived catalyst 5f (Table 1, entry 6), while
the conversion above 50% was also obtained from related enamino ketone-derived catalysts
5d and 5e (Table 1, entries 4 and 5). Catalysts 5a–c and 5g were less active and the respective
conversions ranged from 33% to 47% (Table 1, entries 1–3 and 7). Moderate activity of 3-Cu
(Table 1, entry 8) was in line with complexation of Cu(OAc)2 to 3-aminopropyl silica gel
(3), which itself was found inactive (Table 1, entry 9).
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Table 1. Evaluation of catalytic activity of 5a–g, 3-Cu, and 3 in model cycloaddition reaction 1.
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2 5b 47 7 5g 39
3 5c 33 8 3-Cu 31
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5 5e 58

1 Reaction conditions: 6a (37 mg, 0.125 mmol), 7a (13 mg, 0.150 mmol), catalyst 3 or 5 (30 mg, ~20 mol%), CH2Cl2
(4 mL), 20 ◦C, 5 h. 2 Determined by 1H NMR.

The most active catalyst 5f was tested further. The model reaction was carried out
varying reaction time (1–3 h) and catalyst loading (10–30 mg). The results are presented
in Table 2. In the presence of 30 mg of the catalyst, the conversion was around 50% after
one hour, around 90% after two hours, and 100% after three hours (Table 2, entries 1–3).
Complete conversion was also achieved with 25 mg and 20 mg of the catalyst (Table 2,
entries 4 and 5), while further lowering of the catalyst loading to 15 mg (89%) and to 10 mg
(61%) gave incomplete conversions (Table 2, entries 6 and 7).
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Entry Loading (mg) Time (h) Conversion (%) 2

1 30 1 51
2 30 2 89
3 30 3 quant.
4 25 3 quant.
5 20 3 97
6 15 3 89
7 10 3 61

1 Reaction conditions: 6a (37 mg, 0.125 mmol), 7a (13 mg, 0.150 mmol), catalyst 5f (10–30 mg, ~7–20 mol%),
CH2Cl2 (4 mL), 20 ◦C, 1–5 h. 2 Determined by 1H NMR.

Next, the substrate scope was investigated using 20 mg (~13 mol%) of catalyst 5f
in reactions with azomethine imines 6a–f (Scheme 2). After 3 h, only dipoles 6a and 6d
were transformed quantitatively into the corresponding cycloadducts 8a and 8d, while
conversions of other dipoles ranged from 23% to 95%. The highest conversions (95–
100%) were obtained with 3,4,5-trimethoxyphenyl- (6a), phenyl- (6d), and 4-nitrophenyl-
substituted dipole (6f), whereas poor conversions (23–29%) were observed with 4-methoxy-
(6b), 4-methyl- (6c), and 4-chloro-substituted dipole (6e). Since closely related Cu0- and
Cu+-catalyzed cycloadditions did not show any significant substrate dependence [56,57],
incomplete conversions may seem surprising, yet they are explainable by much shorter
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reaction time (i.e., 12–48 h [56,57] vs. 3 h in the present case). Quantitative conversion of
dipole 6e into cycloadduct 8e after 48 h was in line with this rationale (Scheme 2).

Scheme 2. The conversions in CuAIAC reactions of dipoles 6a–f with methyl propiolate (7) catalyzed by 20 mg (~13 mol%)
of 5f. The conversions were determined by 1H NMR of the crude reaction mixtures.

To further explore the reaction scope, azomethine imine 6a was reacted also with
nonpolar phenylacetylene in the presence of catalyst 5f under the above standard reaction
conditions. This reaction gave no conversion, even after prolonged treatment for 150 h.
This result indicated a limitation of the reaction scope to polar electron-poor alkynes.

Reusability of the catalyst 5f in the standard model reaction (6a + 7→ 8a, 3 h, 30 mg
of 5f) was tested next. Much to our disappointment, the quantitative conversion in the
first run dropped significantly in the second (29%) and the third run (5%) and the catalyst
was inactive upon the third run (Figure 2). If poor reusability of catalyst 5f is explainable
by decomplexation of copper ions from the heterogeneous ligand 4f, then reusability
should be improved by stronger coordination of copper(II) to the ligand. Therefore, we
decided to address the reusability issue by attaching stronger coordinating acacen ligands
9a,b [27,50–54,70] and pyridine-enaminone ligands 9c [71] to 3-aminopropyl silica gel (3).
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Figure 2. Reusability of catalysts 5f (
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2.2. Synthesis and Catalytic Activity of Silica Gel-Bound Cu–Enaminone Complexes 11a–c and 15

Bis-enaminone compounds 9a and 9b [70] (Scheme 3) contain two terminal N,N-
(dimethyl)enaminone groups that enable transaminative attachment to 3-aminopropyl
silica gel (3). Thus, treatment of 9a and 9b with 3 in methanol at room temperature afforded
the immobilized acacen ligands 10a and 10b, which were subsequently reacted with
Cu(OAc)2·H2O in methanol to furnish the desired immobilized Cu–acacen complexes 11a
and 11b (Scheme 3). To obtain pyridine-type catalyst 11c, bis-enaminone ligand 9c [71], was
reacted with 3-aminopropyl silica gel (3) to give silica gel-bound ligand 10c, followed by
treatment with Cu(OAc)2·H2O in methanol to furnish the copper complex 11c (Scheme 3).
Absorption bands at around 1600 cm−1 (C = O/C = N) in the IR spectra of compounds 11a–c
and the combustion analyses for compounds 11a–c were in line with attachment of copper–
enaminone complexes to 3 (For characterization details see the Supporting Information).
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Scheme 3. Reaction conditions: (i) 3-aminopropyl silica gel (3), MeOH, 20 ◦C, 48 h; (ii) Cu(OAc)2·H2O, MeOH, 20 ◦C, 48 h.

With the desired new catalysts 11a–c in our hands, we first examined their catalytic
activity in model cycloaddition (6a + 7 → 8a, Table 3). After 3 h in the presence of
30 mg (~20 mol%) of the catalyst 11, 1,2-ethylenediamine-based catalyst 11a showed
only moderate performance (61% conversion, Table 3, entry 1), while activities of 1,2-
phenylenediamine-based catalyst 11b and pyridine-based catalyst 11c (Table 3, entries 2
and 3) were similar to that of catalyst 5f (cf. Table 2, entry 3). Further evaluation of catalysts
11b and 11c in terms of catalyst loading (Table 3, entries 4–7) and reaction time (Table 3,
entries 8–11) confirmed the performance of 11b and 11c, which was similar to that of
catalyst 5f (cf. Table 2, entries 1–7).
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Table 3. Catalytic activity of heterogeneous Cu(II) catalysts 11a–c in model reaction 1.
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Entry Catalyst 11 Loading (mg) Time (h) Conversion (%) 2

1 11a 30 3 61
2 11b 30 3 quant.
3 11c 30 3 quant.
4 11b 20 3 quant.
5 11c 10 3 73
6 11b 20 3 quant.
7 11c 10 3 50
8 11b 30 2 quant.
9 11b 30 1 69

10 11c 30 2 quant.
11 11c 30 1 82

1 Reaction conditions: 6a (37 mg, 0.125 mmol), 7 (13 mg, 0.150 mmol), catalysts 11a–c (10–30 mg, ~7–20 mol%),
CH2Cl2 (4 mL), 20 ◦C, 1–3 h. 2 Determined by 1H NMR.

The substrate scope of catalysts 11a–c was then checked by measuring conversions
in the reactions of azomethine imines 6a–f with methyl propiolate (7) in dichloromethane
using ~13 mol% (20 mg) catalyst loading (Scheme 4). Quantitative conversions after 3 h
were achieved only with dipole 6a in the presence of catalysts 11b and 11c, and with
electron-poor dipole 6f, relatively good conversions above 80% were obtained with all
three catalysts. The conversions after 3 h were low to moderate (15–69%) with dipoles 6b–e.
For the most part, these results were in line with those obtained with catalyst 5f. Notably,
also the less reactive dipole 6e underwent full conversion within 48 h with catalyst 11c
(Scheme 4, cf. Scheme 3).
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Scheme 4. The conversions in CuAIAC reactions of dipoles 6a–f with methyl propiolate (7) catalyzed by ~13 mol% of 11a–c.
The conversions were determined by 1H NMR of the crude reaction mixtures.

To our disappointment, reusability tests for catalysts 11a–c in the standard model
reaction (6a + 7→ 8a, 3 h, 30 mg of 11) revealed only minor improvement of reusability
of catalysts 11a–c in comparison to catalyst 5f. Initially highly active catalysts 11b and
11c became inactive upon the third run (see Figure 2 at the end of Section 2.1). On the
basis of these data, it became clear that decoordination of Cu(II) from the ligand was
not the main reason for low reusability of 5f and 11a–c. We then considered that loss of
catalytic activity could also be explainable by detachment of Cu(II)-enaminone complex
from 3-aminopropyl silica gel (3), for example, through hydrolytic cleavage of the enamine
C-N bond, as proposed in Scheme 5. Hydrolysis of enaminone complex 5 gives the complex
5′, which can release Cu(II)-1,3-dicarbonyl complex 5” in solution through decoordination
from aminopropyl silica gel 3.

Scheme 5. A plausible mechanism for detachment of Cu(II)-enaminone complex from 3.

According to the proposed mechanism, the use of hydrolytically more stable enamine
C-N bond should reduce detachment of Cu(II)-enaminone complex from the solid support
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and, thus, improve reusability of the catalyst. To confirm this hypothesis, we prepared silica
gel-bound enaminone 14 using 4-aminobenzoic acid (12) as a bifunctional linker, which
was bound to 3-aminopropyl silica gel (3) via a robust amide bond and to the enaminone
2f through a stronger N-arylenamine C-N bond (Scheme 6) [28–33,63,64]. Acid-catalyzed
transamination of 2f with 4-aminobenzoic acid (12) gave the carboxy-functionalized enam-
inone 13, which was amidated with 3 using 1,1′-carbonyldiimidazole (CDI) as activating
reagent. Subsequent treatment of the silica gel-bound enaminone 14 with copper(II) acetate
in methanol then furnished the desired catalyst 15 (Scheme 6). Absorption bands at around
1600 cm−1 (C = O/C = N) in the IR spectra of compound 15 and the combustion analyses for
15 were in line with attachment of copper–enaminone complex to 3 (For characterization
details see the Supporting Information).

Scheme 6. Reaction conditions: (i) 4-aminobenzoic acid (12), 37% aq. HCl (1 equiv.), MeOH, 20 ◦C; (ii) CDI, MeCN, 20 ◦C, 1
h, then 3-aminopropyl silica gel (3), MeCN, 20 ◦C, 120 h; (iii) Cu(OAc)2·H2O, MeOH, 20 ◦C, 48 h.

Activity and reusability of catalysts 5f, 11a–c, and 15 were tested in the standard
model reaction (6a + 7 → 8a, CH2Cl2, 20 ◦C, 3 h, 30 mg catalyst loading). The results
are summarized in Figure 2. In the first run, quantitative conversion was obtained with
catalysts 5f, 11b, 11c, and 15, while catalyst 11a gave only 61% conversion. The catalytic
activity of 5f and 11b,c dropped significantly and they became practically inactive after the
second run. Surprisingly, the initially least active catalyst 11a lost catalytic activity more
slowly than analogues 5f and 11b,c and remained only weakly active in the fifth run. On
the other hand, catalyst 15 gave a near quantitative conversion in the second run (94%),
followed by a gradual decrease of catalytic activity leading to 31% conversion in the fifth
run. Thus, the reusability of N-arylenaminone catalyst 15 was significantly better than that
of N-alkylenaminone analogues 5 and 11 (Figure 2). This result was consistent with the
hypothesis that the decrease of catalytic activity was largely due to the detachment of the
copper-enaminone complex from the solid support by hydrolysis of the C-N bond of the
enamine (cf. Scheme 5).

3. Conclusions

Transamination of enaminones 2a–g and bis-enaminones 9a–c with 3-aminopropyl
silica gel (3) in methanol gives the corresponding silica gel-bound enaminones 4a–g and 10a–
c. Subsequent treatment of the immobilized enaminones 4a–g and 10a–c with copper(II)
acetate in methanol gives the corresponding silica gel-bound Cu(II) complexes 5a–g and
11a–c. Both reactions are general and take place with different types of enaminones 2
and 9 under mild conditions. The obtained copper(II) complexes 5a–g and 11a–c exhibit
catalytic activity in azomethine imine-alkyne cycloadditions (CuAIAC). The 2-indanone-
derived catalyst 5f and the bis-enaminone-derived catalysts 11b and 11c showed the
most promising activity, unfortunately, with poor reusability. The main cause of the poor
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reusability appears to be hydrolytic cleavage of the Cu(II)-enaminone complex from the
3-aminopropyl silica gel (3), rather than decomplexation of the copper(II) ions from the
ligand. This hypothesis was confirmed by the synthesis of a modified catalyst 15 with
hydrolytically more stable enamine C-N bond of the enamine attached to 3-aminopropyl
silica gel (3) via a robust amide bond. Catalyst 15 exhibited better reusability while still
retaining the same catalytic activity as analogues 5 and 11. In conclusion, silica gel-bound
Cu(II)-enaminone complexes 5, 11, and 15 are easily available heterogeneous catalysts
for the regioselective synthesis of pyrazolo[1,2-a]pyrazoles via [3 + 2] cycloaddition of
3-pyrazolidinone-derived azomethine imines to terminal ynones.

4. Materials and Methods
4.1. General Information

All solvents and reagents were used as received. Melting points were determined on
SRS OptiMelt MPA100—Automated Melting Point System (Stanford Research Systems,
Sunnyvale, CA, USA). The 1H NMR, 13C NMR, and 2D NMR spectra were recorded in
CDCl3 and DMSO-d6 as solvents using Me4Si as the internal standard on a Bruker Avance
III UltraShield 500 plus instrument (Bruker, Billerica, MA, USA) at 500 MHz for 1H and
at 126 MHz for 13C nucleus, respectively. IR spectra were recorded on a Bruker FTIR
Alpha Platinum spectrophotometer (Bruker, Billerica, MA, USA). Microanalyses were
performed by combustion analysis on a Perkin-Elmer CHN Analyzer 2400 II (PerkinElmer,
Waltham, MA, USA). Mass spectra were recorded on an Agilent 6224 Accurate Mass TOF
LC/MS (Agilent Technologies, Santa Clara, CA, USA). Parallel stirring was carried out
on a Tehtnica Vibromix 313 EVT orbital shaker (400 rpm in all cases) (Domel, Železniki,
Slovenia). Flash column chromatography was performed on silica gel (Silica gel 60, particle
size: 0.035–0.070 mm, Sigma-Aldrich, St. Louis, MO, USA).

Active methylene compounds 1a–g, 3-aminopropyl silica gel (3) (for preparative chro-
matography, 40–63 µm, 0.9 mmol/g amino groups, pore size ~9 nm), 4-aminobenzoic
acid (12), Cu(OAc)2·H2O, N,N-dimethylformamide dimethylacetal (DMFDMA, for syn-
thesis, ≥96%), tert-butoxy-bis(dimethylamino)methane (TBDMAM, technical grade), and
1,1′-carbonyldiimidazole (CDI) are commercially available (Sigma-Aldrich). Enaminones
2a [72], 2b [73], 2c [74], 2d [75], 2e [76], 2f [77], and 2g [78], bis-enaminones 9a, 9b [70],
and 9c [71], and azomethine imines 6a,f [79], 6b,e [80], 6c [81], and 6d [82] were prepared
following the literature procedures.

4.2. Synthesis of 3-Aminopropyl Silica Gel-Bound Copper(II)-Catalyst 3-Cu

A mixture of 3-aminopropyl silica gel (3) (5.015 g, 4.5 mmol of amino group), Cu(OAc)2·H2O
(903 mg, 4.5 mmol), and methanol (25 mL) was stirred at 20 ◦C for 48 h. The insoluble
material was collected by filtration, washed carefully with methanol until the filtrate was
colorless (around 10 × 5 mL), and air-dried to give the copper(II) catalyst 3-Cu. Blue
powder (5.163 g).

4.3. General Procedure for the Synthesis of 3-Aminopropyl Silica Gel-Bound Copper(II)
Catalysts 5a–g

Enaminone 2 (1.381 mmol) was added to a suspension of 3-aminopropyl silica gel (3)
(1.534 g, 1.381 mmol of amino group) in methanol (4 mL) and the mixture was stirred at
20 ◦C for 48 h. The insoluble material was collected by filtration, washed with methanol
until the filtrate was colorless (around 10× 5 mL), and air-dried to give 4. The immobilized
enaminone 4 was resuspended in methanol (8 mL), Cu(OAc)2·H2O (275 mg, 1.381 mmol)
was added, and the mixture was stirred at room temperature for 48 h. The insoluble
material was collected by filtration, washed carefully with methanol until the filtrate was
colorless (around 10 × 5 mL), and air-dried to give the copper(II) catalyst 5. The following
compounds were prepared in this manner:
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4.3.1. Compound 5a

Prepared from 2a (934 mg, 4.5 mmol) and 3 (5.015 g, 4.5 mmol of amino group) in
MeOH (15 mL); then Cu(OAc)2·H2O (903 mg, 4.5 mmol), MeOH (25 mL). Blue powder
(5.392 g), νmax 1558 (C = O/C = N), 1418 cm−1.

4.3.2. Compound 5b

Prepared from 2b (1.119 g, 4.5 mmol) and 3 (5.015 g, 4.5 mmol of amino group) in
MeOH (15 mL); then Cu(OAc)2·H2O (903 mg, 4.5 mmol), MeOH (25 mL). Blue powder
(5.611 g), νmax 1558 (C = O/C = N), 1419 cm−1.

4.3.3. Compound 5c

Prepared from 2c (1.119 g, 4.5 mmol) and 3 (5.015 g, 4.5 mmol of amino group) in
MeOH (15 mL); then Cu(OAc)2·H2O (903 mg, 4.5 mmol), MeOH (25 mL). Blue powder
(5.415 g), νmax 1565 (C = O/C = N), 1418 cm−1.

4.3.4. Compound 5d

Prepared from 2d (366 mg, 1.4 mmol) and 3 (1.534 g, 1.4 mmol of amino group) in
MeOH (4 mL); then Cu(OAc)2·H2O (275 mg, 1.4 mmol), MeOH (8 mL). Blue powder
(1.643 g), νmax 1567 (C = O/C = N), 1416 cm−1.

4.3.5. Compound 5e

Prepared from 2e (366 mg, 1.4 mmol) and 3 (1.534 g, 1.4 mmol of amino group) in
MeOH (4 mL); then Cu(OAc)2·H2O (275 mg, 1.4 mmol), MeOH (8 mL). Light brown
powder (1.598 g), νmax 1565 (C = O/C = N), 1416 cm−1.

4.3.6. Compound 5f

Prepared from 2f (844 mg, 4.5 mmol) and 3 (5.015 g, 4.5 mmol of amino group) in
MeOH (15 mL); then Cu(OAc)2·H2O (903 mg, 4.5 mmol), MeOH (25 mL). Dark brown
powder (5.514 g), νmax 1606 (C = O/C = N), 1436 cm−1.

4.3.7. Compound 5g

Prepared from 2g (195 mg, 1.4 mmol) and 3 (1.534 g, 1.4 mmol of amino group) in
MeOH (4 mL); then Cu(OAc)2·H2O (275 mg, 1.4 mmol), MeOH (8 mL). Blue powder
(1.607 g), νmax 1565 (C = O/C = N), 1416 cm−1.

4.4. General Procedure for the Synthesis of Silica Gel-Bound Copper(II) Catalysts 11a–c

Bis-enaminone 9 (0.5 mmol) was added to a suspension of 3-aminopropyl silica gel
(3) (1.111 g, 1 mmol of amino group) in methanol (4 mL) and the mixture was stirred at
20 ◦C for 48 h. The insoluble material was collected by filtration, washed with methanol
until the filtrate was colorless (around 10 × 5 mL), and air-dried to give the silica gel-
bound bis-enaminone 10. The immobilized enaminone 10 was resuspended in methanol
(8 mL), Cu(OAc)2·H2O (200 mg, 1 mmol) was added, and the mixture was stirred at room
temperature for 48 h. The insoluble material was collected by filtration, washed carefully
with methanol until the filtrate was colorless (around 10 × 5 mL), and air-dried to give the
copper(II) catalyst 11. The following compounds were prepared in this manner:

4.4.1. Compound 11a

Prepared from 9a (100 mg, 0.2 mmol) and 3 (490 g, 0.4 mmol of amino group); then
Cu(OAc)2·H2O (80 mg, 0.4 mmol). Brown powder (527 mg), νmax 1569 (C = O/C = N),
1411 cm−1.
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4.4.2. Compound 11b

Prepared from 9b (200 mg, 0.4 mmol) and 3 (884 g, 0.8 mmol of amino group); then
Cu(OAc)2·H2O (160 mg, 0.8 mmol). Green-blue powder (906 mg), νmax 1564 (C = O/C = N),
1417 cm−1.

4.4.3. Compound 11c

Prepared from 9c (322 mg, 0.56 mmol) and 3 (1.265 g, 1.12 mmol of amino group); then
Cu(OAc)2·H2O (160 mg, 0.8 mmol). Brown powder (1.294 mg), νmax 1552 (C = O/C = N),
1414 cm−1.

4.5. Synthesis of 3-Aminopropyl Silica Gel-Bound Copper(II) Complex 15
4.5.1. (E)-4-{[(2-Oxo-2,3-dihydro-1H-inden-1-ylidene)methyl]amino}benzoic acid (13)

Enaminone 2f (374 mg, 2 mmol) was added to a mixture of 4-aminobenzoic acid (12)
(274 mg, 2 mmol), methanol (10 mL), and 37% aq. HCl (0.15 mL, 1.8 mmol) and the mixture
was stirred at room temperature for 12 h. The precipitate was collected by filtration and
washed with methanol (2 × 5 mL) and diethyl ether (2 × 5 mL) to give 13. Beige solid (385
mg, 69%); E/Z = 85:15; mp 263–264 ◦C (with slow decomposition above 200 ◦C); νmax/cm−1

(ATR) 3014, 2813, 1669 (C = O), 1594, 1566, 1424, 1261, 1180, 1199, 1092, 947, 848, 753, 713,
634; δH (500 MHz; DMSO-d6; Me4Si): major isomer 3.49 (2H, s), 7.09 (1H, td, J = 7.5, 1.1 Hz),
7.23–7.27 (2H, m), 7.52 (2H, d, J = 8.8 Hz), 7.67 (1H, d, J = 7.6 Hz), 7.92 (2H, d, J = 8.8 Hz),
8.39 (1H, d, J = 12.2 Hz), 11.03 (1H, d, J = 12.2 Hz), 12.74 (1H, s), minor isomer 3.46 (3H, s),
7.19 (1H, td, J = 7.5, 1.1 Hz), 7.23–7.27 (1H, m), 7.33 (2H, br d, J = 7.4 Hz), 7.48 (2H, br d,
J = 8.8 Hz), 7.71 (1H, d, J = 13.4 Hz), 8.04 (1H, d, J = 7.4 Hz), 9.47 (1H, d, J = 13.3 Hz), 12.74
(1H, s); δC (126 MHz; DMSO-d6; Me4Si): major isomer 41.9, 111.5, 115.6, 117.6, 124.7, 124.8,
124.9, 126.9, 131.1, 134.3, 134.4, 140.0, 143.8, 166.8, 204.4, minor isomer 41.4, 112.8, 116.2,
121.9, 124.6, 124.7, 125.7, 126.8, 131.1, 131.8, 135.5, 138.2, 145.5, 166.9, 202.4; HRMS (ESI):
MH+, found 280.0968 (MH+). [C17H14NO3]+ requires 280.0968; (found: C, 71.98; H, 4.24; N,
4.73. C17H13NO3· 14 H2O requires C, 71.95; H, 4.79; N, 4.94%).

4.5.2. Synthesis of Silica Gel-Bound Enaminone 14

1,1′-Carbonyldiimidazole (85 mg, 0.52 mmol) was added to a stirred suspension of
carboxylic acid 13 (140 mg, 0.5 mmol) in acetonitrile (5 mL) and the mixture was stirred
at room temperature for 1 h. Then, 3-aminopropyl silica gel (3) (500 mg, 0.45 mmol of
NH2 group) was added and the suspension was stirred at room temperature for 120 h.
Ethanol (2 mL) was added and the insoluble material was collected by filtration using a
short column with fritted bottom (d = 1.5 cm, l = 10 cm) and the functionalized silica gel
14 was washed with EtOH-MeCN (1:1, 3 × 5 mL), EtOH (2 × 5 mL), DMF (2 × 5 mL),
EtOH (3 mL), and Et2O (2 × 5mL) and air-dried. Brown powder (536 mg, 31%, loading
~0.3 mmol/g); FT-IR (ATR): νmax 1603 (C = O/C = N) cm−1.

4.5.3. Synthesis of Silica Gel-Bound Copper(II) Catalyst 15

3-Enaminopropyl silica gel 14 (300 mg, ~0.1 mmol of the enaminone) was added to a
solution of Cu(OAc)2·H2O (50 mg, 0.25 mmol) in methanol (10 mL) and the mixture was
stirred at 20 ◦C for 48 h. The insoluble material was collected by filtration, washed carefully
with methanol until the filtrate was colorless (around 5 × 5 mL), and air-dried to give the
copper(II) catalyst 15. Brown powder (280 mg, 81%, loading ~0.3 mmol/g); FT-IR (ATR):
νmax 1603 (C = O/C = N) cm−1.
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4.6. Synthesis of Methyl
1-Aryl-7,7-dimethyl-5-oxo-6,7-dihydro-1H,5H-pyrazolo[1,2-a]pyrazole-2-carboxylates 8a–f by [3 +
2] Cycloadditions of Azomethine Imines 6a–f to Methyl Propiolate (7) in the Presence of Catalysts
3-Cu, 5, 11, and 15
4.6.1. Determination of Conversion. General Procedure A

Catalyst 3-Cu, 5, 11, or 15 (10–30 mg) was added to a mixture of azomethine imine
6a–f (25–37 mg [83], 0.125 mmol), methyl propiolate (7) (12.5 µL, 0.15 mmol), and CH2Cl2
(4 mL) and the mixture was stirred at room temperature for 1–5 h. The reaction mixture
was filtered to remove the catalyst and the filtrate was evaporated in vacuo to give 8a–f
and 1H NMR spectrum of the residue was measured in CDCl3 to determine the conversion.
1H NMR data of compounds 8a,f [79], 8d [56,84], and 8e [56] were in agreement with the
literature data.

4.6.2. Determination of Reusability of Catalysts. General Procedure B

Catalyst 5, 11, or 15 (30 mg) was added to a mixture of azomethine imine 6a (37 mg,
0.125 mmol), methyl propiolate (7) (12.5 µL, 0.15 mmol), and CH2Cl2 (4 mL) and the
mixture was stirred at room temperature for 3 h. Stirring was stopped, the catalyst was
allowed to settle down for 2 min, and the supernatant was carefully decanted and filtered.
Dichloromethane (4 mL) was added to the catalyst, the mixture was stirred for 2 min, the
catalyst was allowed to settle down for 2 min, and the supernatant was carefully decanted
and filtered. The catalyst was washed once more with dichloromethane (4 mL) as described
above. The combined filtrate was evaporated in vacuo and 1H NMR spectrum of the
residue was measured to determine conversion, while the washed catalyst was used in the
next run.

4.6.3. Synthesis of
1-aryl-7,7-dimethyl-5-oxo-6,7-dihydro-1H,5H-pyrazolo[1,2-a]pyrazole-2-carboxylates 8b
and 8c. General Procedure C

Catalyst 5f (120 mg) was added to a mixture of azomethine imine 6b or 6c (0.5 mmol),
methyl propiolate (7) (50 µL, 0.6 mmol), and CH2Cl2 (5 mL) and the mixture was stirred
at room temperature for 24 h. The catalyst was removed by filtration and washed with
dichloromethane (3 mL). The combined filtrate was evaporated in vacuo and the residue
was purified by flash column chromatography (Et2O). Fractions containing the product 8
were combined and evaporated in vacuo to give 8b and 8c.

7,7-Dimethyl-1-(4-methoxyphenyl)-5-oxo-6,7-dihydro-1H,5H-pyrazolo[1,2-a]pyrazole-2- car-
boxylate (8b). Prepared from azomethine imine 6b (116 mg, 0.5 mmol), methyl propiolate
(7) (50 µL, 0.6 mmol), and CH2Cl2 (4 mL). Yellow oil (74 mg, 47%); νmax/cm−1 (ATR) 2955,
1696 (C = O), 1599, 1511, 1444, 1408, 1371, 1323, 1200, 1173, 1099, 1031, 959, 824, 727; δH
(500 MHz; CDCl3; Me4Si): 1.14 (3H, s), 1.22 (3H, s), 2.38 (1H, d, J = 15.7 Hz), 2.86 (1H, d,
J = 15.7 Hz), 3.62 (3H, s), 3.79 (3H, s), 5.43 (1H, d, J = 1.3 Hz), 6.87 (2H, d, J = 8.7 Hz), 7.35
(2H, d, J = 8.7 Hz), 7.48 (1H, d, J = 1.3 Hz); δC (126 MHz; DMSO-d6; Me4Si): 19.1, 25.1, 49.6,
51.6, 55.3, 64.1, 64.4, 113.9, 117.1, 129.0, 129.3, 134.2, 159.3, 164.3, 166.5; HRMS (ESI): MH+,
found 317.1493 (MH+). [C17H21N2O4]+ requires 317.1496.

7,7-Dimethyl-1-(4-methylphenyl)-5-oxo-6,7-dihydro-1H,5H-pyrazolo[1,2-a]pyrazole-2- car-
boxylate (8c). Prepared from azomethine imine 6c (98 mg, 0.45 mmol), methyl propiolate
(7) (50 µL, 0.6 mmol), and CH2Cl2 (4 mL). Yellow solid (83 mg, 61%); mp 152–155 ◦C;
νmax/cm−1 (ATR) 3082, 2946, 1731 (C = O), 1687 (C = O), 1601, 1514, 1323, 1275, 1225, 1192,
1120, 1099, 1039, 1007, 947, 818, 733; δH (500 MHz; CDCl3; Me4Si): 1.12 (3H, s), 1.19 (3H, s),
2.33 (3H, s), 2.38 (1H, d, J = 14.7 Hz), 2.82 (1H, d, J = 14.7 Hz), 3.58 (3H, s), 5.40 (1H, d, J = 1.2
Hz), 7.12 (2H, d, J = 7.8 Hz), 7.29 (2H, d, J = 8.1 Hz), 7.46 (1H, d, J = 1.5 Hz); δC (126 MHz;
DMSO-d6; Me4Si): 19.1, 21.3, 25.1, 49.5, 51.6, 64.4, 64.6, 117.0, 127.8, 129.2, 129.5, 137.6, 139.1,
164.3, 166.7; HRMS (ESI): MH+, found 301.1546 (MH+). [C17H21N2O3]+ requires 301.1547.

Following the above Procedure C, also known cycloadducts 8a,d–f were obtained
in the following isolated yields: compound 8a (92%), 8d (89%), 8e (84%), and 8f (88%).
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Spectral data for compounds 8a [56,79], 8d [56,84], 8e [56], and 8f [56,79] were in agreement
with the literature data.

Supplementary Materials: The following are available online, copies of 1H and 13C NMR spectra of
new compounds 8b, 8c, and 13, copies of IR spectra of catalysts 5a–g, 11a–c, and 15.
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57. Mirnik, J.; Pušavec Kirar, E.; Ričko, S.; Grošelj, U.; Golobič, A.; Požgan, F.; Štefane, B.; Svete, J. Cu0-catalysed 1,3-dipolar

cycloadditions of α-amino acid derived N,N-cyclic azomethine imines to ynones. Tetrahedron 2017, 73, 3329–3337. [CrossRef]
58. Pezdirc, L.; Stanovnik, B.; Svete, J. Copper(I) Iodide-Catalyzed Cycloadditions of (1Z,4R*,5R*)-4-Benzamido-5-phenylpyrazolidin-

3-on-1-azomethine Imines to Ethyl Propiolate. Aust. J. Chem. 2009, 62, 1661–1666. [CrossRef]
59. Pušavec, E.; Mirnik, J.; Šenica, L.; Grošelj, U.; Stanovnik, B.; Svete, J.Z. Cu(I)-catalyzed [3+2] Cycloadditions of tert-Butyl

(S)-(3-Oxopent-4-yn-2-yl)carbamate to 1-Benzylidenepyrazole-3-one-derived Azomethine Imines Naturforsch. Z. Naturforsch. B.
2014, 69, 615–626. [CrossRef]
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