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Abstract: Using the GUSAR 2013 program, the quantitative structure–antioxidant activity rela-
tionship has been studied for 74 phenols, aminophenols, aromatic amines and uracils having
lgk7 = 0.01–6.65 (where k7 is the rate constant for the reaction of antioxidants with peroxyl radi-
cals generated upon oxidation). Based on the atomic descriptors (Quantitative Neighborhood of
Atoms (QNA) and Multilevel Neighborhoods of Atoms (MNA)) and molecular (topological length,
topological volume and lipophilicity) descriptors, we have developed 9 statistically significant QSAR
consensus models that demonstrate high accuracy in predicting the lgk7 values for the compounds of
training sets and appropriately predict lgk7 for the test samples. Moderate predictive power of these
models is demonstrated using metrics of two categories: (1) based on the determination coefficients
R2 (R2

TSi, R2
0, Q2(F1), Q2(F2), R2

mTSi) and based on the concordance correlation coefficient (CCC)); or
(2) based on the prediction lgk7 errors (root mean square error (RMSEP), mean absolute error (MAE)
and standard deviation (S.D.)) The RBF-SCR method has been used for selecting the descriptors.
Our theoretical prognosis of the lgk7 for 8-PPDA, a known antioxidant, based on the consensus
models well agrees with the experimental value measure in the present work. Thus, the algorithms
for calculating the descriptors implemented in the GUSAR 2013 program allow simulating kinetic
parameters of the reactions underling the liquid-phase oxidation of hydrocarbons.

Keywords: antioxidant activity; antioxidants; QSAR models; GUSAR 2013 program; QNA descrip-
tors; MNA descriptors

1. Introduction

Currently, the antioxidant properties of natural and synthetic substances are in the fo-
cus of chemical, biological, and pharmacological studies. This diversified interest relates to
the possible use of these compounds as stabilizers in food, polymer, and fuel industries. Ad-
ditionally, antioxidants are promising for anticancer and antitumor pharmaceuticals [1–13].
Indeed, antioxidants are able to deactivate both typical radical intermediate products
and molecular oxidation products, the excessive formation of which can provoke the
appearance and development of various pathologies, including cancer, premature aging,
diabetes, etc. [13–20].

As is known, oxidation of organic compounds occurs via the chain mechanism that
involves alkyl and peroxyl radicals [14,15]. The accumulated organic hydroperoxides
decompose generating radicals, thereby increasing the rate of oxidation. The oxidation can
be inhibited by the following three ways:

• Termination of the chains by the reaction of the inhibitor with peroxyl radicals;
• Termination of the chains by the reaction of the inhibitor with alkyl radicals;
• Termination with the compounds inducing the non-radical decomposition of the

organic hydroperoxide (only if the latter is the main auto-initiator).
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According to Denisov et al. [14], antioxidants are divided in 7 groups depending on
the deactivation regime of oxidation. A detailed analysis of each of them is presented in
the Supplementary Materials.

A single criterion for evaluating for assessing the antioxidant activity (AOA) of organic
compounds is absent. AOA can be characterized with various semi-quantitative and
quantitative parameters. The IC50 concentration is widely used as a semi-quantitative
measure of AOA (IC50 relates to the intensity of the oxidation process reduced two times
or the amount of malonic dialdehyde formed upon the oxidation of unsaturated fatty
acids [21–26]). The reliable quantitative characterization of AOA may be based on the
rate constants of the reaction of antioxidant molecule with radicals relaying the oxidation
chain. These rate constants are usually designated as k7 or kIn in the case of compositions
based on different antioxidants. Measuring these kinetic parameters may be performed by
known methods of chemical kinetics [14,27].

In the scientific literature, one can find the works on QSAR modeling of antioxidants
from the classes of phenols and polyphenols, in which the descriptors were calculated
using quantum chemistry methods. In these studies, indicative variables were used jointly
with quantum-chemically calculated descriptors (energies of the frontier molecular orbitals
EHOMO and ELUMO, difference in the heats of formation of phenol and its radical (∆∆HR),
bond dissociation enthalpies etc.) [28–34]. However, all these works are built on fairly
narrow sets of similar compounds, e.g., the effect of para-substituents on the antioxidant
activity of 10 and 27 phenol derivatives was studied in works [28] and [29], respectively.
Based on quantum chemical calculations, the authors of [28] found that the smaller the
BDE number, the higher the antioxidant activity of the modeled compounds. In work [29],
using the model reaction of AIBN-induced styrene oxidation (T = 323 K), it was found that
the inhibition rate constants k7 for para-substituted phenols correlates with the Brown-
Okamoto constants σp

+. The smaller its numerical value for the para-substituent (i.e., the
higher the positive inductive effect of this substituent, the higher the numerical value
of k7). In the work [30], as a result of modeling 14 para-substituted phenols, 4 QSAR
models were built, in which the reducing potency (Emid) correlates with quantum chemical
descriptors such as ionization potential of the parent molecule (IPp), spin delocalization of
the intermediate radical cation (Ds

c), LUMO of the parent molecule (ELUMOp), difference
between the heats of formation of the phenoxyl radical (∆∆HR) and parent molecule
(∆∆Hp). In work [31] it was shown that quantum chemical descriptors such as ionization
potentials (IP), absolute electronegativity (χ), activation energy (∆∆H#), difference in the
heats of formation of compounds and their radicals (∆∆HR) make a decisive contribution
to the antioxidant activity of phenols. The calculation of these descriptors was performed
using the AM1 method (MOPAC 6.0 software). In work [32], moderate correlations for 30
Schiff bases were obtained between antiradical activity and quantum chemistry descriptors
including the bond dissociation enthalpies related to the first and second hydrogen atom
transfer (BDE and BDEd), the number of OH groups (nOH); the spin density of the active
OH groups (SD); and the free enthalpy of the reaction of the reactivity of phenolic Schiff
bases with the DPPH radical (∆G). Work [33] reported that the antioxidant activity of
phenols correlates with electron affinity (EA) and hardness (η) calculated with AM1 and
PM3. The authors of work [34] based on 15 antioxidants built a QSAR model with high
values of statistical parameters using enthalpy of homolytic dissociation of OH bonds
(BDE-OH) and ionization potential (IP), and two lipophilic parameters, lipophilicity (LogP)
and relative lipophilicity (LogD). In this model, the most pronounced antioxidant effect was
found for the compounds with electron-donor groups directly bonded with the aromatic
ring. The results of these and other similar studies are fundamental. However, it is incorrect
to perform virtual screening with QSAR models based on training samples with less than
30 compounds. Thus, the use of these quantum-chemically calculated descriptors and
values of Taft constants, despite of their clear physical meaning, is difficult for wide sets of
compounds with different structures, i.e., such approaches are applicable only to training
sets of closely related compounds.
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To modelling the large-sized training sets of the diverse compounds, one has to use the
methods for calculating descriptors that allow rationalizing the QSAR model development
process. GUSAR 2013 (General Unrestricted Structure Activity Relationships) is one of the
programs for calculating physicochemical and structural descriptors, selection of the most
significant of them and developing a QSAR consensus model based on them [35–38]. This
program for the formation of independent descriptors and their selection at the stage of
the formation of regression models uses unique approaches, which we describe in detail
in Supplementary Materials. The program has demonstrated its efficiency for modeling
various types of biological activity [35–46]. It is important to note that GUSAR 2013
allows prompt processing (in a matter of seconds) various structural and physicochemical
descriptors, automatic selecting the most significant of them, and develop statistically
significant QSAR consensus models. As far as we can judge, GUSAR 2013 was not used for
research on the antioxidant activity of QSAR.

In the present work, we have studied a quantitative structure—antioxidant activity
relationship in the series of phenols, aminophenols, aromatic amines and uracils with
general structural formulas I–V (Figure 1) using the GUSAR 2013 program and constructed
the corresponding statistically significant QSAR models for predicting the k7 values.

Figure 1. General structural formulas of the inhibitors under study.

2. Computational Details
2.1. Computational Methodology

The structures of the phenol, aminophenol and uracil derivatives selected for the
QSAR modeling in GUSAR 2013 [35–37,42–47] are shown in Figure 1. A complete list of
compounds with their experimental k7 values is presented in Supplementary Materials
(Table S2). The experimental data k7 of phenol, aminophenol and uracil derivatives (in
L·mol−1·s−1) were selected from the literature [27,48,49] and converted to logarithmic
values (lgk7) for QSAR analysis.

The QSAR models were built in several steps schematically presented in Figure 2.

Figure 2. Schematic representation of the GUSAR algorithm.
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Formation of Training and Test Sets

Training (TR1–TR3) and test (TS1–TS2) sets for the development of the models M1–M9
were composed based on the set of 74 compounds (MD1) according to the scheme shown
in Figure 3. Set MD1 is made up with the uracil, phenol and aminophenol derivatives,
for which the trustworthy k7 values are known [48–50]. Thus, the k7 values are used as a
quantitative parameter for assessing target AOA.

Figure 3. The scheme for the formation of training and test sets for the further development of QSAR
models (MD is an array of the data, TR is a training set, TS is a test set, N is the number of compounds
included in the corresponding set). * MD1 is formed on the data taken from [48–50].

The M1–M3 models were built based on the set TR1, which contains a complete set of
antioxidant structures of the MD1 set and their corresponding lgk7. The TR2 training set is
designed to develop QSAR models M4–M6 and includes 59 antioxidant structures. The TS1
set was used to test the predictabilities of models M4–M6. Both of these sets were obtained
by the separation of the TR1 set in the ratio 4:1, i.e., each fifth compound was transferred to
TS1 from TR1. Before this, all the structures of TR1 were ranked according to the increase
in lgk7 parameter. The features of sets TR1–TR2 and TS1 are presented in Tables 1 and 2.
The statistical characteristics presented in these tables indicate a fairly uniform distribution
of data in all training and test sets. The average values of the lgk7 parameter and the range
of its variation in all training and test sets are numerically close. The observed response
values lgk7 of training sets TRi and test sets TSi are similarly distributed around training
mean. These facts indicate the correctness of the formation of training and test sets.

Table 1. Statistical characteristics of training sets TR1–TR3.

Value Designation of TRi
Code of the Set

TR1 TR2 TR3

Number of compounds N 74 59 62
Mean value of lgk7 lgk7

3.3750

Spread of lgk7 ∆lgk7 6.5500

Distribution of the observed
response values of training sets TRi

around training mean (in %)

lgk7 ± 0.5 (%) 20.2703 20.0000 16.6667

lgk7 ± 1.0 (%) 50.0000 46.6667 50.0000

lgk7 ± 1.5 (%) 72.9730 73.3333 75.0000

lgk7 ± 2.0 (%) 83.7838 80.0000 83.3333

0.10 × ∆lgk7 0.6550
0.15 × ∆lgk7 0.9825
0.20 × ∆lgk7 1.3100
0.25 × ∆lgk7 1.6375
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Table 2. Statistical characteristics of test sets TS1–TS2.

Value Designation of TSi
Code of the Set

TS1 TS2

Number of compounds N 15 12
Mean value of lgk7 lgk7

4.1727 4.0821

Spread of lgk7 ∆lgk7 6.0800 5.8000

Distribution of the observed response values of
test sets TSi around test mean (in %)

lgk7 ± 0.5 (%) 53.3333 50.0000

lgk7 ± 1.0 (%) 73.3333 75.0000

lgk7 ± 1.5 (%) 86.6667 83.3333

lgk7 ± 2.0 (%) 86.6667 91.6667

Distribution of the observed response values of
test sets TSi around train mean (in %)

lgk7 ± 0.5 (%) 20.0000 16.6667

lgk7 ± 1.0 (%) 46.6667 50.0000

lgk7 ± 1.5 (%) 73.3333 75.0000

lgk7 ± 2.0 (%) 80.0000 83.3333

The TR3 set contains 62 inhibitors for the further development of QSAR models M7–
M9. The validity of these models was assessed using test set TS2. Both of these sets were
formed as above, viz. based on TR1. However, in this case, the TR1 set was divided in ratio
5:1, so that each sixth compound of TR1 is transferred to TS2. The characteristics of sets
TR3 and TS2 are presented in Tables 1 and 2.

The structures of the TR1–TR3 and TS1–TS2 sets were generated in the Marvin
Sketch 17.22.0 program [51] and converted to the SDF format using the Discovery Studio
Visualiser [52].

The variation of the lgk7 values within the training sets are ∆lgk7 > 6. Thus, the
condition for development of reliable QSAR models is fulfilled [53].

2.2. QSAR Model Development

The QSAR models M1–M9 for quantitative prediction of the antioxidant activity of
uracil, phenol, and aminophenol derivatives were based on two types of substructural
descriptors of atomic neighborhoods: QNA (Quantitative Neighborhood of Atoms) and
MNA (Multilevel Neighborhoods of Atoms) [35–37,42–47]. These descriptors are automati-
cally computed in the GUSAR2013 program based on the structural formulas of chemical
compounds, taking into account the valence and partial atomic charges. The peculiarities
of chemical bonds are not considered. Let’s briefly explain the ideology of calculating
descriptors in the program GUSAR2013. The ideology of calculating QNA and MNA
descriptors is described in detail Supplementary Materials and papers [35–46]. Addition-
ally, three descriptors of the whole molecule (topological length, topological volume, and
lipophilicity) were used to enhance the descriptive and predictive ability of the models.

In the GUSAR 2013 program, the description of the structure and the calculation of
the regression coefficients for the further construction of QSAR models is based on the
use of two types of substructural descriptors of atomic neighborhoods: MNA (Multilevel
Neighborhoods of Atoms) and QNA (Quantitative Neighborhoods of Atoms) [39,40].
They are automatically deduced from the matrices of molecular connectivity, standard
ionization potentials (IP) and electron affinities (EA). The QNA descriptors are defined
by two functions, P and Q. The P and Q values for each atom i are calculated using the
following formulae [39]:

Pi = Bi ∑
k

(
exp

(
−1

2
C
))

ik
Bk (1)

Qi = Bi ∑
k

(
exp

(
−1

2
C
))

ik
BkAk (2)
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Ak =
1
2
(IPk + EAk), Bk = (IPk − EAk)

−1/2 (3)

where k is the remaining atoms in the molecule, IP is the first ionization potential, EA is
the electron affinity for each atom (in eV), and C is the connectivity matrix for the molecule
as a whole [46]. The standard values IP and EA of atoms in a molecule were collected from
the literature. A detailed description of QNA descriptors is represented in [45].

Thus, the QNA descriptors are calculated taking into account the relationships be-
tween all atoms of the structure. These values describe each atom of the molecule but, at the
same time, depend on the structure of the molecule as a whole [45,46]. The QNA values are
the basic information for calculating the Chebyshev 2D polynomials. It is important to note
that in the final QSAR models, the independent variables include the mean values of the
individual two-dimensional Chebyshev polynomials from the P and Q values calculated
for all atoms in the molecule. Thus, the regression equations constructed in the GUSAR
2013 program take into account both the specificity and physicochemical properties of each
atom entering the training set [41,43–46]. However, QNA descriptors cannot be physically
interpreted due to the peculiarities of their calculation. In this regard, they are not explicitly
displayed under calculations.

The MNA descriptors are computed using the PASS algorithm (Prediction of Activity
Spectra for Substances) [39,40], which predicts approximately 6400 “biological activities”
with an accuracy threshold of an average prediction of at least 95%. These descriptors are
generated based on the structural formulae of chemical compounds without using any pre-
compiled list of structural fragments [39–41,46]. The authors of the GUSAR 2013 program
report that “MNA-descriptors are based on the molecular structure representation, which
includes hydrogens according to the valences and partial charges of other atoms and does
not specify the types of bonds.” They are generated as “a recursively defined sequence:

• zero-level MNA descriptor for each atom is the mark A of the atom itself;
• any next-level MNA descriptor for the atom is the substructure notation A (D1D2 . . .

Di . . . ), where Di is the previous-level MNA descriptor for i–th immediate neighbor
of the atom A.

The neighbor descriptors D1D2 . . . Di . . . are arranged in a unique manner. This
may be, for example, a lexicographic sequence. MNA descriptors are generated using an
iterative procedure, which results in the formation of structural descriptors that include
the first, second, etc. neighborhoods of each atom. The label contains not only information
about the type of atom, but also additional information about its belonging to a cyclic or
acyclic system, etc. For example, an atom that does not enter a ring is marked with a “—“.

Based on the MNA descriptors using B-statistics, calculated in the PASS program, the
biological activity spectrum of a chemical compound is predicted [35,36,42–44].

The output of the PASS program is the probabilities of the activity (Pa) and of inactivity
(Pi) of each prognostic result. The difference between these two values (Pa–Pi) for a
randomly selected subset of predicted activities is used as independent variables for
regression analysis in GUSAR. GUSAR2013 incorporates a PASS version that pedicts
4130 types of biological activity. The developers of the GUSAR 2013 program report that the
list of predictable biological activities currently includes 501 pharmacotherapeutic effects,
3295 mechanisms of action, 57 adverse and toxic effects, 199 metabolic terms, 49 transporter
proteins and 29 activities related to gene expression [46]. The average accuracy of a reliable
prediction of biological activity, calculated by leave-one-out cross-validation procedure is
approximately 95% [54]. However, the regression equation constructed based on the MNA
descriptors reveals the specificity of the action of the compound but does not explicitly
reflects the physicochemical parameters of chemical compounds [46].

In addition, the GUSAR 2013 program calculated the QSAR descriptors of an entire
molecule such as topological length, topological volume, lipophilicity, and physicochemical
descriptors (numbers of positive and negative charges, number of donors and acceptors of
the hydrogen bond, number of aromatic atoms, molecular weight and number of halogen
atoms) [39,40]. These parameters were added to the QNA descriptors. The topological
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length of a molecule was calculated as the maximal distance between any two atoms and
the volume of a molecule as the sum of each atom’s volume, 4/3 π R3, where R is the
atomic radius [45].

The authors of the GUSAR 2013 program report that “in GUSAR, the scale of QNA-
and PASS-based descriptors ranges from −1 to 1. Therefore, no additional normalization is
required for these types of descriptors. Only whole-molecule descriptors are normalized
using a standard Z-score normalization procedure” [40].

It should be noted that the program is able to construct QSAR models both relying
solely on one of these types of descriptors, and on their combination in terms of the consen-
sus approach [42–44]. At the same time, based on the consensus approach methodology,
models for quantitative prediction of biological activity for these descriptors are calcu-
lated independently of each other. The examples of the sample QSAR GUSAR models
for predicting the toxic effects of chemical compounds are available free via the link
http://www.way2drug.com/GUSAR.

However, it noteworthy that the features of the QNA and MNA calculations retain
these descriptors without unambiguous physical interpretation. For this reason, in the com-
mercial and academic versions of the GUSAR 2013 program for broad use, the regression
equations are not displayed.

To reduce the descriptor space and select the most significant descriptors, the RBF-
SCR method was used, which combines the advantages of the radial basis function (RBF)
interpolation and the self-consistent regression (SCR) method. It has a 3-step algorithm:

(1) Selecting descriptors using the SCR method. This is a regularized method of the least
squares. Independent parameters a are calculated in this method according to the
Equation (4) [43]:

a = ArgMin

[
n

∑
i=1

yi −
m

∑
k=0

xikak)
2 +

m

∑
k=1

vka2
k

]
(4)

where a is the regression coefficient, n is the number of objects, yi is the response
value of the i-th object, m is the number of independent variables, xik is the value of
the k-th independent variable of the i-th object, ak is the k-th value of the regression
coefficients, and vk is the k-th value of the regularization parameters. Equation (4)
has the following solution:

a = TXTy, T = (XTX + V)
−1

where XT is the transposed regression matrix X, and V is the diagonal matrix of the
regularization parameters. The regression coefficients obtained from the SCR reflect
the contribution of each particular descriptor (variable) to the final equation. The
higher the absolute value of the coefficient, the greater its contribution. Thus, the
regression coefficients obtained after the SCR can be used to weight the descriptors
(variables) depending on their importance.

(2) Calculating the radial basis functions using the weighted coefficient of SCR as a
criterion of similarity. The RBF-SCR method can be expressed as [39]:

y(x) =
N

∑
i=1

wiϕ(‖ax− aixi‖) = Φw (5)

where a is taken from Equation (4).
The weights w are calculated as:

w = Φ−1y (6)

(3) Calculating the weighting coefficients RBF by the least squares.

http://www.way2drug.com/GUSAR
http://www.way2drug.com/GUSAR
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The authors of the GUSAR 2013 program report [39] that, in contrast to the RBF
network, in the RBF-SCR method each input variable is used as a center of gravity. The
learning process is performed on all input variables of the training set. The RBF-SCR
interpolation is based on a linear radial basis function that allows modeling a variety of
training sets with a high level of dissimilarity between the objects.

It is shown that such a combined method of selecting descriptors in regression models
provides more accurate prediction results as compared with the individual SCR and RBF
methods, even if they are used in the consensus approach [39]. A detailed description of
this method is available in Supplementary Materials and paper [39].

Additionally, the adequacy of the constructed models was tested using cross-validation
procedure with 20-fold randomized release of 20% of compounds from the training sets
(20-fold CV, leave-many-out procedure). Both procedures are automatic in the GUSAR
2013 program [35–47].

Each of the six final QSAR consensus models M1–M2, M4–M5, M7–M8 include 20
partial regression equations automatically united based on their similarity. M1, M4, M7
models were built based on the QNA descriptors with automatic addition of the topological
lengths, topological volumes and lipophilicities of the simulated antioxidant structures.
M2, M5, M8 models were similarly built based on the MNA descriptors with addition of
the abovementioned molecular descriptors. Models M3, M6 and M9 were built guiding the
same principle. Each of these models included 320 partial regressions, which were built
independently of each other based on QNA or MNA descriptors. Note that the regression
equations operating with QNA and MNA descriptors have no direct physical interpretation
and, therefore, are not displayed in GUSAR 2013. The final prediction of the lgk7 values
for a particular compound is formed on the averaged predicted lgk7 values of the partial
QSAR regression models.

Applicability domain estimation of the constructed models was performed with three
different approaches: similarity, leverage and accuracy described in detail in Supplemen-
tary Materials.

As we have built the QSAR consensus model containing 20–100 single models, it is
impossible to provide a general equation that would allow describing all selected vari-
ables. For this reason, such QSAR models cannot provide information about positive
and negatively affecting descriptors. Instead, the GUSAR program allows evaluating the
contribution of each atom of the structure to the target property.

2.3. Assessment of the Descriptive and Predictive Ability of QSAR Models

The descriptive ability of the QSAR models M1–M9 and the corresponding systematic
errors were estimated by the predicted lgk7 values for the structures of TR1–TR3 using
a metrics based on the determination coefficients of R2 (R2

TSi, R2
0, R2

mTSi) and based on
the concordance correlation coefficient (CCC). The prognostic ability of these models was
assessed with the predicted lgk7 values for the structures of test sets TS1 and TS2 using
the metrics of two categories: (1) based on the determination coefficients R2 (R2

TSi, R2
0,

Q2(F1), Q2(F2), R2
mTSi and CCC); or (2) based on the prediction lgk7 errors (root mean square

error (RMSEP), mean absolute error (MAE) and standard deviation (S.D.)) [55–59]. The
calculations of these statistical parameters were performed using the Xternal Validation
Plus 1.2 program [60].

Additionally, the prognostic abilities of the QSAR consensus model were estimated
by comparing the predicted and known experimental lgk7 values for N-2-ethylhexyl-N′-
phenyl-p-phenylenediamine (8-PPDA), a promising industrial antioxidant, which was not
included in the data array MD1. The experimental lgk7 values for this compound were
measured by a manometric method based on the absorption of atmospheric oxygen using
the model liquid-phase ethylbenzene oxidation initiated by azodiisobutyronitrile (AIBN)
at 348 K. The kinetic curves were recorded using a universal manometric differential
device [61–66].
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In these experiments, the rate constant of chain termination f k7 was a quantitative
parameter of AOA, where f is the inhibitor capacity, equal to the number of radical in-
termediates decaying in the interaction with one inhibitor molecule (8-PPDA) [14]. This
kinetic parameter was determined by the concentration effect of 8-PPDA on the oxida-
tion rate of ethylbenzene, a model substrate. When analyzing the experimental data, we
used the basic mechanism of the inhibited radical-chain oxidation of organic compounds
(Scheme 1) [14,27].

Scheme 1. I, RH and InH are the initiator, oxidized substrate and inhibitor, respectively.

3. Results and Discussion

Based on the consensus approach implemented in the GUSAR 2013 program, the
quantitative relationship between the structure and antioxidant activity of uracil, phenol
and aminophenol derivatives of sets TR1–TR3 was modeled. Depending on the type of
the used descriptors, three QSAR consensus models have been built for each of these
training sets. The descriptive and predictive abilities of these models were estimated on
the structures of TR1–TR3 by cross-validation with 20-fold randomized exception of 20%
of compounds and using the structures of the test sets. The descriptive parameters of
consensus models M1–M9, calculated automatically in the GUSAR 2013 program based
on a comparison of the experimental and predicted lgk7 values for these nine models are
presented in Table 3. The experimental and predicted lgk7 values used for calculating
the statistical parameters of models M1–M9 are collected in Supplementary Materials
(Tables S3–S7).

Table 3. Statistical parameters and accuracy of the predicted lgk7 values of the compounds from
training sets TR1–TR3 within the M1–M9 consensus models (using RBF-SCR). ∆lgk7 (TR1) = ∆lgk7 (TR2)

= ∆lgk7 (TR3) = 6.55. 1

Training Set Model N NPM R2 F S.D. Q2 V

QSAR Models Based on the QNA Descriptors

TR1 M1 74 20 0.999 10.457 0.525 0.843 22
TR2 M4 59 20 0.999 7.676 0.587 0.799 18
TR3 M7 62 20 0.999 6.059 0.544 0.829 24

QSAR Models Based on the MNA Descriptors

TR1 M2 74 20 0.999 18.207 0.478 0.867 18
TR2 M5 59 20 0.998 11.554 0.556 0.819 15
TR3 M8 62 20 0.999 9.864 0.567 0.810 17

QSAR Models Based on Both QNA and MNA Descriptors

TR1 M3 74 100 0.999 10.744 0.490 0.872 22
TR2 M6 59 100 0.999 7.768 0.559 0.830 18
TR3 M9 62 100 0.999 7.011 0.535 0.845 21

1 N is the number of structures in the training set; NPM is the number of regression equations used for the
consensus model; R2 is the determination coefficient calculated for the compounds of TRi; Q2 is the correlation
coefficient calculated for the training set with the by cross-validation with exception of one; F is the Fisher criterion;
S.D.—standard deviation; V is the number of variables in the final regression equation.
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Note that Table 3 contains the averaged values of determination coefficients, RMSD
and Fisher criterion obtained with all partial regression models included in the consensus
model Mi.

To estimate the predictive power of the method underlying the GUSAR 2013 models,
we used two test sets of antioxidants. The models obtained via the computation procedures
with three training sets are used to predict the activity of compounds from TS1 and TS2.
As an example, the plot of the predicted lgk7 values based on models M3, M6 and M9
versus experimental ones is shown in Figure 4. Dependencies depicted in this figure clearly
indicate a fairly high descriptive and predictive ability of models M3, M6 and M9.

Figure 4. Plot of predicted activities vs. experimental ones based on Models M3, M6 and M9.

Meanwhile, the averaged values of the coefficients of determination, standard de-
viation and the Fisher criterion are not sufficient for the reliable characterization of the
descriptive and predictive abilities of models M1–M9. Therefore, according to recommen-
dations [39,58,59], we used the metrics of two categories in addition to the GUSAR 2013
parameters. These are (1) metrics based on the coefficients of determination R2 (R2

TSi, R2
0,

Q2(F1), Q2(F2), R2
mTSi, CCC); and (2) metrics that allow estimating prediction errors of lgk7

values (RMSEP, MAE, S.D.) [53,55–59]. These statistical parameters were calculated using
the Xternal Validation Plus 1.2 program [60]. Additionally, in this program, we estimated
the systematic errors of the models.

We considered that the QSAR model Mi possesses a high descriptive ability if its
determination coefficients of different types for 95% of the data TRi are close to each other
and tend to unity.

We considered that the QSAR model Mi possesses a high predictive ability if the
following four conditions are simultaneously fulfilled for 95% of the test sets:

(1) determination coefficients R2, R2
0, R2′

0, Q2
F1, Q2

F2 and CCC criterion are close to
each other and tend to unity;

(2) R2
m > 0.5 if ∆R2

m < 0.2;
(3) MAE value does not exceed 10% of the ∆lgk7 interval of the compounds from TRi;
(4) the sum MAE + 3·S.D. does not exceed 20% of the ∆lgk7 interval of the compounds

from TRi.

We considered that the QSAR model Mi has a low predictive ability if the following
four conditions are simultaneously fulfilled for 95% of the test sets:

(1) determination coefficients R2, R2
0, R2′

0, Q2
F1, Q2

F2 and CCC criterion do not exceed
the threshold value equal to 0.6;

(2) R2
m ≤ 0.5 if ∆R2

m ≤ 0.2;
(3) MAE value is higher than 15% of the ∆lgk7 interval of the compounds from TRi;
(4) the sum MAE + 3·S.D. is larger than 25% of the ∆lgk7 interval of the compounds from

TRi.

Otherwise, we considered the descriptive and predictive abilities of the models as
moderate.
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Statistical criteria of the descriptive and predictive abilities of the QSAR models M1–
M9 deduced from comparing experimental and predicted lgk7 are presented as diagrams
(Figures 5 and 6). The full set of the calculated statistical parameters for the TR1–TR3 and
TS1–TS2 structures is available as Supplementary Materials (Tables S3–S7). The diagrams
demonstrate that models M1–M9 possess high descriptive and predictive abilities.

Figure 5. The effect of structural features on the antioxidant activity of compounds with general
structural formula I.

Figure 6. The kinetic curves of the oxygen absorption upon the ethylbenzene oxidation (Vi =
2.4·10−7 mol·L−1·s−1, 348 K) without (×) and with 8-PPDA: (a) 2 × 10−5 mol·L−1 (N) and 4.03 ×
10−5 mol·L−1 (�); (b) 1 × 10−4 mol·L−1 (•) and 1.61 × 10−4 mol L−1 (�).

A slight difference between the different determination coefficients in combination
with appropriate MAE and MAE + 3·S.D. values (Tables 4 and 5) suggests that valid
QSAR models for the AOA prediction can be built using one specific type of descriptors
(QNA/MNA) or their combinations.

In addition, using the GUSAR 2013 program and comparative analysis of the experi-
mental data, we have systematically studied model antioxidants I–V and elucidated the
functional groups, which are able to modulate the lgk7 values. Figure 5 shows the structures
of 7 compounds with the general structural formula I used for the comparative analysis.
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More detailed information on the effect of functional groups on the antioxidant activity
of compounds with the general structural formulas I-V is presented in Supplementary
Materials (Figures S1–S10, Tables S8–S9).

In general, the results of the structural analysis using the GUSAR 2013 program
are consistent with the literature data on the effect of various ortho, meta, and para
substituents on the antioxidant activity of compounds I–V. Particularly, the introduction
of electron-donor substituents in the ortho, meta, and para positions of I–IV increases the
lgk7 parameter. At the same time, electron-acceptor substituents in the same positions
lead to the opposite effect. In compounds V, the effect of electron-donor substituents is
ambiguous. Methyl groups in positions R1, R2, R3 increase the nominal value of lgk7
but replacing the hydrogen atom from positions R1 and R2 by the hydroxyl or amino
group, in contrast, reduces the antioxidant properties. A detailed description of this fact
is presented in Supplementary Materials (Figure S6). Uracil derivatives with electron-
acceptor substituents in R1, R2, R3 and R4 positions are not used in the modeling, and for
this reason not discussed [61].

Then we have applied the consensus models M3, M6 and M9 to predicting the lgk7
parameter of 8-PPDA, an aromatic amine antioxidant. We choose these models for this
purpose as they are based on the descriptors of different types and, therefore, expected to
provide more accurate estimates. The results of the lgk7 calculation for 8-PPDA within the
M3, M6 and M9 models are shown in Table 6.

Table 4. The validation parameters of the QSAR models estimated using the Xternal Validation Plus 1.2 program based
on the experimental and predicted lgk7 values of the compounds form test sets TS1 and TS2. ∆lgk7(TR1) = ∆lgk7(TR2) =
∆lgk7(TR3) = 6.55; ∆lgk7(TS1) = 6.08; ∆lgk7(TS2) = 5.80. 1

Comments Prediction
Parameters

QSAR Model Used for Predicting lgk7

TR1 TR2 TR3

M1 M2 M3 M4 M5 M6 M7 M8 M9

Classical Metrics (100% data)

R2 0.9894 0.9922 0.9923 0.9878 0.9897 0.9899 0.9888 0.9902 0.9893

R2
0 0.9887 0.9906 0.9894 0.9869 0.9888 0.9876 0.9876 0.9890 0.9871

R2′
0

0.9878 0.9899 0.9881 0.9860 0.9881 0.9863 0.9866 0.9882 0.9856

R2
m

0.9538 0.9568 0.9387 0.9520 0.9550 0.9369 0.9493 0.9514 0.9357

∆R2
m 0.0120 0.0101 0.0115 0.0128 0.0109 0.0123 0.0122 0.0108 0.0129

CCC 0.9947 0.996 0.9952 0.9929 0.9942 0.9934 0.9932 0.9942 0.9930

Classical Metrics (after
removing 5% data with

high residuals)

R2 0.9917 0.9939 0.9936 0.9899 0.9921 0.9918 0.9922 0.9936 0.9928

R2
0 0.9911 0.9932 0.9918 0.9893 0.9914 0.9900 0.9917 0.9931 0.9913

R2′
0

0.9571 0.9589 0.9420 0.9553 0.9571 0.9402 0.9628 0.9648 0.9467

R2
m

0.9624 0.9632 0.9470 0.9606 0.9614 0.9452 0.9670 0.9683 0.9511

∆R2
m 0.0094 0.0074 0.0089 0.0104 0.0084 0.0099 0.0080 0.0067 0.0085

CCC 0.9962 0.9973 0.9965 0.9944 0.9955 0.9947 0.9956 0.9962 0.9954

Mean absolute error and
standard deviation for test set

(100% data)

RMSE 0.1341 0.1195 0.1277 0.1518 0.1372 0.1454 0.1466 0.1364 0.1486
MAE 0.1014 0.0894 0.0997 0.1132 0.1012 0.1115 0.1060 0.0976 0.1103
S.D. 0.0920 0.0834 0.0841 0.1020 0.0934 0.0941 0.1021 0.0960 0.1004

MAE+3·S.D. 0.3774 0.3396 0.3520 0.4192 0.3814 0.3938 0.4123 0.3856 0.4115

Mean absolute error and
standard deviation for test set
(after removing 5% data with

high residuals)

RMSE 0.1284 0.1192 0.1247 0.1326 0.1234 0.1289 0.1180 0.1095 0.1203
MAE 0.0982 0.0889 0.099 0.1003 0.0910 0.1003 0.0887 0.0812 0.0936
S.D. 0.0853 0.0821 0.0795 0.0874 0.0842 0.0816 0.0785 0.0741 0.0762

MAE+3·S.D. 0.3541 0.3352 0.3375 0.3627 0.3436 0.3453 0.3241 0.3036 0.3222

Distribution of prediction
errors (in %)

ωN in range 0.10 × ∆lgk7 (TR) 0.000 a 0.000 a 0.000 a 0.000 b 0.000 b 0.000 b 0.000 c 0.000 c 0.000 c

ωN in range 0.15 × ∆lgk7 (TR) 0.000 a 0.000 a 0.000 a 0.000 b 0.000 b 0.000 b 0.000 c 0.000 c 0.000 c

ωN in range 0.20 × ∆lgk7 (TR) 0.000 a 0.000 a 0.000 a 0.000 b 0.000 b 0.000 b 0.000 c 0.000 c 0.000 c

ωN in range 0.25 × ∆lgk7 (TR) 0.000 a 0.000 a 0.000 a 0.000 b 0.000 b 0.000 b 0.000 c 0.000 c 0.000 c

Prediction quality - Good

Systematic error presence - Absent

1 Where R2, R2
0, and R′2 are determination coefficients calculated with and without taking into account the origin; R2

m is the averaged
determination coefficient of the regression function, calculated using values of determination coefficients on the ordinate axis (R2

m) and
using them on the abscissa (R′2m) respectively; ∆R2

m is the difference between R2
m and R′2m; CCC is the concordance correlation coefficient;

MAE is the mean absolute error; S.D. is the standard deviation;ωNis the percentage of training sets TR1–TR3, for which the prediction
error is less than the interval proportional to 0.1, 0.15, 0.20, and 0.25 of ∆lgk7 of training sets TR1 (a), TR2 (b) and TR4 (c).
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Table 5. The validation parameters of the QSAR models estimated using the Xternal Validation Plus 1.2 program based
on the experimental and predicted lgk7 values of the compounds form training sets TrS1–TrS3 1; ∆lgk7(TR1) = ∆lgk7(TR2) =
∆lgk7(TR3) = 6.55. 1

Comments Prediction
Parameters

QSAR Model Used for Predicting lgk7

TS1 TS2

M4 M5 M6 M7 M8 M9

Classical Metrics (100% data)

R2 0.9469 0.9461 0.9388 0.8639 0.8797 0.8876

R2
0 0.9360 0.9423 0.9260 0.8638 0.8769 0.8737

R2′
0 0.9164 0.9312 0.9005 0.8413 0.8454 0.8184

Q2
F1 0.9531 0.9579 0.9454 0.8931 0.9031 0.9006

Q2
F2 0.9357 0.9423 0.9251 0.8638 0.8766 0.8734

R2
m

0.8152 0.8592 0.7941 0.7951 0.7754 0.7188

∆R2
m 0.0663 0.0570 0.0771 0.1208 0.1155 0.1285

CCC 0.9634 0.9686 0.9566 0.9263 0.9306 0.9254

Classical Metrics (after removing
5% data with high residuals)

R2 0.9710 0.9715 0.9659 0.8846 0.9106 0.9046

R2
0 0.9643 0.9700 0.9575 0.8840 0.9100 0.8963

R2′
0 0.8550 0.9051 0.8334 0.8045 0.8043 0.7186

Q2
F1 0.9731 0.9784 0.9670 0.8959 0.9197 0.9038

Q2
F2 0.9610 0.9687 0.9521 0.8778 0.9057 0.8870

R2
m

0.8739 0.9202 0.8562 0.8342 0.8455 0.7694

∆R2
m 0.0364 0.0292 0.0437 0.0607 0.0835 0.1035

CCC 0.9783 0.9834 0.9729 0.9382 0.9505 0.9374

Mean absolute error and standard
deviation for test set (100% data)

RMSE 0.3318 0.3145 0.3581 0.4984 0.4744 0.4805
MAE 0.2664 0.2417 0.2843 0.4167 0.3748 0.4150
S.D. 0.2048 0.2083 0.2254 0.2856 0.3038 0.2529

MAE + 3·S.D. 0.8808 0.8666 0.9605 1.2735 1.2862 1.1737

Mean absolute error and standard
deviation for test set (after

removing 5% data with high
residuals)

RMSE 0.2598 0.2326 0.2878 0.4457 0.3914 0.4285
MAE 0.2254 0.1981 0.2422 0.3735 0.3172 0.3740
S.D. 0.1342 0.1266 0.1613 0.2550 0.2404 0.2194

MAE + 3·S.D. 0.6279 0.5778 0.7261 1.1385 1.0385 1.0322

Distribution of prediction errors
(in %)

ωN in range 0.10 × ∆lgk7 (TR) 6.6667 a 6.6667 a 6.6667 a 25.000 b 25.000 b 16.667 b

ωN in range 0.15 × ∆lgk7 (TR) 0.0000 a 0.0000 a 0.0000 a 0.0000 b 8.3333 b 0.0000 b

ωN in range 0.20 × ∆lgk7 (TR) 0.0000 a 0.0000 a 0.0000 a 0.0000 b 0.0000 b 0.0000 b

ωN in range 0.25 × ∆lgk7 (TR) 0.0000 a 0.0000 a 0.0000 a 0.0000 b 0.0000 b 0.0000 b

Prediction quality - Good

Systematic error presence - Absent

1 Where R2, R2
0, and R′2 are determination coefficients calculated with and without taking into account the origin; R2

m is the averaged
determination coefficient of the regression function, calculated using values of determination coefficients on the ordinate axis (R2

m) and
using them on the abscissa (R′2m) respectively; ∆R2

m is the difference between R2
m and R′2m; Q2

F1 and Q2
F2, are determination coefficients

calculated for the compounds of test sets TS1 and TS2 taking into account the average lgk7 value of the compounds from training and test
sets, respectively; CCC is the concordance correlation coefficient; MAE is the mean absolute error; S.D. is the standard deviation; ωN is the
percentage of test sets TS1 and TS2, for which the prediction error is less than the interval proportional to 0.1, 0.15, 0.20, and 0.25 of ∆lgk7 of
training sets TR2 (a) and TR3 (b).

Table 6. The lgk7 values of N-2-ethylhexyl-N’-phenyl-n-phenylendiamine (8-PPDA) predicted with
the M3, M6 and M9 models.

Model Applicability (AD) Predicted Value
lgk7

pred
Predicted value k7

pred·10−5

(L·mol−1·s−1)

M3 in AD 5.3258 2.12

M6 in AD 5.3252 2.12

M9 in AD 5.5896 3.88
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Note that compound 8-PPDA has already used as an antioxidant in composite synthetic
rubbers [67]. However, its antioxidant activity using classical model reactions of liquid-
phase oxidation of ethylbenzene or cumene has not been studied. Thus, we complement
our calculations with the corresponding experiments to measure rate constant k7.

We have studied the antioxidant properties of 8-PPDA under the initiated radical-
chain oxidation of ethylbenzene in the kinetic mode at 348 K (azodiisobutyronitrile is the
initiator of the oxidative process). The kinetic curves demonstrate that the introduction of
8-PPDA into the reaction system decreases the rate of the oxygen absorption measured in
the induction period (Figure 6, Table 7).

Table 7. The dependence of the initial rate of the ethylbenzene oxidation on the 8-PPDA concentration
(Vi = 2.4·10−7 mol·L−1·s−1, T = 348 K).

[8-PPDA]·104 (M) V0·106 (mol·L−1·s−1)

0.000 4.700

0.200 2.480

0.403 0.801

0.805 0.481

1.610 0.191

As follows from Figure 7, the inhibition parameter F deduced from the initial rates of
the inhibited oxidation linearly depends on the 8-PPDA concentration in the range of its
concentrations (0.2–1.61)·10−4 mol·L−1:

F =
V0

V
− V

V0
=

fk7[InH]√
2k6Vi

(7)

where V and V0 are the rates of the oxygen absorption with and without 8-PPDA in the
reaction system, respectively.

Figure 7. Dependence of the inhibition parameter on the 8-PPDA concentrations (Vi =2.4·10−7

mol·L−1·s−1, 348 K); the correlation coefficient R = 0.95.

The linearization in the coordinates of Equation (7) lead to the effective rate constant
of the chain termination by the 8-PPDA molecule fkexp

7 = (4.8 ± 0.2)·105 mol·L−1·s−1.
The induction period (τ) on the oxygen absorption curves corresponding the 8-PPDA-
inhibited ethylbenzene oxidation (Figure 6) linearly depends on the inhibitor concentration.
This dependence (Figure 8) allows assessing the stoichiometric inhibition coefficient via
Equation (8):

τ =
f[InH]

Vi
(8)
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where τ is the induction period on the kinetic curves of oxygen absorption upon the
oxidation of ethylbenzene inhibited by 8-PPDA and Vi is the initiation rate of the oxidation
process. The calculation according to Equation (8) gives f = 2. Thus, the inhibition rate
constant k7

exp for 8-PPDA can be calculated as:

kexp
7 = fkexp

7 /f (9)

where f is the antioxidant capacity that equals the number of radical intermediates cease to
exist in the interaction with one antioxidant molecule.

Figure 8. Dependence of the induction period on the initial concentration of the inhibitor (348 K,
Vi = 2.4·10−7 mol·L−1·s−1).

A comparative analysis of the predicted values (lgk7
pred) with the experimental one

(lgk7
obs) demonstrates a high predictability of the QSAR consensus models M3, M6 and

M9. Hence, they can be applied to screening novel antioxidant structures.
Thus, all QSAR consensus models M1–M9 have descriptive and predictive ability as

follows from the comparison of experimental and predicted lgk7 values for the TR1–TR3
structures, external and internal TS1 and TS2 test sets, and 8-PPDA. These models can
be used for screening on virtual libraries and databases to find new antioxidants among
substituted phenols, polyphenols, aminophenols, aromatic amines and uracils.

Thus, the approach implemented in the GUSAR 2013 program have been previously
used only for modeling the biological activity of low-molecular compounds. We have
shown that it allows simulating the key kinetic parameter of antioxidant activity (k7) with
high accuracy and this program could be recommended as an auxiliary tool when searching
for new antioxidants.

4. Conclusions

Based on the QSAR methodology implemented in the GUSAR 2013 program, we have
studied a quantitative structure–antioxidant activity relationship in the set of 74 organic
compounds (phenol, aminophenols, aromatic amines and uracil derivatives; see structural
formulas I–V), which have a different degree of antioxidant activity expressed through the
lgk7 parameter (lgk7 0.01 ÷ 6.65 for these compounds). Operating with MNA/QNA de-
scriptors, descriptors corresponding to the whole molecule (topological length, topological
volume and lipophilicity), RBF-SCR method, we have developed 9 statistically significant
QSAR consensus models. The QSAR models demonstrate high accuracy in predicting the
lgk7 values for the compounds of training sets and appropriately predict lgk7 for the test
sets (R2

TR > 0.6; Q2
TR > 0.5; R2

TS > 0.5). We recommend using the QSAR models M3, M6
and M9 for virtual screening of new antioxidants because they are based on a combination
of the descriptors different types. This guarantees reliability of the predicted lgk7 values.

However, it should be borne in mind that the QSAR consensus models we have
developed are not universal. These models are able to adequately predict the numerical
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values of the lgk7 parameter only for antioxidants with general structural formulas I–V. At
the same time, the range of correct prediction of the lgk7 parameter using all the QSAR
models developed by us, including the M3, M6, M9 models, is quite wide. The experimental
values of the lgk7 parameter for the modeled antioxidants, on the basis of which all QSAR
models were developed and their validity was assessed, varied from 0.01 to 6.65.

In general, the results of the structural analysis using the GUSAR 2013 program are
fully consistent with the literature data on the effect of various ortho, meta, and para
substituents on the antioxidant activity of phenols. The introduction of electron-donor
substituents into the ortho, meta, and para positions of compounds I–IV increases the lgk7
parameter. Electron-acceptor substituents in the same positions reduce the antioxidant
activity of phenols. In uracils with the general structural formulas V, the effect of electron-
donor substituents is ambiguous. The introduction of methyl groups in the positions R1,
R2, R4 increases the nominal value of the parameter lgk7 but replacing the hydrogen atom
from R3 by the hydroxyl or amino group, in contrast, leads to a decrease in the antioxidant
properties (see Supplementary Materials, Figures S1–S6).

A good agreement of the predicted and experimental lgk7 values for the compounds
of the test sets and 8-PPDA, a ”young” member of the inhibitors family, indicates that
the GUSAR 2013 algorithms are applicable to simulating the kinetic parameters of the
model liquid-phase oxidation reactions of organic hydrocarbons. Thus, the GUSAR 2013
program allows modeling kinetic parameters relating to non-specific activity in addition
to the ADMET properties and diverse biological activities mentioned in the introduction.
Previously, we have reported the first results of a successful QSPR simulation of nonspecific
activity using the GUSAR 2013 program. In the previous study [68], we have demonstrated
the efficiency of the GUSAR descriptors for simulating the photovoltaic performances of
the methanofullerene derivatives (we built six statistically significant QSPR consensus
models for predicting the power conversion efficiencies of the methanofullerene-based
organic solar cells). This QSPR study develops the idea of successfully applying the GUSAR
approaches to describing nonspecific activities of the compounds. Our studies in this area
will be continued.

In summary, the approach used in the GUSAR 2013 program for constructing regres-
sion models demonstrates high performance as applied to both small and large data sets
including the antioxidants with different structures. As the program implements a two-
dimensional approach, there is no need to search through the entire conformational space
and select the most bioactive conformation of the modeled compounds. The mentioned
issues open the opportunity for the application of GUSAR 2013 to the antioxidant studies.
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