
molecules

Article

Synthesis, Phase Behavior and Computational Simulations of a
Pyridyl-Based Liquid Crystal System

Fowzia S. Alamro 1, Hoda A. Ahmed 2,3,* , Saheed A. Popoola 4 and Asmaa Aboelnaga 5

����������
�������

Citation: Alamro, F.S.; Ahmed, H.A.;

Popoola, S.A.; Aboelnaga, A.

Synthesis, Phase Behavior and

Computational Simulations of a

Pyridyl-Based Liquid Crystal System.

Molecules 2021, 26, 6416. https://

doi.org/10.3390/molecules26216416

Academic Editor: Franck Camerel

Received: 28 September 2021

Accepted: 21 October 2021

Published: 24 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Chemistry, College of Science, Princess Nourah Bint Abdulrahman University,
Riyadh 11671, Saudi Arabia; fsalamro@pnu.edu.sa

2 Department of Chemistry, Faculty of Science, Cairo University, Cairo 12613, Egypt
3 Chemistry Department, College of Sciences, Taibah University, Yanbu 30799, Saudi Arabia
4 Chemistry Department, Faculty of Science, Islamic University of Madinah,

Al-Madinah Al-Munawwarah 42351, Saudi Arabia; abiodun@iu.edu.sa
5 Department of Chemistry, Faculty of Women for Arts, Science and Education, Ain Shams University,

Cairo 11566, Egypt; asmaa_aboelnaga77@yahoo.com
* Correspondence: ahoda@sci.cu.edu.eg

Abstract: A homologous set of liquid crystalline materials (Tn) bearing Schiff base/ester linkages
were prepared and investigated via experimental and theoretical techniques. Terminal flexible groups
of different chain lengths were connected to the end of phenylbenzoate unit while the other end of
molecules was attached to the heterocyclic pyridine moiety. The molecular structures of the designed
molecules were evaluated by FT-IR, NMR spectroscopic analyses, whereas their mesomorphic
properties were investigated by polarized optical microscopy (POM) and differential scanning
calorimetry (DSC). They all exhibited dimorphic properties with the exception of the members
having the shortest and longest terminal flexible chains (n = 6 and 16), which were monomorphic.
The T16 derivative was further found possessing purely smectic A (SmA) mesophase while others
have their lengths covered by nematic (N) phase. Moreover, the computational evaluation of the
azomethine derivatives was carried out using a DFT approach. The polarity of the investigated
derivatives was predicted to be appreciably sensitive to the size of the system. Furthermore, the
Frontier molecular orbitals analysis revealed various distributions of electron clouds at HOMO and
LUMO levels.

Keywords: pyridyl based liquid crystals; schiff base/ester; mesophase behavior; computational
DFT calculations

1. Introduction

Today, structure–activity relationship tools have been required to prepare the material
in order to achieve proper characteristics for device applications [1–4]. Calamitic LCs are
a prominent kind of mesogens that exhibit smectic and N phases due to their anisotropic
self-association. As a result, the LC molecular architectures are designed using anisotropic
mesogenic shape factors and principles. Several two- or three-ring compounds based on
Schiff base/ester LCs have been reported and their optical behaviors were analyzed to obtain
the correlation between the geometry of mesogens and their mesophase behaviors [5–9].

Due to their beneficial capacity to impart lateral and/or longitudinal dipoles, together
with variations in their molecular geometries, which are reflected in their optical and
electrical behaviors, heterocyclic-based LC materials have been of great interest to many
researchers [10–24]. Pyridine exhibits a dipole moment of 2.19 D, which is about five-
hundredths of that of a cyano group (~4.0 D) [25]; consequently, it influences the stability
of the mesophase when it is utilized as a moiety within the mesogens [25–30]. Additionally,
the pyridyl moiety is capable of forming intermolecular hydrogen bonding with compo-
nents that have carboxylic units [31]. The insertion of new mesogenes or heterocyclic rings
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and changeable terminal groups will affect the atomic geometry and offer wide mesophase
ranges of the resultant materials [32]. Moreover, slight modification within the molecular
shape enables new significant changes within the phase transitions and plays an essential
role in the kind and stability of the produced phase [33–37].

In order to investigate the structural linearity of synthesized molecules and molecular
polarizability, as well as the geometrical parameters of each prepared compound, a DFT
approach was used and the results were correlated with the experimental data [33–40]. It
is essential to note that the DFT calculations assume a gas phase for all molecules, as such
the most favorable predicted geometry could differ from that of empirical which occurs in
a condensed phase such as LC mesophase, where more prolonged molecules are usually
favored [41].

In this work, we synthesized and investigated the mesomorphic transitional properties
of a three-ring homologous series based on Schiff base/ester mesogenic cores. The studied
molecules have a heterocyclic pyridine ring in one terminal while the other end is con-
nected to different flexible alkoxy chains. The influence of various alkoxy chains towards
the mesomorphic properties of the derivatives was evaluated. Furthermore, important
theoretical data were computed via the DFT method for the synthesized molecules and
correlated with the experimental results.

2. Experimental
2.1. Synthesis of Materials

Compounds T6, T8, T10, T12, T14 and T16 were prepared according to Scheme 1:
Details of preparation and spectroscopic characterizations are given in Supplementary

Information (Figures S1–S5).

(E)-4-((Pyridin-3-ylmethylene)amino)phenyl 4-(hexyloxy)benzoate (T6), yield: 90.7%; mp
111.0 ◦C, FTIR (ύ, cm−1): 2920, 2861 (CH2 stretching), 1719 (C=O), 1602 (C=N), 1463 (C-OAsym),
1259 (C-OSym). 1H-NMR (300 MHz, CDCl3): δ = 0.89 (t, 3H, CH3(CH2)3CH2CH2, J = 7.5 Hz),
1.29–1.46 (m, 6H, CH3(CH2)3CH2CH2), 1.75 (q, 2H, J = 4.8 Hz, CH3(CH2)3CH2CH2), 4.07 (t,
2H, CH3(CH2)3CH2CH2, J = 6.75 Hz), 7.10 (d, 2H, J = 6.6 Hz, Ar-H), 7.32 (d, 2H, J = 6.3 Hz,
Ar-H), 7.39 (d, 2H, J = 5.3 Hz, Ar-H), 7.56–7.84 (dd, 1H, py-H), 8.07 (d, 2H, J = 7.5 Hz,
Ar-H), 8.32 (d, 1H, J = 6 Hz, py-H), 8.72 (d, 1H, J = 2.1 Hz, py-H), 8.77 (s, 1H, py-H),
9.07 (s, 1H, CH=N). 13C-NMR (125 MHz, DMSO-d6, CDCl3): δ = 164.74, 163.71, 159.25,
152.48, 150.94, 149.64, 149.05, 135.46, 132.50 (2C), 131.99 (2C), 124.55, 123.21 (2C), 122.59
(2C), 121.22, 115.15, 68.48, 31.44, 28.93, 25.57, 22.53, 14.37. MS (m/z): 402.49, Anal.Calcd for:
C25H26N2O3: Found (Calc.): C, 74.58 (74.60); H, 6.50 (6.51); N, 6.94 (6.96).

(E)-4-((Pyridin-3-ylmethylene)amino)phenyl 4-(octyloxy)benzoate (T8), yield: 89.0%; mp
78.0 ◦C, FTIR (ύ, cm−1): 2916, 2869 (CH2 stretching), 1710 (C=O), 1594 (C=N), 1462 (C-
OAsym), 1259 (C-OSym). 1H-NMR (300 MHz, CDCl3): δ = 0.88 (t, 3H, CH3(CH2)4CH2CH2CH2,
J = 5.5 Hz), 1.26–1.30 (m, 12H, CH3(CH2)4CH2CH2CH2), 1.43 (q, 2H, J = 7.25 Hz, CH3(CH2)4
CH2CH2CH2), 1.78 (q, 2H, J = 7.25 Hz, CH3(CH2)4CH2CH2CH2), 4.06 (t, 2H, CH3(CH2)4CH2
CH2CH2, J = 6.4 Hz), 7.13 (d, 2H, J = 6.8 Hz, Ar-H), 7.35 (d, 2H, J = 6.6 Hz, Ar-H), 7.41 (d,
2H, J = 5.5 Hz, Ar-H), 7.50–7.54 (dd, 1H, py-H), 8.17 (d, 2H, J = 7.7 Hz, Ar-H), 8.42 (d, 1H,
J = 6.2 Hz, py-H), 8.75 (d, 1H, J = 2.8 Hz, py-H), 8.78 (s, 1H, py-H), 9.09 (s, 1H, CH=N). MS
(m/z): 430.55, Anal.Calcd for: C27H30N2O3: Found (Calc.): C, 73.30 (75.32); H, 7.04 (7.02);
N, 6.50 (6.51).

(E)-4-((Pyridin-3-ylmethylene)amino)phenyl 4-(decyloxy)benzoate (T10), yield: 89.0%; mp
79.0 ◦C, FTIR (ύ, cm−1): 2918, 2871 (CH2 stretching), 1712 (C=O), 1590 (C=N), 1462 (C-
OAsym), 1255 (C-OSym). 1H-NMR (300 MHz, CDCl3): δ = 0.85 (t, 3H, CH3(CH2)6CH2CH2CH2,
J = 5.5 Hz), 1.24–1.40 (m, 12H, CH3(CH2)6CH2CH2CH2), 1.43 (q, 2H, J = 7.3 Hz, CH3(CH2)6
CH2CH2CH2), 1.78 (q, 2H, J = 7.3 Hz, CH3(CH2)6CH2CH2CH2), 4.10 (t, 2H, CH3(CH2)6CH2
CH2CH2, J = 6.0 Hz), 7.11 (d, 2H, J = 5.4 Hz, Ar-H), 7.33 (d, 2H, J = 6.3 Hz, Ar-H), 7.40 (d,
2H, J = 5.4 Hz, Ar-H), 7.57 (d, 1H, J = 7.5 Hz, py-H), 8.00 (d, 2H, J = 6.1 Hz, Ar-H), 8.32 (d,
1H, J = 7.5 Hz, py-H), 8.72 (d, 1H, J = 4.1 Hz, py-H), 8.77 (s, 1H, py-H), 9.09 (s, 1H, CH=N).
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MS (m/z): 562.71, Anal.Calcd for: C29H34N2O3: Found (Calc.): C, 75.97 (75.95); H, 7.45
(7.47); N, 6.09 (6.11).

(E)-4-((Pyridin-3-ylmethylene)amino)phenyl 4-(dodecyloxy)benzoate (T12), yield: 91.3%;
mp 80.0 ◦C, FTIR (ύ, cm−1): 2922, 2873 (CH2 stretching), 1719 (C=O), 1586 (C=N), 1462 (C-
OAsym), 1260 (C-OSym). 1H-NMR (300 MHz, CDCl3): δ = 0.86 (t, 3H, CH3(CH2)8CH2CH2
CH2, J = 5.8 Hz), 1.25–1.254 (m, 16H, CH3(CH2)8CH2CH2CH2), 1.43 (q, 2H, J = 7.1 Hz,
CH3(CH2)8CH2CH2CH2), 1.76 (q, 2H, J = 8.1 Hz, CH3(CH2)2CH2CH8CH2), 4.10 (t, 2H,
CH3(CH2)2CH8CH2CH2, J = 6.4 Hz), 7.11 (d, 2H, J = 5.6 Hz, Ar-H), 7.33 (d, 2H, J = 6.6 Hz,
Ar-H), 7.43 (d, 2H, J = 5.5 Hz, Ar-H), 7.59 (d, 1H, J = 7.7 Hz, py-H), 8.01 (d, 2H, J = 6.3 Hz,
Ar-H), 8.32 (d, 1H, J = 7.6 Hz, py-H), 8.71 (d, 1H, J = 4.8 Hz, py-H), 8.77 (s, 1H, py-H), 9.06
(s, 1H, CH=N). MS (m/z): 590.33, Anal.Calcd for: C31H38N2O3: Found (Calc.): C, 76.50
(76.51); H, 7.77 (7.87); N, 5.78 (5.76).
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Scheme 1. Synthesis of (E)-4-((pyridin-3-ylmethylene)amino)phenyl 4-(alkoxy) benzoate Tn. n = 6, 8, 10, 12, 14 and
16 carbons.

(E)-4-((Pyridin-3-ylmethylene)amino)phenyl 4-(tetradecyloxy)benzoate (T14), yield: 92.0%;
mp 88.0 ◦C, FTIR (ύ, cm−1): 2922, 2881 (CH2 stretching), 1717 (C=O), 1595 (C=N), 1466 (C-
OAsym), 1259 (C-OSym). 1H-NMR (300 MHz, CDCl3): δ = 0.86 (t, 3H, CH3(CH2)10CH2CH2CH2,
J = 5.6 Hz), 1.25 (m, 20 H, CH3(CH2)10CH2CH2CH2), 1.43 (q, 2H, J = 7.7 Hz, CH3(CH2)10CH2
CH2CH2), 1.74 (q, 2H, J = 6.8 Hz, CH3(CH2)10CH2CH2CH2), 4.11 (t, 2H, CH3(CH2)10CH2CH2
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CH2, J = 6.3 Hz), 7.11 (d, 2H, J = 5.1 Hz, Ar-H), 7.35 (d, 2H, J = 6.0 Hz, Ar-H), 7.39 (d, 2H,
J = 5.4 Hz, Ar-H), 7.58 (d, 1H, J = 7.2 Hz, py-H), 8.06 (d, 2H, J = 6.6 Hz, Ar-H), 8.32 (d, 1H,
J = 7.7 Hz, py-H), 8.71 (d, 1H, J = 4.4 Hz, py-H), 8.78 (s, 1H, py-H), 9.08 (s, 1H, CH=N). MS
(m/z): 616036, Anal.Calcd for: C33H42N2O3: Found (Calc.): C, 77.00 (77.01); H, 8.24 (8.23);
N, 5.45 (5.44).

(E)-4-((Pyridin-3-ylmethylene)amino)phenyl 4-(hexadecyloxy)benzoate (T16), yield: 94.0%;
mp 93.0 ◦C, FTIR (ύ, cm−1): 2926, 2879 (CH2 stretching), 1726 (C=O), 1595 (C=N), 1452 (C-
OAsym), 1253 (C-OSym). 1H-NMR (300 MHz, CDCl3): δ = 0.85 (t, 3H, CH3(CH2)12CH2CH2CH2,
J = 5.5 Hz), 1.24–1.40 (m, 24H, CH3(CH2)6CH2CH2CH2), 1.67 (q, 2H, J = 7.5 Hz, CH3(CH2)12
CH2CH2CH2), 1.75 (q, 2H, J = 7.5 Hz, CH3(CH2)12CH2CH2CH2), 4.07 (t, 2H, CH3(CH2)12CH2
CH2CH2, J = 6.2 Hz), 6.58 (d, 2H, J = 5.4 Hz, Ar-H), 6.88 (d, 2H, J = 6.3 Hz, Ar-H), 7.07 (d, 2H,
J = 5.4 Hz, Ar-H), 7.41 (d, 1H, J = 7.5 Hz, py-H), 8.24 (d, 1H, J = 7.5 Hz, py-H), 8.26 (d, 8.86 (d,
1H, J = 4.1 Hz, py-H), 8.87 (s, 1H, py-H), 9.09 (s, 1H, CH=N). MS (m/z): 646.88, Anal.Calcd
for: C35H46N2O3: Found (Calc.): C, 77.44 (77.45); H, 8.53 (8.54); N, 5.15 (5.16).

2.2. Computational Details

The geometry of the Tn compound series studied was fully optimized without geo-
metrical restriction using the GAUSSIAN 09 program (Wallingford, CT 06492 USA) [42].
Frequency calculation was later carried out to establish the convergence nature of the
compounds and all the predicted frequencies were found to be real. Furthermore, both
Frontier molecular orbitals and the molecular electrostatic potential (MEP) surfaces were
generated from the check files (.chk) of optimized molecules. All the calculations were
executed using density functional theory (DFT) by employing the B3LYP method [43,44]
while utilizing 6–31g(d,p) as the basis set.

3. Results and Discussion
3.1. Mesomorphic Behavior

Representative examples of DSC thermograms for derivatives T6 and T14 via both
heating and cooling rounds are illustrated in Figure 1. Designed compounds (Figure 1a,b)
showed two or three endotherm peaks of transitions during the heating cycle and exother-
mic transitions during the cooling round, depending on the number and type of formed
mesophases according to the corresponding length of the attached terminal alkoxy chain.
The POM analysis revealed images which confirmed smectic A and N mesophases (Figure 2)
depending on n. The N phase showed threads/a schlieren image and the SmA phase had
a focal conic fan texture. The synthesized materials have enantiotropic behavior. Results
of the mesomorphic transitions (temperatures, enthalpy and mesophase range) of all the
investigated series (Tn), as measured from DSC analyses, are collected in Table 1. More-
over, the transition temperatures of all samples were graphically illustrated in Figure 3 in
order to investigate the impact of terminal attached flexible chain length on the mesophase
property of the series.
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Figure 1. DSC thermograms of (a) T6 and (b) T14 samples.
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Table 1. Phase transition temperatures (◦C) and (enthalpy of transitions in kJ/mol) of Tn.

Compounds TCr-SmA TCr-N TSmA-N TSmA-I TN-I ∆TSmA-N ∆TSmA ∆TN

T6 110.5
(40.56) - - 164.4 (1.46) - - 53.9

T8 77.8 (34.43) - 101.6 (1.55) - 153.1 (1.23) 23.8 - 51.5

T10 79.3 (37.03) - 118.9 (1.43) - 149.7 (1.31) 39.6 - 30.8

T12 80.4 (55.4) - 131.2 (1.91) - 153.1 (1.44) 50.8 - 21.9

T14 88.9 (53.22) - 137.2 (2.18) - 142.9 (1.74) 48.3 - 5.7

T16 92.9 (57.51) - - 139.5 (2.07) - - 46.6 -

Cr-SmA = crystal to the SmA mesophase; Cr-N = crystal to the N mesophase; SmA-N = SmA to the N mesophase; SmA-I = SmA to the
isotropic mesophase; N-I = nematic to the isotropic mesophase.
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The results presented in Table 1 and Figure 3 revealed that the melting transitions
have an irregular manner with the increasing number of carbons in the terminal chain
(n = 6 to 16). Melting temperatures are related to the polarizability and molecular shape
of the designed compounds [45]. Moreover, all the compounds of the group (Tn) are
enantiotropic with a high good mesomorphic range and thermal stability. For the shortest
chain derivative (T6), it has a monomorphic property exhibiting purely nematogenic
phase. The N mesophase stability and range for T6 are 164.4 and 53.9 ◦C, respectively. By
lengthening the terminal alkoxy chain from n = 6 to 8, the SmA starts to appear and the N
phase stability decreases to 153.1 ◦C together with the N range, which descends to 51.5 ◦C
for T8. Compounds T10, T12 and T14 are also found to be dimorphic, exhibiting SmA
and N mesophases. The SmA range and stability increases with the increasing terminal
length of flexible chain n from 8 to 14 carbons, but the reverse is the case for the N phase
thermal stability and range (Table 1). The resultant phase becomes purely smectogeic in
the compound with the longest chain in the series (T16). Data suggest that T16 derivative
possesses only a monomorphic SmA mesophase with thermal stability and range of 139.5
and 46.6 ◦C, respectively. In general, the stability of the N phase decreases while the
SmA phase increases with increasing terminal chain length [46,47]. The reduction trend in
the N phase thermal transition may be due to the rigid mesogen dilution. Nevertheless,
the production of SmA phase reduced the nematogenic range as the alkoxy chain length
increases. This could be attributed to the increment of the van der Waals forces of attraction
within the long terminal chains that facilitated the lamellar packing for the appearance of
the smectic phase.

The normalized entropy changes (∆S/R) of the produced mesophases were estimated
for all samples and summarized in Table 2. This was found to be independent of the size
of the system as random trend and little magnitudes of the ∆S/R related to the SmA-N,
N-I transitions were observed. However, the observed little values in all materials can
be due to some degree of biaxiality formed by the ester group, which in return decreases
the SmA-N, N-I entropy changes [48–50]. The alteration in the entropy changes with
alkoxy terminal chains may be ascribed to the interactions between molecules, which
are influenced by dipole moment, polarizability, inflexibility, length/breadth proportion
and the structural shape of the molecules. These structural parameters may contribute to
the conformational, translational and orientational entropies of the molecule in different
magnitudes. In spite of the fact that the increment of alkoxy chain length has dilution
impact of core/core interactions, it raises the polarizability of the whole molecule, which in
return increases the intermolecular strengths between adjoining molecules that advances
the degree of molecular ordering. The increment of ∆S/R values with the expansion
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of the carbon numbers in a flexible chain is likely due to the diminishing of the long
orientational arrangement and the increment of the conformational number dispersions at
the mesophase transitions.

Table 2. Normalized entropy changes of transitions for present series Tn.

Compounds ∆SSmA-N/R ∆SSmA-I/R ∆SN-I/R

T6 - - 0.40

T8 0.50 - 0.35

T10 0.44 - 0.37

T12 0.57 - 0.41

T14 0.64 - 0.49

T16 - 0.6 -

3.2. Computational DFT Calculations and Geometrical Parameters
3.2.1. Reactivity Parameters

The reactivity of chemical compounds is usually inferred from the HOMO–LUMO
energy gap (∆E) together with the ionization potential (I.P) and electron affinity (EA) [51,52].
Following the optimization calculation, the reactivity parameters highlighted in Table 3
were computed for the Tn series. The result shows similar chemical reactivity for all the
derivatives as the same values were predicted for the corresponding reactivity indicators.
This suggests that the size of the system does not play a significant role in the reactivity of
the series. However, the polarity of the derivatives seems to be a bit sensitive to the size of
the system as the calculated dipole moment listed in Table 3 and the dipole moment vectors
(x and z directions) portrayed in Figure S6 gradually increased with the increasing alkoxy
chain length. Regarding the Frontier molecular orbital depicted in Figure 4, the similar
HOMO and LUMO distributions recorded for the all the derivatives could be attributed to
the nearly equal corresponding HOMO and LUMO energy levels highlighted in Table 3 [52].
On the part of HOMO, the electron clouds were predicted to be evenly allocated over the
carbon atoms and the π-electrons system of the pyridyl ring and its immediate phenyl as
well as their C=N linkage. Moreover, an appreciable cloud distribution was recorded over
the second phenyl ring carbon and its π-electrons together with the alkoxy oxygen. On the
other hand, the second phenyl ring and the alkoxy oxygen at the LUMO level were found to
be electron deficient while electron clouds distribution only covered the carbon atoms of the
pyridyl and the first phenyl rings as well as their C=N linkage. On the part of the molecular
electrostatic potential (MEP) presented in the Figure 5, the carbonyl oxygen of the ester
linkage in each of the Tn series has high electron density but low electrostatic potential as
reflected by the red cloud over its region [53–55]. Similarly, an appreciable electron density
was observed for the pyridyl nitrogen heteroatom, C=N linkage nitrogen atom and alkoxyl
oxygen of the derivatives. It could be concluded that the kind and the thermal stability of
the formed phases facilitate the molecular space-filling due to the attached terminals that
influence the physical geometrical parameters to enhance the intermolecular attractions
between molecules. Moreover, the high electron density predicted for the carbonyl oxygen
of –OCO- linkage together with the appreciable quantity recorded for that of -C=N- linkage,
as reflected in Figure 5, suggests significant contribution of these linkages to the derivatives’
polarizability, which is an important factor that increases the mesophase thermal stability
of a compound [56,57].
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Table 3. Reactivity and polarity parameters of the Tn series calculated at the B3LYP/6–31g(d,p) level.

Compound EHOMO (eV) ELUMO (eV) ∆E (eV) Dipole Moment
(Debye) I.P (eV) E.A (eV) Polarizability

(Bohr3)

T6 −5.8926 −1.8294 4.0632 4.2156 5.8926 1.8294 333.3200
T8 −5.8902 −1.8286 4.0616 4.2622 5.8902 1.8286 356.7500
T10 −5.8894 −1.8283 4.0610 4.2873 5.8894 1.8283 379.8900
T12 −5.8891 −1.8281 4.0610 4.3020 5.8891 1.8281 402.9000
T14 −5.8888 −1.8281 4.0608 4.3110 5.8888 1.8281 425.8300
T16 −5.8885 −1.8278 4.0608 4.3170 5.8885 1.8278 448.7200
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3.2.2. Energy

The calculated zero-point energy and thermal energy, as well as the thermodynamic
parameters listed in Table 4, were calculated to increase with the size of the derivative
in the series. This result quite agrees with reports in the literature as the energy is an
extensive property [54,55]. According to McMillan relation [58,59] the enthalpy change
associated with the Smectic to nematic transition (Table 1) increases as the width of the N
phase reduces. Theoretically, the predicted enthalpy changes for molecules increase with
the terminal chain length (n). Furthermore, the calculated thermal energy accents to the
thermal stability highlighted for the SmA-N transition of the derivatives in Table 1 were
recorded to increase with size of the system. In the same vein, the predicted entropy is
consistent with the normalized entropy (Table 2) obtained for the Tn series.

Table 4. Zero-point energy, thermal energy and thermodynamic parameters in kcalmol−1 for the
compound Tn series calculated at the B3LYP/6–31g(d,p) level.

Compound ZPE Thermal Enthalpy Gibbs Entropy

T6 289.4371 307.0444 307.6374 248.3823 198.7430
T8 325.2554 344.5532 345.1456 281.8461 212.3080
T10 361.0542 382.0526 382.6449 315.1104 226.5120
T12 396.8505 419.5507 420.1430 348.3339 240.8490
T14 432.6443 457.0482 457.6405 381.5380 255.2480
T16 468.4387 494.5450 495.1380 414.7377 269.6630

4. Conclusions

New mesomorphic pyridyl series’ with -CH=N- and -OCO- connecting linkages,
(E)-4-((pyridin-3-ylmethylene)amino)phenyl 4-(alkoxy) benzoate, were synthesized and experi-
mentally as well as theoretically investigated. Molecular structures were elucidated using
elemental analyses, FT-IR and 1H-NMR spectroscopy. Liquid crystalline activities of pre-
pared derivatives were examined by DSC and POM analyses. Theoretical simulations were
carried out by DFT calculation method.

The study revealed that:

• All designed heterocyclic compounds exhibit good thermal mesomorphic stability
with enantiotropic transitions.

• The N mesophase covers all lengths of the series except the longest chain member
(n = 16) exhibiting purely a smectogenic phase.

• Geometrical simulation parameters of the formed derivatives are highly affected by the
mesomeric nature of the pyridyl moiety and the terminal extremes of alkoxy chains.

• The polarity and polarizability of the investigated derivatives seem to be a bit sensitive
to the length of the designed system.

• The Frontier molecular orbital analysis shows even distribution of electron clouds
over the carbon atoms and the π-electrons system of the pyridyl and phenyl rings
together with C=N linkage at both HOMO and LUMO levels.

• The MEP affirm the carbonyl oxygen of the ester linkage to be of high electron density
but low electrostatic potential.

• The calculated thermal energy accents to the experimental values of thermal stability
were recorded to increase with size of the system.

Supplementary Materials: The following are available online: Figure S1: 1H-NMR spectrum of T6;
Figure S2: 13C-NMR spectrum of T6; Figure S3: 1H-NMR spectrum of T10; Figure S4: 1H-NMR
spectrum of T12; Figure S5: 1H-NMR spectrum of T14; Figure S6: Atomic charges and dipole moment
vectors, calculated at B3LYP/6–31G(d,p) level for the Tn series.
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