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Abstract: In this review, recent advances and applications using multi-way calibration protocols
based on the processing of multi-dimensional chromatographic data are discussed. We first describe
the various modes in which multi-way chromatographic data sets can be generated, including some
important characteristics that should be taken into account for the selection of an adequate data
processing model. We then discuss the different manners in which the collected instrumental data
can be arranged, and the most usually applied models and algorithms for the decomposition of
the data arrays. The latter activity leads to the estimation of surrogate variables (scores), useful
for analyte quantitation in the presence of uncalibrated interferences, achieving the second-order
advantage. Recent experimental reports based on multi-way liquid and gas chromatographic data
are then reviewed. Finally, analytical figures of merit that should always accompany quantitative
calibration reports are described.

Keywords: liquid and gas chromatography; multi-way chromatographic data generation; multi-way
models and calibration; analytical figures of merit

1. Introduction

In the last decades, the use of chromatographic techniques coupled to multidimen-
sional detection systems has gained the attention of analytical chemists. This is due to
the fact that its combination with multi-way calibration tools allows one to obtain a large
amount of chemical information and resolve highly complex systems outperforming the
advantages of classical univariate chromatographic methods [1-3]. It has been demon-
strated that the use of multi-way chromatographic data analysis yields better analytical
performance than those based on univariate calibration, achieving additional analytical
benefits, such as reducing the time of analysis, decreasing the solvent consumption and
avoiding sample pre-processing steps. All these characteristics are consequences of the fact
that if properly processed, multi-way data allow one to achieve the well-known second-
and third-order advantages [4].

In the context of higher-order calibration methods (second-, third- and higher-order),
the concept of the second-order advantage relies on the fact that, in certain circumstances,
the contribution of individual sample constituents can be accurately obtained, even in the
presence of unmodeled or unexpected interferences [5]. This property has been extensively
demonstrated in a wide variety of applications, as can be verified in a vast number of
publications. Even though this property was first proposed for second-order/three-way
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calibration methods, it has been extended to higher-order calibration methodologies. How-
ever, in the case of third- or higher-order data (four-way calibration and beyond), the
additional advantages are still in discussion, and there is no general consensus about the
real nature of the third-order advantage. Nevertheless, experimental and theoretical work
are continuously growing in order to investigate the benefits associated to the increment in
the number of instrumental data modes [6].

Second-order data consists in a collection of a bidimensional data array for a given
sample. The bidimensional signals acquired for a set of samples can then be joined to
obtain a three-way data array. This tensorial object is characterized by three experimental
modes, one corresponding to the number of samples and the additional ones represent-
ing the measured analytical information. In particular, second-order data are generated
when the analytical signals are recorded in two independent instrumental modes. In this
regard, chromatography with spectral detection represents the most reported analytical
application in the second-order calibration field. For instance, liquid chromatography
with spectroscopic diode array detection (LC-DAD), fast scanning fluorescence detection
(LC-FSFD), spectral mass spectrometric detection (LC-MS) and gas chromatography with
spectral mass spectrometric detection (GC-MS) allow one to obtain second-order data.

On the other hand, third-order data are obtained when an additional experimental
or instrumental mode is incorporated. In principle, there is no theoretical limitation
to the benefits that may be brought about by additional instrumental modes in higher-
order calibration [7]. Nevertheless, there might be a limitation for the generation of
multidimensional data, since most multi-way chemometric modelling approaches imply
strong assumptions about the mathematical structure of the data arrays. This restraint may
be apparently overcome by virtue of the development of novel instrumental technology.

Even though countless alternatives would be possible for implementing third-order
data acquisition, third-order chromatographic methodologies are one of the most chal-
lenging approaches. In the first attempt of acquiring third-order chromatographic data, in
1981, Apellof and Davidson reported a chromatographic method with excitation-emission
matrices (EEM) detection for qualitative analysis [8]. Since then, interest in this type of data
has been growing, accompanied by the development of novel and robust chemometric
models capable of exploiting the potentiality of the multi-way data arrays [6], and also by
the progress and expansion of analytical instrumentation.

Notwithstanding the wide variety of chemometric models covering a broad range
of possibilities, it should be noted that there is no single chemometric model able to
fit all the types of data that can be experimentally measured in a laboratory. Among
all the reported models, the most used ones in second- and third-order calibration are
parallel factor analysis (PARAFAC) [9], multivariate curve resolution-alternating least-
squares (MCR-ALS) [10], and partial least-squares-based techniques, followed by residual
multilinearization, e.g., unfolded- or multiway- partial least-squares, followed by residual
multilinearization (U-PLS/RML and N-PLS/RML) [11]. In addition, variants of the above-
mentioned models have been developed, aiming to overcome some limitations and to
improve its performance. PARAFAC2 [12], augmented PARAFAC (APARAFAC) [13] and
the family of alternating multilinear decomposition models (AMLD) [7] are examples of
PARAFAC variants.

Together with data modelling, another essential part in the development and vali-
dation of calibration methodologies concerns the estimation of analytical figures of merit
(AFOMs). These figures are numerical parameters used to characterize the performance
of a developed protocol and to compare the relative success among different methodolo-
gies [14]. In multi-way calibration, the theory of error propagation is the core of the AFOM
estimators. This topic has been a focus of recent discussions, and important advances have
been reported in the literature [14] regarding the estimation of crucial AFOMs, such as
sensitivity, analytical sensitivity, limit of detection and limit of quantitation.
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The present review is intended to provide a comprehensive coverage of the most
relevant alternatives reported for the generation and analysis of second- and third-order
chromatographic data and their application in the multi-way calibration field.

2. LC Multi-Way Data Generation
2.1. Second-Order Data

Second-order data are characterized by the presence of two different instrumental
modes in the data array acquired for each experimental sample. From the experimental
point of view, there are two conceptually different methods to generate second-order data:
(1) using a single instrument and (2) connecting two instruments in tandem. In the former
case, measurements are directly performed on a single equipment, either because two
components of the instrument itself are able to provide each of the data modes, or because
first-order (vectorial) measurements are made as a function of time, and these vectors are
joined to produce a data matrix per sample. In the latter, each of the connected instruments
provides a data mode or matrix direction to the measured matrix data.

Although not directly related to chromatography, EEM are, probably, the most ex-
plored second-order data measured in a single instrument [15], and are good examples to
introduce the notion of trilinearity. EEM data are, under certain circumstances, classified
as trilinear [16] and, thus, robust and often unique trilinear decomposition models can be
applied to them. This is because the excitation and emission component profiles are inde-
pendent phenomena, and (properly normalized) do not depend on the sample. However,
second-order fluorescence data may not always be trilinear [16]. For example, if inner filter
effects occur in one of the data modes, lack of trilinearity will be observed, because the
fluorescence profile of a given component will be different across samples in the mode
where the inner filter takes place [17]. This is due to the fact that the magnitude of the inner
filter depends on the concentration of the constituent producing the effect. These data will
be classified as non-trilinear type 1 if the inner filter affects a single data mode, and type 2
if it affects both instrumental modes [16].

Briefly, non-trilinear (and non-multilinear) data types are those where the multi-
linearity is lost because either (1) component profiles are not constant along one or more
modes or (2) there is mutual dependence between the phenomena taking place in the
instrumental modes. Specifically, three-wat data are non-trilinear type 1 if there is a single
trilinearity breaking mode (non-constant profiles along this mode), non-trilinear type 2
if there are two breaking modes and non-trilinear type 3 if there is mutual dependence
between the two instrumental modes.

The connection of two instruments in tandem provides another convenient way of
generating second-order data. In fact, chromatography with multivariate spectral detection
shares with matrix fluorescence data the priority in the publication record regarding second-
order calibration protocols. Detection using a diode array detector (DAD), a fast-scanning
fluorescence detector (FLD) or a spectral mass spectrometer (MS) provides the spectral
mode to a liquid chromatograph, which itself is responsible for the elution time mode of the
measured data. In the case of gas chromatography, spectral MS detection is the method of
choice for generating second-order data [1]. In a few cases, electrophoretic measurements
have replaced the chromatographic separation mode [18].

All data stemming from chromatographic measurements should be considered, in
principle, non-multilinear type 1 [2]. This is because the reproducibility across sample
injections, both in the position and shape of chromatographic peaks, is never perfect. How-
ever, if the elution time mode is indeed reproducible or quasi-reproducible, either because
the total experimental time of each run is short enough, or because the instrument itself
provides reproducible data, e.g., a gas chromatograph, then the data could be considered
trilinear [19].
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2.2. Third-Order Data

As an extension of second-order, third-order data are characterized by the existence
of three instrumental modes in the data that are collected for a given sample. In the
chromatography field, third-order data are usually obtained through the hyphenation of
two different instrument, i.e., a chromatograph coupled to a second-order detector (for
example, EEM), or by means of a two-dimensional chromatographic instrument with
vectorial signal detector, e.g., DAD or FLD, among others [20].

Literature reports regarding third-order data analysis are still scarce in comparison
with second-order calibration methods for chromatographic applications. This fact could
be a consequence of the complexity associated to the required instrumental arrangements
and the intrinsic difficulties of monitoring in-flow analysis.

In time-dependent experiments, the sample composition changes with the time, which
is monitored when registering the analytical signal. In these kinds of systems, mea-
surements can be conducted by performing different experiments, either in steady-state
conditions or in continuous-flow conditions. In steady-state flow applications, the system
is monitored at different periods of time in a condition where it no longer evolves, and
any property associated with the flow or time remains constant. Stopped-flow systems
and fraction collection-based methodologies are examples of steady-state flow applications.
Under these circumstances, the instrumental modes of the third-order data are fully inde-
pendent between them. On the contrary, in continuous-flow systems, the first issue to be
considered is the synchronization between the evolving rate of the system and the scan
rate of the detector. If full synchronization exists, the instrumental modes are mutually
independent and the data will fulfil one of the multilinearity conditions [16]. For instance,
DAD systems coupled to LC allow acquiring an entire spectrum at every chromatographic
time and then, bilinear second-order data (elution time x spectra) are obtained. However,
for detectors based on spectral scanning, the synchronization issue is not trivial.

The most reported strategy for generating third-order data consists in the acquisition
of EEM as a function of the chromatographic time (LC-EEM). To generate these kinds of
data, several instrumental arrangements have been proposed. In this regard, it should
be reminded that a fluorescence spectrometer is a second-order instrument that enables
the acquisition of bidimensional arrays as a function of elution time. Nevertheless, the
commercially available spectrofluorometers operate through mechanical motion of the
gratings to generate complete spectra or EEMs. These motions demand a finite time,
which is considerably larger than the one required to benchmark the evolving rate of the
chromatographic system. Despite the fact that modern analytical instrumentation has
simplified the generation of multi-way data, third-order chromatographic acquisition is
still a challenging task from the instrumental standpoint, and also constitutes a challenge
from the chemometric perspective.

A number of analytical methodologies based on the generation of third-order LC
data using fluorescence detection have been reported. One of the strategies follows the
path pioneered by Apellof and Davidson [8] who proposed the generation of third-order
LC data with qualitative aims by acquiring EEM at discrete chromatographic times. This
strategy is based on the collection of discrete fractions eluting from the chromatograph
for which an EEM is then obtained using a conventional spectrofluorometer. In 1997, R.
Bro [21] proposed, for the first time, an approach for the generation of third-order LC-
EEM data with quantitative aims based on Apellof and Davidson’s idea. Samples were
analysed under identical conditions and a four-way array was then built and subjected to
chemometric decomposition. In 2014, Alcaraz et al. [22] implemented the same strategy for
the quantitation of three fluoroquinolones in water samples using a custom-made fraction
collector, which was connected to the end of the chromatographic column and enabled the
collection of fractions in a 96 wells-ELISA plate. At the end of the sampling, the plate was
placed into a conventional spectrofluorometer for registering the EEM of each well. Even
though the instrumental modes are mutually independent and synchronization between
rates is not demanded by this strategy, several issues are undesired from the chemometric
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standpoint. Despite the fact that the third-order data obtained for each sample are trilinear,
the four-way array built for a set of samples does not behave as quadrilinear, but as non-
quadrilinear type 1, because of the lack of time and peak shape reproducibility between
runs. Recall that non-quadrilinear four-way data are type 1 for a single breaking mode,
type 2 for two breaking modes, type 3 for three breaking modes and type 4 if there is
dependence among pairs of instrumental modes.

A different chromatographic approach was first introduced by Mufioz de la Pefia’s
group [23] and was then implemented in other applications with quantitative purposes [24,25].
In this case, to avoid stopping the flow, the FLD capabilities were exploited and the
third-order LC-EEM data were measured by performing several chromatographic runs of
aliquots of the same sample. The corresponding second-order LC-FLD data matrix were
then registered, changing the excitation wavelength for every injected aliquot. Hence,
the three-way array was built by joining the data matrices acquired at each excitation
wavelength. This approach is characterized by the fact that a single chromatograph is used
for the acquisition of the third-order data, including an autosampler and an FLD. However,
deviations of multilinearity are present when this approach is used. The first aspect to
be considered is the fact that time shifts, and peak distortions may appear among runs,
breaking the trilinearity of the third-order LC-EEM data (the same phenomenon occurring
in second-order calibration). Hence, the four-way data array will not be quadrilinear, but
non-quadrilinear type 4, which is a complex scenario for chemometric models. To the best
of our knowledge, there are no efficient pre-processing tool for recovering the trilinearity of
LC-EEM third-order data, and no adequate models dealing with non-quadrilinearity type
4. However, this data can be properly modelled by implementing a bilinear decomposition
of a super-augmented bilinear data matrix (see Section 3). It should be noticed that only
a small number of runs are performed per sample to reduce time, sample and reagent
consumption, leading to imbalanced data arrays with many data points in the emission
and the chromatographic directions and only a few points in the excitation direction. These
issues may hinder its application for the analysis of complex systems with a large number
of constituents.

Finally, the most explored and promising approach is the one consisting in the hy-
phenation of a chromatograph and a fast-scanning spectrofluorometer connected through
a fluorescence flow-cell. The first work that report the implementation of an online EEM
registering system was done by Goicoechea’s group [25], who described and analysed the
advantages and disadvantages of this alternative in comparison with the two aforemen-
tioned ones. This approach presents the great advantage of simultaneously recording the
EEM on-line with the LC procedure, achieving a drastic reduction of time analysis, reagents
and sample. Notwithstanding, the main drawback is related to the strong dependence
of the elution time mode with both spectral modes, which leads to a loss of trilinearity
in the third-order data, and to non-quadrilinear data of type 4 for multi-sample analysis.
This phenomenon occurs as a consequence of the lag between the elution and the fluores-
cence scanning rates. To cope with these limitations, researchers have implemented novel
instrumental configurations [26], developed new spectrometers [27] and introduced new
chemometric alternatives [28]. Escandar’s group implemented a chromatographic setup
that decreased the time dependence effect by reducing the linear flow rate of the mobile
phase, incorporating a large inner-diameter tube between the column and the flow-cell [26].
In this way, the authors reported that the time-dependence effect is negligible, and the
third-order data of individual samples are indeed trilinear. In addition, due to the large
chromatographic times and the slow chromatographic rate, reproducibility in the elution
time among samples was observed leading to quadrilinear data. More recently, Alcaraz et al.
have presented an ultra-fast multi-way detector that enables measuring a complete EEM
by bidimensional excitation and emission spatial dispersion [27]. This device, based on the
use of a CCD camera, allows acquiring fluorescence images in the order of milliseconds.
The first advantage of this setup is the feasibility of acquiring trilinear third-order data
with several data points in all the three modes. For instance, three-dimensional arrays of
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size 1450 x 240 x 320 for elution time, excitation and emission modes, respectively, were
reported. In this case, non-quadrilinear type 1 four-way data arrays are generated, which
can be easily decomposed by known chemometric models such as APARAFAC, MCR-ALS
and U-PLS with residual quadrilinearization (RQL), among others. This device represents
a step-forward in the field of third-order data acquisition for dynamic systems.

Totally different third-order chromatographic data can be generated by bidimensional
(2D) chromatography in combination with vectorial detection or by three-dimensional
(8D) chromatography. In the case of 2D chromatography, a sample is driven through two
independent columns; the effluent from the first-dimension column is sequentially injected
into the second-dimension column. At the end of the latter, a spectral detector registers
a vectorial signal at each chromatographic time. In this way, the generated third-order
data involve the first-dimension chromatographic time, the second-dimension injections
and the corresponding spectra. In this regard, LC?-DAD [29] and GC2-MSTOF (time of
flight) methodologies have been reported and four-way calibration method have been
successfully implemented [30]. More recently, a new methodology based on 3D GC with
univariate detection (FID or single quadrupole MS) was proposed as an alternative to yield
third-order data with quantitative aims [31]. In this case, the three-dimensional data array
is built by the combination of the three chromatographic modes. All these strategies share
the same undesired particularity in chemometric terms, i.e., the elution time shifts and
peak distortions that occur among samples in both the first- and the second-dimension
(and the third one in the case of 3D chromatography), which, in principle, preclude the
application of a multilinear model.

3. LC Multi-Way Data Analysis: Chemometric Models and Algorithms

As shown in the previous section, the generation of three- and four-way data implies
the construction of a variety of data arrays, characterized by various mathematical prop-
erties. Hence, it is not surprising that a large diversity of models and algorithms have
proliferated in recent decades.

The concept of data multilinearity, i.e., bilinearity, trilinearity and quadrilinearity is
the common thread in method taxonomy and characterization [16]. These concepts should
orientate the analyst in the selection of the most suitable method for a given calibration
scenario. In this regard, it is important to consider that despite the structure of the raw
experimental data, they can be subjected to mathematical operations prior to chemometric
processing, in order to fulfil the conditions required for a successful chemometric decom-
position. For instance, second-order matrices can be arranged as follows: (1) they can be
stacked in a third mode to give rise to a three-way data array, (2) joined in-plane to produce
an augmented data matrix in either of the instrumental directions, or (3) unfolded into
vectors and then join the vectors to produce a single matrix. Two key factors determine the
selection of any of the latter structures: the existence of phenomena producing constituent
profiles which vary from sample to sample, and/or mutually dependent phenomena oc-
curring in the two instrumental modes. The different data arrays that can be obtained from
a second-order dataset, prior to chemometric modelling, are illustrated in Figure 1.

Following the same criteria described before, the third-order arrays in four-way
calibration can be organized as follows: (1) they can be disposed in a fourth mode yielding
a four-way data array; (2) organized in an augmented three-dimensional data array in
either of the instrumental directions; (3) joined in-plane to generate a bidimensional data
matrix with one or two augmented modes; and (4) completely unfolded into vectors and
then stacked in a single matrix. These possibilities are graphically summarized in Figure 2.
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Figure 1. Possible data arrays that can be built with second-order data prior to chemometric modelling.

In general terms, three families of chemometric modelling approaches can be distin-
guished for three- and four-way data analysis. Each group of methods is characterized by
assuming different hypotheses about the data structure and exhibit different degrees of
flexibility. This leads to distinctive model interpretabilities and capabilities of exploiting
the benefits of multi-way data arrays in terms of analytical performance and solution
uniqueness. Although a vast list of mathematical models and algorithms exists, only the
most relevant ones are summarized and detailed in this report.

In accordance with the different types of required mathematical operations, stacked
multi-way data that conform the property of multilinearity can be subjected to multilinear
decomposition methods, mainly represented by PARAFAC and AMLD [20], which define
the first family of models here described. They are based on a multilinear decomposition
procedure, and present the following advantages: (1) no need of special initialization meth-
ods, since the solutions are often unique, (2) constraints may not be necessary, in general,
to drive the optimization phase to the final solution, (3) figures of merit are well-known
and (4) the decomposition of multi-dimensional data in their original structure is known
to be more efficient than unfolding the data into arrays of lower dimensions [32]. The
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uniqueness property which is often achieved in this kind of decomposition is directly tied
to the possibility of exploiting the relevant second-order advantage in analytical protocols.
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Figure 2. Possible data arrays that can be built with third-order data prior to chemometric modelling.

Given a set of I bilinear second-order data with | and K data points in each of the
instrumental modes and N responsive constituents, a three-way data arrangement X of
size I x | x K can be obtained. If the tensorial object X obeys the property of low-rank
trilinearity, then each element can be expressed as:

N
Xijk = Y @inbjnCin + €iji D
n=1
where a;,,, bj, and cy,, are the ith, jth and kth elements of the profile matrices Aj. N, Bjxn
and Cgxy in the nth column vectors, respectively. The scalar ¢;j denotes a generic element
of the three-way residual array E;, ;, k. Under this assumption, X arrangement can be
submitted to trilinear decomposition, according to the following model formulation:

N
X=Y a,0b,®c, +E )

n=1
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where © indicates the Kronecker product [9] and a,;, b, and ¢, are the nth. columns of A, B
and C, respectively.

The same model formulation expressed by Equation (2). can be directly extended
to a multilinear multi-way data arrangement of any order. For instance, in the case of
third-order data, i.e., four-way calibration, and additional instrumental mode is included.
If L data points are registered, then, quadrilinear decomposition follows the expression:

N
X:Zan®bn®cn®dn+]5 3)

n=1

where Dy y contains the profiles of N constituents in the third instrumental mode and d,
is the nth. column of D.

For three-way calibration, various optimization models for the estimation of A, B
and C matrices have been proposed. In this sense, direct trilinear decomposition method
(DTLD) [33] is based on eigenvalue-eigenvector decomposition, whereas PARAFAC [9]
and AMLD [7] are based on alternating least-squares philosophy. In particular, AMLD
includes a variety of strategies, such as alternating trilinear decomposition (ATLD) [34]
or self-weighted ATLD (SWATLD) [35] for second-order data, and alternating penalty
quadrilinear decomposition (APQLD) [36] or regularized self-weighted alternating quadri-
linear decomposition (RSWAQLD) [37] for third-order data. The main advantage of these
models, in general, relies in the fact that the multilinear decomposition is unique. From
the analytical point of view, this property implies that, even when initial estimators are
unknown, the optimization phase would retrieve the true constituent profiles along each of
the instrumental modes, as well as the relative contribution of each component along the
sample mode. The latter are then used to build the so-called pseudo-univariate calibration
curve for quantitative purposes.

Notwithstanding, all these benefits can be achieved only if the modes are mutually
independent from each other. This is not generally the common rule for chromatographic
multi-way data. As stated above, multi-way chromatographic data are normally classified
as non-trilinear type 1 because the reproducibility across sample injections is never perfect.
In general, multilinear decomposition is the least flexible option, since it is sensitive to the
lack of multilinearity [21]. This issue can be overcome by implementing different strategies.
In certain cases, the lack of reproducibility in the sample mode can be solved by applying
pre-processing procedures for chromatographic peak alignment [38]. Besides, different
MLD variants derived from the previously mentioned approaches have also emerged
aiming at dealing with the lack of multilinearity in chromatographic data. For instance,
PARAFAC2 is a variant of the classical PARAFAC, which is based on an alternative form of
Equation (2) [12]:

N
Xije = Y Ainbjn (1)Cpen + €iji 4)
n=1

where bj, (i) is the jth. element of the b, profile along the sample dependent mode and
depends on the sample index i. In addition, to follow Equation (4), the PARAFAC2 model
requires constant cross product between all pairs of b, profiles. This model formulation
allows the chromatographic profiles not to be identical from run to run. For more details
the reader must be referred to Ref [12]. Despite that this method proved to have some
success in the field of chromatography, it is still a non-flexible model since it assumes
that the degree of overlap between chromatographic peaks is constant for each pair of
constituents in all samples [12,39].

The second group of multi-way calibration methodologies is represented by bidimen-
sional decomposition and curve resolution methods, where MCR-ALS [40] emerges as the
most important modelling approach for chromatographic multi-way data. Since its original
publication, MCR-ALS has been the subject of extensive research in both fundamental
and applied chemometrics. To put it succinctly, in contrast to multilinear decomposition
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methods, the MCR-ALS approach consists in performing a bilinear decomposition of a
bilinear data arrangement X of size | x K, according to:

X=CST+E (5)

where Cj,n and Sk N are matrices that capture the pure instrumental responses of N
components in each of the instrumental modes, respectively, and Ejxk collects the model
residuals. The bilinear decomposition is achieved by virtue of the ALS algorithm. Besides,
in contrast to the previously mentioned methods, ALS initialization with random values
is not a convenient strategy. On the contrary, MCR-ALS is a more flexible model but
suffers from ambiguity phenomena, which can have dramatic effects on the analytical
performance of a calibration protocol [41,42]. Hence, in the usual application of this model,
initial estimates of C or S are commonly obtained through the so-called purest variables
methodology [43]. On the other hand, the study of MCR-ALS ambiguity is still a matter of
extensive research in the chemometric field [41]. In general terms, the extent of RA can be
mitigated through the incorporation of mathematical and chemically sensible constraints
during ALS optimization, such as non-negativity, unimodality, selectivity, correspondence
between species, among others [44-51].

For the particular case of three-way calibration, the most common approach for
chromatographic data modelling is based on generating an augmented data array, i.e., a set
of I bilinear matrices X are disposed in a column-wise augmented arrangement Xayg of size
J X KN, by placing each individual matrix one below the other. Then, Xayg is submitted to
bilinear decomposition according to the extended model formulation of MCR-ALS [52]:

Xaug = CaugST + Eaug (6)

After convergence, S captures the profiles of N species in the non-augmented mode
(generally, the spectral mode) which is common to all samples, whereas Caug comprises the
profiles of N species in the augmented mode, in each of the submatrices of Xaug (generally,
the elution time mode). Additionally, the area under the profiles captured within Cayg is
tied to the relative contributions of the individual components in each submatrix, which
are then coupled to a regression model for quantitative purposes.

The possibility of performing a bilinear decomposition of augmented data arrays
constitutes the fundamental aspect that gives this model both the optimal flexibility and
versatility to deal with multilinearity deviation problems that characterize chromatographic
data. This fact is key to understand why MCR-ALS has originated a myriad of applications
in analytical calibration and has been extended to different kind of data, including third-
order data.

For the specific case of four-way calibration, an alternative strategy known as APARAFAC
was proposed by Bortolato et al. [13] combining the benefits of the PARAFAC uniqueness
and the flexibility of MCR-ALS. This latter model can be implemented through a typical
ALS process for performing a trilinear decomposition of an augmented three-way array. In
this way;, it allows to deal with non-quadrilinear type 1 data. The corresponding model for
the X,¢ array of size I] x K x L a can be represented by:

Xaug = ABaw (Daw © Caw) ' + Eqyg @)

where the results of the decomposition are collected into three loading matrices ABzw (I] X N),
Csw (K x N) and D3y (L x N). The model residuals are retained in the Eaug(l T x K x L)
array. Here, AB3w collects the unfolded profiles along the augmented chromatographic
elution time modes and brings the relative contribution of the individual constituent
present in every sample. The remaining decomposition matrices contain the profiles that
enable a qualitative interpretation; for example, for LC-EEM data C and D will contain the
excitation and emission spectral profiles of each responsive component.
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Finally, the third category of multi-way chemometric approaches is constituted by
latent variable-based models, essentially, the regression variants U-PLS and N-PLS. The
PLS model was originally conceived for first-order calibration, i.e., senso strictum is only
able to exploit the first-order advantage [53]. However, the PLS philosophy was extended
to higher-order calibration, where the second-order advantage can be achieved by coupling
the model to the RML methodology [54].

In U-PLS/RML, during the calibration step, a classical PLS model is built with a set
of unfolded multi-way data, disposed in a matrix Xprg, which is then subjected to the
following decomposition [53]:

Xprs = PTT + Epys (8)

In Equation (8), P and T are the PLS loading and score matrices, respectively, which
aim to maximize both the explained variance in the Xpr g data and the covariance with the
nominal analyte concentration in the calibration samples. Epyg captures the PLS model
residuals [55]. The PLS model returns a vector of latent regression coefficients v, which is
usually employed to make predictions in test samples according to:

y= vit )

where t is the score vector of a given test sample, obtained by projection of an unfolded
test signal onto the space spanned by the PLS calibration loadings. If a given test sample
contains unmodelled constituents, the PLS prediction residual might be abnormally large
compared to the expected noise level [53]. Under these circumstances, the RML methodol-
ogy intends to decompose the part of the test data unexplained by PLS, assuming that the
residuals can be rearranged into a multilinear array. For second-order calibration, RML is
usually referred as RBL (bilinear) and its mathematical expression for a given test sample
Xtest can be formulated as [54]:

Xtest = reshape(Ptrpr) + Brpr Ty, + ErbL (10)

where BRBLTﬁBL derives from the PCA model for the residual matrix Xtest — reshape(Ptrpr)
with nrpr, principal components. During the RBL procedure, a new sample score vector
trpL is calculated which only represents the analyte information. The tgpy, vector is then
used to make analyte predictions through Equation (9). RTL is a natural extension of
Equation (10) for third-order data. On the other hand, N-PLS/RML represents a multi-way
variant of PLS and is based on an analogous fundamental to those of U-PLS/RML. The
key difference is that the original multi-way data structure is preserved during the PLS
calibration/prediction stages.

From the qualitative point of view, in contrast to other model families, PLS loadings
have no direct chemical interpretability. However, both latent models have shown to
be advantageous in specific calibration scenarios. In particular, U-PLS/RML is the most
flexible model and can be appropriate to model certain types of non-multilinear data
where the lack of multilinearity occurs in more than one experimental mode. In principle,
this is partially true if the second- or third-order advantage is to be achieved. Although
PLS can satisfactory model a non-multilinear calibration dataset, RML procedures may
fail during sample prediction if the residual matrix is not multilinear. In addition, for
the particular case of chromatographic data, these methods are only applicable if the
shifts in chromatographic profiles among runs are small. This means that U-PL/RML and
N-PLS/RML are sensitive to the lack of multilinearity along the sample mode.

In order to graphically summarize all the information described in Sections 2 and
3, the flow-chart shown in Figure 3 describes the most important modelling approaches
for calibration purposes with chromatographic multi-way data, which have been here
considered. If the generated data are multilinear, any of the presented models can in
principle be implemented. However, multilinear models such as PARAFAC and AMLD
variants should in this case be the first choice. When the data are not multilinear, or
multilinearity cannot be restored by implementing convenient pre-processing procedures,
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MCR-ALS, PARAFAC2 or APARAFAC (for four-way arrays) are the most appropriate
models to be applied. In any case, minor multilinear deviations can be tackled by PLS
models. In all cases, the concentration of one or more analytes can be simultaneously
obtained, even in the presence of unexpected sample constituents. In the case of PLS
models, the concentration of one or more analytes are directly calculated by means of RML
procedures. On the other, in multilinear decomposition and curve-resolution models, the
relative contribution of the calibrated analytes is represented by the so-called component
scores. They can be coupled to a pseudo-univariate regression model to estimate the
analyte concentration in unknown samples.

LC multi-way
data

Data
pre-processing

Multilinear
data

Multilinear
data

v v

UPLS/RML || PLS-based Multilinear || PARAFAC | Non-multilinear ';A:Riﬁkzz
N-PLS/RML algorithm decomposition | |AMLD decomposition § |’ o o\ <.
L» Scores

Pseudo-univariate
calibration

Quantitation

Figure 3. Flow-chart showing different modelling approaches to analyse LC multi-way data with quantitative aims. All the
models are indicated as examples. APARAFAC* is implemented only for third-order data analysis.
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4. Applications of LC Multi-Way Data
4.1. Second-Order/Three-Way Chromatographic Calibration

The continuous publication of scientific reports devoted to obtaining second-order/three-
way chromatographic data and their valuable analytical applications makes it relevant
to update the subject. As it is known, the analysis time demanded for both sample pre-
treatment step and the chromatographic run itself is drastically reduced when multi-way
calibration methods are implemented, while obtaining accurate quantitative information.
Overcoming the problems inherent to chromatographic analysis of multi-component sys-
tems, such as co-elution of analytes and/or non-calibrated components and elution time
shifts among runs, mostly depends on the proper selection of the chemometric model to be
applied.

Table 1 summarizes some examples reported from 2018 to date developed for the ana-
lyte determinations based on second-order/three-way chromatographic calibration. The
investigated analytes and matrices, the model/s selected for data processing, some relevant
characteristics of the system and the attained limits of detection are indicated. As can be
seen, the most widely applied approach for second-order/three-way chromatographic data
generation is the popular LC-DAD. This may be due to a number of reasons, e.g., (1) most
organic compounds absorb electromagnetic radiation in some region of the UV-visible
spectrum, (2) modern DAD in chromatographic instruments enjoy a great sensitivity and
versatility, and (3) it requires accessible equipment and low-cost consumables.

Table 1. Reports from 2018 to date based on chromatographic second-order/three-way data for quantitation purposes.

Analytes and Samples Model Remarks Ref.
LC-DAD
Malic, oxalic, formic, lactic, acetic, citric, . .
. L . L ET 10 min (isocratic mode).
pyruvic, succinic, tartaric, propionic and PARAFAC LODs: 0.15-10.0 mmol L in [56]
a-cetoglutaric acids in yoghurt, cultured U-PLS/RBL T )

milk, cheese and wine

validation samples

Meloxicam, flurbiprofen,
phenylbutazone, ibuprofen, diclofenac,
mefenamic acid, celecoxib, naproxen, ATLD
ketoprofen, diflunisal (non-steroidal

ET 14.5 min (gradient elution).
To simplify data processing, the
retention time mode was subdivided in [57]
four regions.

anti-inflammatories) in Chinese patent . ~ -1
drugs and health products LODs: 0.01-0.12 pg mL

Chlorogenic acid, (—)-epicatechin, caffeic

acid, taxifolin, p-coumaric acid, ET 16.5 min (gradient elution).
hesperetin, naringenin, chrysin, apigenin, To simplify data processing, the elution
kaempferol, luteolin, quercetin, ATLD time mode was subdivided in [58]
myricetin, rutin, (+)-catechin, ferulic acid, eight regions.
isorhamnetin (polyphenols) in LODs: 0.01-0.38 pg mL~!

raw propolis

ET 3 min (isocratic mode).

Gliclazide, glibenclamide, glimepiride Elution time mode was subdivided in
12 . MCR-ALS .
(antidiabetics), atenolol, enalapril, U-PLS/RBL two regions. [59]
amlodipine (antihypertensives) in serum LODs: <30 ng mL~!; better for
U-PLS/RBL

ET 2.7 min (isocratic mode).
Minimum sample preparation steps.
The time mode was subdivided in three

Tacrolimus, everolimus, cyclosporine A regions. Sample-added calibration
. . MCR-ALS . [60]
(immunosuppressants) in whole blood strategy for matrix effect.

LODs: 0.56 ug L~! (tracolimus),
0.08 ug L1 (everolimus), 7.6 ug L1
(cyclosporine A)
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Analytes and Samples Model Remarks Ref.
ET 8.2 min (gradient elution).
Elution time mode was subdivided in
Methylparaben, ethylparaben, fou.n' rlelgions. Satiiflactoryland
propyl-paraben, butylparaben, icat%stlzla y ;0? p]: ra ; Iiesu ts we;'e
phenoxyethanol salicylic acid, ATLD Oh taine Vﬁlt 1(?t mode Z’ezcep t olr 1
methylisothiazolinone, MCR-ALS P er;qx;fiet anotm O.Ee Stg ted sarnple [61]
3-iodo-2-propynyl-n-butylcarbamate (this fact was attributed to matrix
: . ; interferences).
(preservatives) in facial masks LODs: 1.2 ng mL-! (butylparaben),
1466 ng mL~!
(3-iodo-2-propynyl-n-butylcarbamate)
ET < 4 min.
Two isocratic elution methods with two
different mobile phases were used.
Data array was divided into two
Prednisolone, methylprednisolone regions (matrix augmentation in
(corticosteroids), mycophenolic acid MCR-ALS spectra and retention time direction [62]
(immunosuppressant) in human plasma were implemented for the first and
second regions, respectively).
LODs: 0.9 ug L-! (prednisolone),
1.3 pg L~! (methylprednisolone),
300 ug L~! (mycophenolic acid)
1,2-Dinitrobenzene, 1,3-dinitrobenzene,
2,4,6-t}rinitrotoluene, 2,4—dinitrotoluene, ET 10 min (isocratic mode).
2-nitrotoluene, 3-nitrotoluene and ..
A-nitrotoluene (explosives, agrochemical MCR-ALS Very similar analyte structllres. [63]
; pIOsIves, ag nical, LODs: 0.05-0.12 pug mL~1
textile dyes and chemical intermediates)
in river and pond waters
Uric acid, creatinine, tyrosine, ET 6 min (isocratic mode).
homovanillic acid, hippuric acid, Both models rendered comparable
indole-3-acetic acid, tryptophan, ATLD recoveries and root mean square error [64]
2-methylhippuric acid (small molecules MCR-ALS of predictions.
related to early diseases diagnosis) in LODs: 29.9-464.2 ng mL~! (ATLD);
human urine 11.7-127.1ng mL~! (MCR-ALS)
Chrysene, naphtalene, acenaphthylene,
fluorene, phenanthrene, acenaphthene, ET 18 min (isocratic mode).
anthracene, pyrene, benzo[a]anthracene, InertSustain®-C18 (5.0 um,
guaiazulene, benzo[e]pyrene, ATLD 4.6 mm x 250 mm) reversed phase [65]
fluoranthene, benzo[a]pyrene, column. Elution region was divided
benzo[b]fluoranthene, into four sub-segments.
benzo[k]fluoranthene (PAHs) in flue-dust LODs: 0.94-48.86 ng mL~!
and greasy dirt samples
ATLD-MCR model was compared with
PARAFAC, ATLD and MCR-ALS. Two
simulated HPLC-DAD data sets, one
Naproxen, ketoprofen, meloxicam simulated LC-MS data set, and a
(non-steroidal anti-inflammatories) in ATLD-MCR semi-simulated LC-MS data set were [66]

Chinese patent drugs

evaluated. ATLD-MCR proved to be
able for handling chromatographic data
with time shifts and signal
overlapping.
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Analytes and Samples Model Remarks Ref.
ET 2 min (isocratic mode).
Ultra-HPLC using two different
2-Hydroxy-4-methoxybenzophenone (UV MCR-ALS experimental methods was applied. [67]
filter) in mice serum and human plasma One of these methods rendered
better results.
LOD: 0.66 ng mL !
USAEME as extraction method.
. _ Region-based analysis had
Sixteen PAHSs (.US.EPA priority MCR-ALS improvegment regardingyto the whole [68]
pollutants) in river water d )
ata analysis.
LODs: 4.77-16.44 ng mL~!
Dorzolamide hydrochloride (carbonic PARAFAC ET 0.5 min (isocratic mode).
anhydrase-II inhibitor) and timolol 3W-PLS LODs: 0.57 ug mL~! (dorzolamide [69]
maleate (non-specific adrenergic blocker) U-PLS hydrochloride), 0.66 ug mL~!
in an ophthalmic solution (timolol maleate)
Tartrazine, sunset yellow, carmine,
amaranth, brilliant blue, aspartame,
acesulfarpe potassi.um, .sodium. sacc.harin, ET 8.1 min (gradient elution).
caffeine, benzoic acid, sorbic acid, ET mode was subdivided in
glycyrrhizin acid (food additives) in ATLD four regions. [70]
beverages (cola, grape, lemon, and LODs: 1.40-165.1 ng mL-1
orange sodas, green and black teas,
orange and apple juices, milk drinks and
grape wine)
ET 5.4 min (isocratic mode).
Gallic acid, epigallocatechin, epicatechin, ATLD Data array was divided in
epigallocatechin gallate, epicatechin MCR-ALS two sub-regions. [71]
gallate (polyphenols) in red, green, black ATLD-MCR MCR-ALS and ATLD-MCR were better
and clinacanthus nutans Chinese teas than ATLD in the case of larger
time shifts
ET 25 min (gradient elution).
Carbendazim, thiabendazole, Standard addition method due to
fuberidazole, carbofuran, carbaryl, matrix effect. Advantages of multi-way
flutriafol, 1-naphthol (pesticides) in MCR-ALS calibration in comparison with the [72]
vegetables (lettuce, cabbage leaf, carrot, univariate one when interferents are
beet, tomato, green bell pepper) present (vegetable samples)
were demonstrated
Epicatechin, myricetin, fisetin, quercetin, . .
herzjsperidin, kaeympferol, rutin (ﬂgvonoids) ATLD E]:F C;’DS 'mm (isocratic moéelz). [73]
. ce . . s: 0.01-0.20 pg mL
in raw and purified Chinese propolis
ET 2.2 min (isocratic mode).
Both models avoided the
Melamine (plastic) in a food simulant PARAFAC overestimation of migrated melamine [74]
migrated from kitchenware PARAFAC2 amount despite coelution of the
interferent with the analyte.
LOD: 0.58 mg L1
Bisphenol A, bis(4-hydroxypheny]l)
methane, 4,4’ -cyclohexylidenebisphenol, ET 4 min (isocratic mode). After
44'- quantitation, optimization of
(hexafluoroisopropylidene)diphenol, U-PLS experimental conditions was made by [75]

bis(4-hydroxyphenyl) sulfone
[bisphenols] in methanol
synthetic solutions

inversion of PLS. LODs:
334-1156 pug L1




Molecules 2021, 26, 6357

16 of 29

Table 1. Cont.

Analytes and Samples Model Remarks Ref.
ET 4 min (isocratic mode).
4 4'-isopropylidenediphenol, Migration frqm BPA—free PC glasses
/ . is studied.
4,4'-methylenediphenol, .
4,4'-cyclohexylidene bisphenol The maximum amount of BPA
;o Y exy  1Sphieno’, PARAFAC migrated from PC glasses (5.60 pg L™1) [76]
4,4'-(hexafluoroisopropylidene) diphenol, .
, . . . was lower than the established
4,4'-sulfonyldiphenol [bisphenols] in a T
. migration limit for a
food simulant .
non-authorized substance.
LODs: 44.0-138.9 ug L1
Benzoic acid, methylisothiazolinone,
sorbic acid, phenoxyethanol,
methylparaben, ethylparaben, ET 10.5 min (gradient elution).
propylparaben, butylparaben, ATLD LC-DAD data were divided into five [77]
3-iodo-2-propynyl-n-butylcarbamate, temporal regions for data processing.
clorophene, triclocarban, triclosan LODs: 9.57 x 1074-0.33 ug mL~!
(preservatives) in emulsion, cream,
powder, gel and facial masks
Lenalidomide, gefitinib, crizotinib, ET 6.5 min (gradient elution).
Chld‘:m.ude,. da.sa.tm%b, ax1.t1‘r11b, lapatlrub, ATLD, MCR-ALS MCR-ALS and AT.LD-MCR rendered
erlotinib, nilotinib, idelalisib (anti-tumor ATLD-MCR better recoveries than ATLD. [78]
drugs) in plasma, urine, cell culture LODs: 5.4-398 ng mL~1 (ATLD-MCR),
medium 0.1-536 ng mL.~! (MCR-ALS)
Imidacloprid, albendazole, fenbendazole,
praziquantel, fipronil, permethrin ET 12 min (gradient elution).
(veterinary active ingredients) in water MCR-ALS Optimized DLLME. Data array was [79]
from a wetland system used for the divided into six regions.
treatment of waste from a dog breeding LODs: 1.3-8.5ng mL~1!
plant
Gefitinib, crizotinib, dasatinib, axitinib, ET 7 min (gradient elution).
lapatinib, erlotinib, pexidartinib, Data were divided into three regions.
nilotinib, LDK378 (tyrosine kinase ATLD-MCR LODs: 0.02-0.24 pg mL! (plasma), [80]
inhibitors) in plasma, urine and a cell 0.01-0.14 nug mL~! (urine),
culture medium 0.02-2.44 pg mL~! (cell culture)
Sudan I, sudan II, sudan III, sudan IV, ET 6.5 min (isocratic mode).
sudan red B, sudan red G, sudan red 7B, .. .
. Three-way data array was divided into
para red, diethyl yellow, methyl red, ATLD . . . .
I : four regions on the basis of elution time. [80]
butter yellow, toluidine red (edible azo MCR-ALS ) 1
dyes) in chili sauces, saffron, ketchup LODs: 0.01-256 mg kg (ATLD),
y ees ' g 0.01-2.95 mg kg~ (MCR-ALS).
chili powder
LC-FLD
Fpemidc aid muberan oo, E1.47 i socatic mode).
lomefloxacin, danofloxacin, enrofloxacin, MCR-ALS LC-FLD data.were divided into three [81]
. . N temporal regions for data processing.
sarafloxacin (quinolone antibiotics) in LODs: 7-125 1o ke~
chicken liver, bovine liver and kidney 5 HE %8
GC-MS
ET 19.1 min.
Butylated hydroxytoluene (BHT) Data were acquired in SIM mode using
[antioxidant], diisobutyl phthalate five acquisition windows.
. . _ . _1 _1
(DiBP), bis(2-ethylhexyl) adipate (DEHA), PARAFAC LODs 2.28 ug L= (BHT), 7.87 ug L 2]

diisononyl phthalate (DiNP)
[plasticizers], benzophenone (BP) [UV
stabilizer] in Tenax 2

(DiBP), 3.04 ug L~1(DEHA), 124.8 ug
L~! (DiNP), 10.57 ug L~! (BP). Tenax
could not be reused in this
multiresidue determination
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Analytes and Samples Model Remarks Ref.
ET 15.1 min.
Data were acquired in SIM mode using
Butylated hydroxytoluene (BHT), four acquisition windows.
benzophenone (BP), benzophenone-3 PARAFAC LODs 7.93 ug L! (BHT), 12.40 ng L!
(BP3), diisobutyl phthalate (DiBP) [filters PARAFAC?2 (BP), 11.65 ug L~! (DiBP), 279.8 ug L1 [83]
and additives] in sunscreen (BP3). Analyte identification using the
cosmetic creams univariate standard method was
incorrect. Multivariate calibration
avoided false negative results
ET 19.1 min.
Migration from PE, PVC, and PP is
studied. Data were acquired in SIM
Butylated hydroxytoluene (BHT) mode. Five acquisition windows
[antioxidant], diisobutyl phthalate were considered.
(DiBP), bis(2-ethylhexyl) adipate (DEHA), PARAFAC Presence of BHT, DiBP and DEHA was [84]
diisononyl phthalate (DiNP) [plasticizers] PARAFAC2 confirmed in Tenax blanks in some of
and benzophenone (BP) [UV stabilizer] the analysis. BP, DiBP migrated from
in Tenax ? both PVC film and PP coffee capsules,
whereas DEHA migrated from
PVC film
LODs: 3.48-360.2 pug L~ 1.
Both models allowed analyte
Bisphenol A (plasticizer) in a food quantitation. Thg analyzed cases were:
imulant migrated from polycarbonate pres.ence of interferents with
s 8T 1 potycarbon PARAFAC overlapping peaks to the IS and analyte,
tableware, dichlobenil (pesticide) in PARAFAC2 luti ds which share i [74]
onion, and oxybenzone (aromatic ketone) coetuting compounds wihich share 10ns
. . with the IS, retention time shifts from
in sunscreen cosmetic creams .
sample to sample, and coelution
of interferents
ET 19.1 min.
Migration from plastic capsules is
studied. SBSE for analyte extraction
and concentration. Standard addition
Butylated hydroxytoluene (BHT) method due to matrix effect. Data
[antioxidant], diisobutyl phthalate (DiBP) PARAFAC acquired in SIM mode using three [85]
[plasticizer], benzophenone (BP) [UV acquisition windows. Traces of the
stabilizer] in coffee analytes found in the Milli-Q water
samples were taken into account in the
analysis. Found levels in coffee were
below or around (DiBP case) than the
migration established limits
ET < 8 min.
Filters sample were extracted with the
Fluoranthene, benzo[b]fluoranthene, Soxhlet method. Scan mode was used
chrysene, benzo[a]anthracene, pyrene ATLD-MCR for mass spectrum detection. [36]
MCR-ALS In real samples, ATLD-MCR

(PAHs) in aerosol samples collected from
Loudi City (China) in functional zones

provided results which were better
than or similar to MCR-ALS.
LODs: 0.003-0.087 pg mL~1.
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Analytes and Samples Model Remarks Ref.
LC-MS
Betamethasone, dexamethasone,
triamcinolone acetonide, cortisone ET 11 min (gradient elution).
21-acetate, dexamethasone 21-acetate, ESI interface operating in positive
budesonide, triamcinolone acetonide mode. LC-MS analysis in full scan
acetate, fluocinonide, clobetasol mode. The three-way data array was
17-propionate, betamethasone ATLD divided into six sub-regions. [87]
dipropionate, beclomethasone Betamethasone and dexamethasone
dipropionate, beclomethasone, (epimers) were simultaneously
fluoromethalone, quantified under a simple
fluticasone propionate, betamethasone elution program.
17-valerate (glucocorticoids) in LODs: 0.56-13.55 ng mL 1.
face masks
ET < 4.5 min (gradient elution).
ESI interface operating in positive
mode. LC-MS analysis in full scan
Thiamine, riboflavin, nicotinic acid, mode. Data array was divided into
biotin, nicotinamide, D-pantothenic acid, ATLD three sub-regions. [85]
pyridoxine, folic acid, cyanocobalamin APTLD Both models rendered similar recovery
(B-group vitamins) in energy drinks and statistical results
LODs: 2 x 1073-2.5 x 1072 ug mL~!
(ATLD), 1 x 1073-2.5 x 1072 ug mL~!
(APTLD).
ET < 7 min (gradient elution).
ESI interface operating in
Estriol, 17x-estradiol, 173-estradiol, negative mode.
estrone, ethinyl estradiol, ATLD LC-MS analysis in full scan mode. Data [89]
diethylstilbestrol (estrogens), bisphenol A array was subdivided into four
(xenoestrogen) in infant milk powder sub-regions on the basis of the elution
ranges of estrogen.
LODs: 0.07-2.49 ng mL ™"
ET < 7.0 min (gradient elution).
Gallic acid, chlorogenic acid, caffeic acid, ESI(;nt«f(f:acl\e/[gperalt g m ?elglatlve
(+)-catechin, p-coumaric acid, taxifolin, mode. WV anaysis in ful sean
(—)-epicatechin, ferulic acid, myricetin ATLD mode. Data array was subdivided into [90]
1 pie L s myriceti, MCR-ALS six sub-regions on the basis of the
uteolin, quercetin (polyphenols) in N
Chinese propolis retention tlmf'l
LODs: 2.8-80.0 ng mL™" (ATLD),
0.9-54.5 ng mL~! (MCR-ALS)
ESI interface operating in positive
mode.
LC-MS analysis in full scan mode. The
regions of interest method of the
LC-MS data was employed for data
pmpreson Maocmated
(immunosuppressants) in blood and MCR-ALS 8y ploy [91]

surface water

to matrix effect.

LODs: (blood) 5.8 ng mL~!
(cyclosporine-A), 4.8 ng mL~!
(tacrolimus).

LODs (water) 2.3 x 1072 ng mL~!
(cyclosporine-A), 9.0 x 1072 ng mL !
(tacrolimus)
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Analytes and Samples Model Remarks Ref.
Combination and partition of the MS1
full scan ion peaks recorded at different
fragmentor voltages. Combined data
and partitioned in two ways were
compared using two systems.
System I: ET 4.4 min (gradient elution)
17-B-estradiol, estrone, diethylstilbestrol LODs: 0.18-2.72 ng mL~1(combined
(estrogens), bisphenol A (xenoestrogen) data), 0.25-2.35 ng mL~! (partitioned
in river water [system I], L-glutamic acid, data, ofv), 0.04-0.54 ng mL~!
L-tyrosine, L-tryptophan, ATLD (partitioned data, hfv). [92]

L-phenylalanine (amino acids), xanthine,
hypoxanthine (purines), kynurenic acid,

LODs: 0.99-5.43 ng mL~! (combined

System II: ET 4.4 min (gradient elution).

L-kynurenine (metabolites) in human

urine [system II]

data), 0.04-7.69 ng mL~! (partitioned
data, ofv), 2.96-7.38 ng mL~!
(partitioned data, hfv).

In most cases, data combination
rendered higher sensitivity and more
reliable results. Data partition provided
higher selectivity in some cases but in
others was unable to quantify analytes

2 Tenax: food simulant for testing migration from plastics into dry foodstuffs. ® For sample pre-processing and elution conditions in real
samples see ref. [66]. Abbreviations: APTLD, alternating penalty trilinear decomposition; DLLME, dispersive liquid-liquid microextraction;
ESI, electrospray ionization; ET, elution time; hfv, highest fragmentor voltage; IS, internal standard; LOD, limit of detection; ofv, optimum
fragmentor voltage; PAH, polycyclic aromatic hydrocarbon, PE, polyethylene; PP, polypropylene; PVC, polyvinyl chloride; SBSE, stir
bar sorptive extraction; SIM, single ion monitoring; USAEME, ultrasonic assisted emulsification micro-extraction; US EPA, United States
Environmental Protection Agency; 3W-PLS, three-way partial least-squares.

On the other hand, since not all compounds show fluorescent properties, it is not
surprising that the number of publications describing chromatographic second-order cali-
bration with fluorescence detection is much smaller. As will be seen below, in multivariate
calibration, fluorescent detection has been more popular for obtaining third-order chro-
matographic data, where the EEM provides two instrumental modes while the third mode
is given by the elution time. This detection mode takes advantage of the maximum selec-
tivity and sensitivity which is gained by scanning both the emission and the excitation
spectra, in comparison with fluorescence detection at a single excitation wavelength. In the
latter case, a compromise is required among the excitation maxima of all analytes.

Finally, a smaller number of studies applying second-order LC data with MS detection
have been published in the evaluated time period in comparison with DAD, despite
the great potential of the former methodology. Most GC-MS second-order calibration
publications shown in Table 1 involved quantitative studies of the migration of selected
analytes from packaging material to foods, food simulants and cosmetic creams. LC-MS
was applied to a variety of multi-components systems and complex samples.

Regardless of the detection method, the most used models for data processing were
PARAFAC, ATLD and MCR-ALS. The advantages obtained when carrying out the chro-
matographic quantitation of analytes in complex samples using second-order data, as well
as the problems that arise in each analysis, can be found in Table 1 for each report.

4.2. Third-Order/Four-Way Chromatographic Calibration

The quantitation of analytes through third-order/four-way data is not extensively
applied by the analytical community. Although some works on this topic have recently
been developed and their remarkable advantages as powerful analytical tools have been
steadily highlighted, the number of bibliographic citations is still significantly lower than
those corresponding to second-order calibration.



Molecules 2021, 26, 6357

20 of 29

Applications of this type of high-order quantitation in the evaluate period are shown
in Table 2. As can be appreciated, the most frequent way to generate third-order/four-way
chromatographic data consists in measuring LC-EEM data.

Table 2. Reports from 2018 to date based on chromatographic third-order/four-way data for quantitation purposes.

Analytes and Samples Model Remarks Ref.
LC-EEFM
ET < 12 min (gradient elution mode).
Rimsulfuron (herbicide), fuberidazole Native and photoinduced fluorescence
(fungicide), carbaryl (insecticide), naproxen (using a post-column UV reactor) were
(non-steroidal anti-inflammatory), MCR-ALS measured. Quadrilinearity was broken [93]
albendazole (antihelminthic agent), due to temporal shifts.
tamoxifen (anticancer agent) in well and LODs: 0.02-0.27 ng mL~! (spiked water
river waters samples) after a preconcentration
SPE step
ET ~ 9 min (isocratic mode).
Non-quadrilinear LC-EEM data type 4
Benz[a]anthracene, chrysene, were successfully processed with an
benzo[b]fluoranthene, benzo[a]pyrene MCR-ALS MCR-ALS strategy. LODs: [28]
(PAHs) in tea leaves 1.0-1.4ng mL~1 (validation samples).
LODs: 1.3-2.9 ng mL~! (samples with
interferents)
Third-order/four-way data results were
compared with second-order/three-way
data for the same system employing two
Pipemidic acid, marbofloxacin, enoxacin different fluorescence detectors.
. ’ L . MCR-ALS gave suitable results with
ofloxacin, norfloxacin, ciprofloxacin, ] 1d not |
lomefloxacin, danofloxacin, enrofloxacin, MCR-ALS second-order data but could notresotve
. . N all the analytes in the [94]
sarafloxacin (quinolone antibiotics) in U-PLS/RTL hird-order/four- R U-PLS
animal tissues (chicken liver, bovine liver thirc-order/ four-way system.
and kidney) §w1th RBL or RTL) rende?ec.l gogd 1.‘esults
in both cases, but the statistical indicators
were not better than MCR-ALS
second-order data. For more discussion,
see section on Figures of Merit
. . . . . ET ~ 200 sec (isocratic mode).
I;Z:;?g;?: (Ijl-lttfmir(: B}?;Iin ;iiﬁ;feﬂziglf PARAFAC Multilinearity was restored by [95]
in S};n theili}c) acI;ueOL;s sample}s) APARAFAC chemometric processing.
LOD: 7 mg L1
GC3/univariate detection
Two detectors (FID and a mass analyzer)
were used for data acquisition. GC3
system involved a first modulator
(thermal desorption modulator, mp 6 s)
. . that interfaced the first two columns, and
Citronellol, eugenol, farnesol, geraniol, a second modulator (differential flow
menthol, trans-anethole, carvone, 3-pinene PARAFAC [31]

(allergens) in perfumes

modulator, mp 300 ms) which connected

the last two columns. For data
processing, smaller subsections of the
chromatogram were used.
LODs (GC3-FID): 2.1-6.8 uL L1,
LODs (GC3-MS): 4.8-8.5 uL L1

Abbreviations: GC?, three-dimensional gas chromatography, ET, elution time; FID, flame ionization detector; LOD, limit of detection; mp,
modulation period; PAH, polycyclic aromatic hydrocarbon; SPE solid phase extraction.

While fluorescence matrices are easily obtained in fluorescent systems, their coupling
to the chromatographic elution time mode must be carefully evaluated in order to generate
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a four-way array that complies with the properties required by the selected model for
successful data processing [1,28,93-95]. The generation of photoinduced fluorescence in
systems with analytes that do not present native fluorescence has been achieved through
the incorporation of a UV reactor in the chromatographic equipment [93].

The research group led by Synovec has carried out an important contribution in the gas
chromatography area for obtaining high-quality third-order data involving GC2-TOFMS.
In recent years, the following works may be mentioned: (1) the study of the influence of the
column selection and modulation period in the trilinear deviation ratio (TDR) range and,
consequently, in the correct PARAFAC deconvolution [30]; (2) the use of a pulse flow valve
for an ultra-fast modulation period and an innovative data processing method coupled
with MCR-ALS deconvolution [96]; and (3) the advantages of partial modulation in the
negative pulse mode [97]. In addition, valuable improvements to comprehensive GC3-FID
detection have been achieved by the same research group [98,99].

5. Analytical Figures of Merit

Ideally, every development of a new calibration protocol should be accompanied
by a report providing the AFOMs. This is usually the case in univariate calibration, but
unfortunately the practice is not universally extended to multi-way calibration procedures.
The subject has been thoroughly reviewed in 2014 [14], but new developments have taken
place in recent years, which deserve to be commented in the present review.

Since we advocate for the use of MCR-ALS as the model of choice for multi-way
chromatographic data, the AFOMs will be discussed in the context of this chemometric
tool [100]. Specifically, the component-wise classical parameters sensitivity (SEN},), analyti-
cal sensitivity (g,), selectivity (SELj), limit of detection (LOD;;) and limit of quantitation
(LOQy) will be discussed, together with a recently proposed figure of merit which is
characteristic of MCR-ALS: the rotational ambiguity derived uncertainty (RMSERa) [101].

The SEN,, can be described in qualitative terms as the net analyte signal at unit
concentration, which can be estimated for a specific sample component in MCR-ALS

as [14]:
-1/2

m -1
SEN,, = ]1/"2{ 5T [seTXp( I— SumSin) sexp} 5n} (11)

where ] is the number of sensors of each sub-matrix in the augmented mode, m,, is the
slope of the pseudo-univariate calibration line, Sexp is the matrix of profiles in the non-
augmented mode for expected constituents in the calibration set, Synx is the matrix of
profiles in the non-augmented mode for the unexpected constituents (interferents) and d,,
is an analyte selector vector, having a value of 1 at the analyte index and Os otherwise.

The Equation (10) is written in such a way that it resembles the SEN,, definition in
terms of net analyte signal. An equivalent expression can be written in a more compact
manner as [100]: s

my -
SENy = 777 (sTs)nn (12)

where the subscript ‘nn’” indicates the (1,1) element of a matrix.

More useful than the plain SEN}, is the analytical sensitivity 7,, defined as the ration
between SEN,, and the instrumental noise level o, [102]:

_ SEN,

Tn = o (13)

because it has inverse concentration units and is independent on the type of measured
signal.
The SEL,;, in turn, can be estimated as the ratio between the SEN,, and the slope of the
analyte calibration graph:
EN
SEL, = ]1/2751” z (14)

n
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The degree by which the product (J'/2 SEN,,) departs from m, in the latter equation
depends on the level of overlapping among the component profiles. The value of SEL,
varies between 0 (null selectivity) and 1 (100% or full selectivity). In the chromatographic
context, multi-way selectivity has shown to be directly related to the effective peak capacity
of a chromatogram [103].

The definition of the LOD;, has been changing with time [104]. The old concept of
LOD,, as three times the standard deviation for a blank sample has been abandoned by
IUPAC, in favour of the modern view of the LOD,, as a function of Type I and Type II
errors (also called a and b errors, or false positive and false negative errors) [105,106]. In
addition, today it is widely accepted that the uncertainties in the measurement of the test
sample should be added to those stemming from the uncertainties affecting the calibration
procedure (including both the measurement of the instrumental signal and the preparation
of the calibration standards).

Since MCR-ALS quantitation is usually performed through a pseudo-univariate proce-
dure in which the test sample score is interpolated in a regression line of calibration scores
against nominal analyte concentrations, the LOD,, can be estimated from the latter line by
extending the procedure, which is usual in univariate calibration, i.e.,

LOD,, = 3.3(SEN, 202 + hy SEN,, 202 + hoOpea) (15)
where hy is the leverage for the blank sample, and the factor 3.3 is equal to (tan + f, ) for a
=0.05 and b = 0.05 and a large value of # (a and b are the probabilities for Type I and Type
II errors, respectively and # is the number of degrees of freedom), sy is a measure of the
uncertainty in the instrumental signal, which is considered to stem from identically and
independently distributed noise in the signal measurements, and sy, is the concentration
uncertainty when preparing the calibration samples. The factor 3.3 in the latter equation
may be changed, if needed, for other values of a and b. Notice the that the assumptions
underlying the expression for the limit of detection are: (1) the LOD), is close enough to
the blank so that the leverage can be considered equal to &, and (2) the distance from the
blank to the LOD), is a sum of two confidence intervals; a more rigorous treatment suggests
the use of a non-centrality parameter of a non-central ¢ distribution instead of a sum of
classical t-coefficients [107].

Under similar assumptions, the LOD,, is defined as the concentration for which the
relative prediction uncertainty is 10%, leading to:

LOQ,= 10(SEN,, 0% + ho SEN, %07 + hoopey) /2 (16)

Specifically, for MCR-ALS, a recently proposed figure of merit is required for analytical
reports based on the use of this model: the rotational ambiguity uncertainty. The latter
stems from the fact that all bilinear decomposition solutions, such as those provided by
MCR-ALS, are not necessarily unique, even when all possible constraints are applied
during the decomposition [41]. When this is the case, i.e., for non-unique solutions, an
uncertainty remains in the estimation of the analyte concentration, because a range of
feasible solutions are possible [108]. The RMSERa derived from the existence of the feasible
solutions has been shown to be given by the following range [101]:

ORA 5RA}

RMSEga = [; (17)
V12" V3

where Ry is the width of the range of feasible concentration values for the analyte, which,

in turn, is equal to the difference between maximum and minimum areas of the analyte

concentration profile, converted to concentration units through the calibration slope:

max(Aest) — Min(Agest)
My

ORA = (18)
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It is important to notice that, even when a significant RMSER value can be computed
by the latter equation, the MCR-ALS solutions may be driven to the correct bilinear solution
by an adequate initialization procedure, as recently discussed [109]. In these cases, the value
of RMSERa may be large, although this would not be reflected in the average prediction
error for a set of test samples, which may ultimately be reasonably low. However, it is
important to notice that for future test samples, having a varying chemical composition in
terms of interferents, the chosen initialization may not lead to similarly good results. The
subject has been explained in detail in a recent tutorial [41].

Finally, if PARAFAC or other AMLD models are employed to process multi-way data
of chromatographic origin, the decomposition is often unique, with AFOMs that have
already been discussed in detail [14,110]. These models may successfully process data
where the position and shapes of the chromatographic peaks do not change across samples,
but as explained above it cannot be considered as the tool of choice for the presently
discussed multi-way data.

6. An Example Comparing Second- and Third-Order Data

It is known, from theoretical considerations, that the SEN,, and SEL,, should increase
with the increasing number of data modes when decomposing a multi-way array [14].
However, only in a few cases, this has been experimentally confirmed, by registering, for
the same analytical system, second- and third-order data, and then comparing the resulting
figures of merit [25].

Recently, such a comparison was made in connection with the simultaneous quan-
titation of various analytes in complex food samples [94]. The applied protocols were
based on LC with fluorescence detection, employing two different detection setups for the
same chromatograph. In one of them, second-order data were measured with fluorescence
emission detection at a fixed excitation wavelength. In the second one, third-order data
were collected by EEM detection. The analytes were ten different quinolone antibiotics,
which were simultaneously analysed in edible animal tissues (chicken liver, bovine liver
and bovine kidney). MCR-ALS was applied to augmented matrices for each test sample
along the elution time direction. The use of MCR-ALS as data processing model provided
excellent results with second-order data; the relative prediction errors spanned the range
4-12% in the case of the real samples at analyte concentrations, which are compatible with
the maximum residue levels accepted by international regulations.

Third-order data were expected to provide better results, on account of the known
sensitivity and selectivity increase by increasing the data order. In this case, the raw three-
way arrays for each sample were unfolded into a matrix, by concatenating the emission
and excitation modes into a single one prior to building the augmented data matrix along
the elution time direction. The authors noticed that the third-order MCR-ALS analytical
results were, in general, worse than for second-order data, with relative errors in the range
9-23%, and significantly larger detection limits for some analytes (Table 3). Furthermore,
one of the analytes could not be resolved. Even when the theoretically estimated SEN,, was
larger for third-order data (Table 3), as expected from the increase in the number of data
modes, the relevant statistical indicators for analyte estimation (average prediction error
and relative error of prediction) and the detection capabilities were indeed worse (Table 3).

Subsequently, the latent structured models U-PLS/RBL and U-PLS/RTL were applied
to the second- and third-order data, respectively [94]. In this case, relative errors in the range
7-18% were obtained for second-order calibration and 5-27% for third-order calibration.
The latter errors were significantly larger than those for MCR-ALS/second-order data,
although the U-PLS/RTL model permitted the detection of all the studied analytes.
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Table 3. AFOMs from second- and third-order calibration of a number of fluoroquinolone antibiotics using MCR-ALS. Data

from ref. [94].

Second-Order

Third-Order

Analyte® SEN P LOD © LOQ¢ b c c
Q SEN LOD LOQ
PIPE 145 0.01 0.03 150 0.1 0.3
MARBO 37 0.07 0.2 450 -d -d
ENO 9 0.1 0.3 N.Ee® N.E ¢ N.Ee®
OFLO 180 0.04 0.1 2100 0.04 0.1
NOR 226 0.01 0.03 340 -d -d
CIPRO 26 0.03 0.1 86 -d -d
LOME 48 0.03 0.1 650 0.1 0.3
DANO 230 0.01 0.03 4000 0.01 0.03
ENRO 38 0.01 0.03 720 0.08 0.2
SARA 120 0.02 0.06 910 0.1 0.3

2 PIPE, pipemidic acid, (MARBO), marbofloxacin, (ENO), enoxacin, (OFLO), ofloxacin, (NOR), norfloxacin, (CIPRO), ciprofloxacin, (LOME),
lomefloxacin, (DANO), danofloxacin (ENRO), enrofloxacin, (SARA), sarafloxacin. ® SEN = sensitivity in arbitrary fluorescence units x
L mgl. © LOD = limit of detection, LOQ = limit of quantitation, both in mg L~1. 4 LOD values are close to the maximum calibration
concentrations. ¢ N.E. = not found.

It was concluded from the comparison of these two different experimental method-
ologies, carried out by using different detectors, that matrix fluorescence detection in
LC would still require some advances in instrumental setup, in order to provide maxi-
mum sensitivity and signal/noise ratio at very high scanning rates, something which is
not currently possible with commercially available equipment. In the above commented
report, the second-order data were measured using a commercial instrument which is
fully optimized for maximum sensitivity, whereas third-order data collection required the
in-house connection of a LC to a conventional spectrofluorometer, which is not optimized
for emission measurements in a small flowing cell.

This example also illustrates the fact that the plain sensitivity parameter SEN,, may
not be used for a proper comparison of analytical methods based on data measured with
different instruments. As explained above, a better AFOM is the ;. The effect of a larger
noise level could be the ultimate reason why third-order calibration failed to provide better
analytical results in the example of ref. [94].

7. Conclusions

Chromatography is an ever-growing discipline. Advances in experimental activities
have demanded the development of new chemometric models, whose ultimate aim is to
extract useful information for developing powerful analytical protocols. This is particularly
true in the area of multi-way chromatography, which is able to produce large data sets
that can be arranged into mathematical objects of increasing complexity. Selecting the ap-
propriate multi-way chemometric model to process these data sets is crucial for achieving
one of the most important advantages offered by this field, i.e., the possibility of quantitat-
ing analytes in complex samples containing uncalibrated interferents (the second-order
advantage). The present review provides a current view of the state-of-the-art, both from
experimental and theoretical perspectives.
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