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Abstract: Essential oils (EOs) are widely recognized as efficient and safe alternatives for controlling
pest insects in foods. However, there is a lack of studies evaluating the toxicological stability of
botanical insecticides in stored grains in order to establish criteria of use and ensure your efficiency.
The objective of this work was to evaluate the toxicological stability of basil essential oil (O. basilicum)
and its linalool and estragole components for Sitophilus zeamais (Motschulsky) adults in corn grains
by fumigation. The identification of the chemical compounds of the essential oil was performed with
a gas chromatograph coupled to a mass selective detector. Mortality of insects was assessed after
24 h exposure. After storage for six (EO) and two months (linalool and estragole) under different
conditions of temperature (5, 20, and 35 ◦C) and light (with and without exposure to light), its
toxicological stability was evaluated. Studies revealed that the essential oil of O. basilicum and its
main components exhibited insecticidal potential against adults of S. zeamais. For greater toxicological
stability, suitable storage conditions for them include absence of light and temperatures equal to or
less than 20 ◦C.

Keywords: storage; monoterpenes; bioinsecticide; insect pest; toxicity

1. Introduction

Essential oils (EOs) are classified as secondary metabolites produced by various parts
of the plant such as seeds, stems, leaves, and flowers. They are mixtures of volatile, natural
substances, characterized by strong odor and, in most cases, have lipophilic constitution [1].
As they are composed of volatile terpenoids such as monoterpenes (C10) and sesquiter-
penes (C15) and phenylpropenes (derived from the phenyl group junction (aromatic ring)
and a three-carbon side chain (propyl group) [2], which usually originate from various
biosynthesis pathways [3], there are a wide variety of possible applications of essential
oils [4]. Among the current applications of EOs is their use as an alternative to synthetic
insecticides, as EOs have great biocidal potential, presenting insect toxicity [5].

EOs and their compounds are believed to have a higher barrier to pest resistance and
lower risk to human health and environmental contamination compared to conventional
insecticides [6]. Among the essential oils with insecticidal activity is the essential oil of
Ocimum basilicum, aromatic and medicinal plant of the Lamiaceae family [7], composed
mainly of linalool and estragole [8,9].

The toxicity of O. basilcium essential oil has already been proven for Acanthoscelides obtec-
tus (Coleoptera: Chrysomelidae) [10], Rhyzopertha dominica (Coleoptera: Bostrichidae) [11],
Sitophilus zeamais (Coleoptera: Curculionidae) [12], Tribolium castaneum (Coleoptera: Tenebrion-
idae) [13], Zabrotes subfasciatus (Coleoptera: Chrysomelidae) [14], Anopheles funestus (Diptera:
Culicidae) [15] and Sitophilus Oryzae (Coleoptera: Curculionidae) [16]. Because this essential
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oil is mainly composed of linalool and estragole, its toxicity to stored grain pest insects can
be explained by the action of mixed inhibition of the enzyme acetylcholinesterase (AChE)
caused by such compounds, especially when they are applied by fumigation [17,18].

Linalool, the most well-known monoterpene of O. basilicum essential oil, is present
in the essential oil of various medicinal plants, mainly of the Lamiaceae family [19]. It is
insect repellent [20], inhibits the reproduction of Acanthoscelides obtectus (Say) (Coleoptera:
Chrysomelidae) [21] and exhibits larvicidal activity against Culex quinquefasciatus and Aedes
stephensi larvae (Diptera: Culicidae) [22,23].

Estragole, a volatile monoterpenoid ether found in numerous plants [24]. This compo-
nent and its biotransformation products have toxic potential because they are genotoxic,
mutagenic or carcinogenic [25]. Nevertheless, it was considered safe (GRAS—Generally
Recognized As Safe) by FEMA (Flavor and Extract Manufacturer’s Association, 2008) as it
does not pose a risk to human health in small quantities (0.6 mg kg−1 day−1). Estragole
inhibits the growth of Aedes aegipyti (Diptera: Culicidae) larvae and has antiparasitic and
antihelmintic actions [26]. This compound has reported potential insecticide for Oryza-
ephilus surinamensis (Coleoptera: Silvanidae), Lasioderma serricorne (Coleoptera: Anobiidae),
Liposcelis bostrychophila (Psocoptera: Liposcelididae) and Tribolium castaneum (Coleoptera:
Tenebrionidae) [27–31].

Given that O. basilicum EO and its major components linalool and estragole are toxic
to stored grain pest insects and knowing that once deprived of the protective compartmen-
talization of the plant, essential oil constituents are especially prone to oxidative damage,
chemical transformations, or polymerization through enzymatic or chemically triggered
reactions by external factors such as temperature and light [32]. the objective of this work
was to determine the toxicological stability of O. basilicum EO and its linalool and estragole
components on fumigation Sitophilus zeamais in corn grains, after storage as a function of
temperature and luminosity for a period of six (EO) and two months (linalool and estragol).

2. Material and Methods
2.1. Insect Colony

The insects were raised on maize grains with water content of 12.1% (wet basis) under
constant conditions of temperature (25 ± 2 ◦C), relative humidity (70 ± 5%) and scotophase
24 h. For the creation were used 3 L glass vials, closed with perforated plastic lid and
internally coated with organza to allow gas exchange.

2.2. Essential Oil

The essential oil used in the research was acquired through the company Mundo dos
Óleos (Brasília, DF, Brazil). 100% pure and natural oil extracted from O. basilicum leaves by
steam distillation, obtained from selected raw material, to preserve the main properties
of each extracted element, as well as enhance its flavor, color, and aroma characteristics.
All the essential oil used in the research was acquired on the same date, thus belonging
to the same manufacturing batch, in order to avoid interference in the research due to
compositional variability.

2.3. Essential Oil Analysis

The analysis of the chemical composition of the essential oil was performed at the
Department of Chemistry of the Federal University of Viçosa in Viçosa, Minas Gerais, Brazil.
O. basilicum essential oil was analyzed by mass spectrometry coupled gas chromatography
(GC-MS) on a QP2010 model equipment (Shimadzu, Tokyo, Japan) under the following
conditions: fused silica capillary column (30 m in length) and 0.25 mm internal diameter)
with RTX®-5MS stationary phase (0.25 µm film thickness) and helium as a carrier gas with
a flow rate of 1.0 mL/min. Injector temperature of 220 ◦C, the initial column temperature
was 60 ◦C, with programming to increase by 2 ◦C until reaching a temperature of 200 ◦C,
and 5 ◦C until reaching a maximum temperature of 250 ◦C. Mass spectra were obtained by
electron impact at 70 eV, with 29 to 400 (m/z) scan. 1 µL of the prepared oil solution was
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injected at a concentration of 10 mg mL−1 with a split ratio of 1:20. The main constituents
were identified and quantified by their retention index (IR) relative to the hydrocarbon
standard (C7–C30) (99%, Supelco, Bellefonte, PA, USA) and confirmed by comparing the
mass spectrum of the compounds with the NIST 14 spectrotheque.

2.4. Exposure to Temperature and Light Radiation

For the evaluation of the effect of temperature on the stability of the essential oil and
its major compounds, clear glass containers wrapped in foil and properly sealed, 20 mL of
O. basilicum essential oil and 1 mL of each compound were under different temperature
conditions. The flasks were divided into three lots and packaged for six months for EO
and two months for linalool and estragole, in the following environments: refrigerator at
5.0 ± 1 ◦C (low temperature); in an incubator chamber (model 347, CD, Fanem, São Paulo,
SP, Brazil) at a temperature of 20 ± 2 ◦C (average temperature) and an incubator chamber
at a temperature of 35 ± 2 ◦C (high temperature).

For the evaluation of light stability, clear glass vials containing the essential oil and its
linalool and estragole compounds were kept in a B.O.D. (model 347 CD, Fanem, São Paulo,
SP, Brazil) at a temperature of 20 ± 2 ◦C and subjected to light from cold white lamps
(100 W each) (Philips, São Paulo, SP, Brazil) for six months for EO and two months for
linalool and estragole.

2.5. Toxicological Stability

The fumigation bioassays were performed in 0.8 L (8 cm diameter × 15 cm high) glass
vials with 50 non-sexed S. zeamais adults, in four replications. The concentrations of O.
basilicum essential oil stored under different conditions ranged from 8 to 40 µL L−1 of air.
Working solutions of the essential oil were prepared with toluene solvent (Sigma-Aldrich,
99.9%, Baden-Württemberg, Germany) and applied with a microsyringe (Hamilton, Reno,
NV, USA) on 4 mm diameter paper filter discs. 4 cm placed in Petri dishes (6.5 cm diameter).
Petri dishes were covered with organza type tissue and placed at the base of the flasks.
Pure solvent (toluene) was used as a control. The vials were sealed with a screw-on metal
cap and sealed with parafilm (PM996, American, NV, USA) after insect distribution to
prevent oil vapor leakage during the exposure period. The flasks were kept in an incubator
chamber at a temperature of 27 ± 2 ◦C for 24 h. After this period, dead and living insects
were counted. Corrected mortality was calculated by Abbott’s formula [33].

Pure linalool and estragole were purchased from Sigma-Aldrich (Burlington, MA,
USA). Toxicity assays were performed at concentrations ranging from 8 to 40 µL L−1. Each
filter paper disc (4.4 cm) was treated with 25 µL of toluene diluted linalool and estragole
solution and placed in a Petri dish (6.5 cm in diameter), covered with organza and inserted
into the base of glass pots with a capacity of 0.8 L. A total of 50 non-sexed adults were
placed by pot to expose the insects to the fumigant activity of the compounds for 24 h.
Each treatment consisted of four repetitions. As a control 25 µL of pure toluene was used.

2.6. Statistical Analysis

Toxicity data were subjected to probit analysis using SAS software (SAS Institute, Cary,
NC, USA), generating concentration-mortality curves. Mortality data were submitted to
ANOVA and Tukey test with Statistica 8 software (StatSoft Inc., Tulsa, OK, USA).

3. Results and Discussion
3.1. Essential Oil Composition

The relative chemical composition of the essential oil compounds of O. basilicum leaves
were performed by GC-MS. The major constituents were identified by their retention index
(RI) relative to a homologous series of n-alkanes and confirmed by comparing the mass
spectrum of the compounds with the NIST 14 spectrotheque. Chromatographic analysis
showed that estragole (H2C=CHCH2C6H4OCH3) and linalool ((CH3) 2C=CHCH2CH2C
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(CH3)(OH)CH=CH2) were the major components of O. basilicum essential oil (Figure 1),
representing 85% and 12% of the identified compounds, respectively.
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Figure 1. Chromatogram of Ocimum basilicum essential oil (10 mg mL−1 in toluene).

These compounds are responsible for most of the composition of this essential oil [8,9].
Generally, linalool and estragole are the major components of O. basilicum EO, but fac-
tors such as soil type, altitude, temperature, insolation period, cultivation, drying condi-
tions and storage influence its composition [31], explaining variations in the amount of
the compounds.

3.2. Toxicological Stability of Essential Oil

The Probit model was adequate for the concentration-mortality data of all fumigation
treatments, based on the low χ2 value and the high p value obtained from the O. basilicum
essential oil curves stored under different conditions and their components. linalool and
estragole over S. zeamais. For the untreated essential oil, the values of χ2 = 0.14 and
p = 0.98 were obtained. Lethal concentrations to cause 50 and 95% insect mortality (LC50
and LC95) were 25.4 µL L−1 and 178.4 µL L−1 of air, respectively (Table 1). The slope of the
curve was (1.94 ± 0.37), which indicates genetic homogeneity among individuals of the
S. zeamais population.

Table 1. Lethal concentrations of Ocimum basilicum essential oil stored under different conditions and their major components
for fumigation Sitophilus zeamais.

Components LC50 (FI 95%)
(µL L−1 of Air)

LC95 (FI 95%)
(µL L−1 of Air)

Inclination
(±MSE 1) χ2 (df ) p

Essential oil 25.4 (23.1–28.6) 178.4 (161.2–196.2) 1.94 ± 0.37 0.14 (7) 0.98
EO at 5 ◦C 25.7 (23.7–29.1) 172.3 (154.3–187.2) 1.99 ± 0.37 0.09 (7) 0.99
EO at 20 ◦C 25.8 (24.1–30.6) 151.3 (139.4–192.3) 2.13 ± 0.38 0.85 (7) 0.83

LC = Lethal Concentration (µL L−1 of air); FI = Fiducial Interval; MSE 1 = Mean square error; χ2 = Chi square; p = Probability; df = degrees
of freedom; EO = Essential oil.

O. basilicum EO was lethal to S. zeamais by fumigation [34], but the effectiveness of
essential oils depends on factors such as dose or concentration, insect species, application
surface, penetration pathway, method of application and composition of oil, season, eco-
logical conditions, method and extraction time, plant part and storage conditions [35,36].
Both the untreated EO and the EO stored under different temperatures (5 and 20 ◦C) and
exposed to light for a period of six months had lower LC50 when applied by fumigation.

The LC50 value of untreated O. basilicum essential oil when applied by fumigation
(25.4 µL L−1 air) was lower than that of Minthostachys verticillata (28.2 µL L−1 air) and
Eucalyptus globulus essential oil (335.7 µL L−1 of air) [37] and higher than Melaleuca al-
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ternifolia essential oil (7.7 µL L−1 of air) for S. zeamais [38]. The fumigant activity of O.
basilicum EO on S. zeamais can be explained by the fact that monoterpenoids inhibit the
acetylcholinestrase (AChE) nerve conduction enzyme [37]. In addition, studies have shown
that essential oils can significantly inhibit the activity of two detoxifying enzymes in S.
zeamais, glutathione S-transferase (GST) and carboxylesterase (CarE), as well as negatively
regulating differentially expressed genes (DEGs) in response to fumigation [37].

O. basilicum EO caused higher mortality of S. zeamais when compared to the negative
control, showing that it has higher fumigant activity (Figure 2). The O. basilicum EO
stored at 5 to 20 ◦C and without storage, differed statistically from each other in only three
concentrations (8; 16 and 40 µL L−1 of air), indicating that temperatures up to 20 ◦C do
not interfere significantly on the toxicological stability of EO for S. zeamais adults when
stored for six months. When comparing the EO without storage and EO stored at 35 ◦C
and in light exposure, there was a statistical difference in all concentrations (Figure 2). The
EO stored at 35 ◦C was more stable than the EO stored in light exposure, causing higher
mortality of S. zeamais adults, which shows that light exposure decreases the toxicity of O.
basilicum EO on S. zeamais.
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major components for Sitophilus zeamais. Means followed by the same letter in the column do not differ at 5% probability by
Tukey test.

When comparing the untreated EO and the EO stored at 35 ◦C in the fumigation
applications, there was a statistical difference in all concentrations (Figures 2 and 3). This
indicates that storage at high temperatures for a period of six months affects its toxicological
stability on S. zeamais adults. The temperature plays a crucial role in the degradation process
of essential oils, which directly affects their stability. This decisively influences the stability
of the essential oil in several respects [38]. Generally, chemical reactions accelerate with
increasing heat due to temperature dependence of the reaction rate, as expressed by the
Arrhenius equation [39]. Based on this, Van’t Hoff’s law states that a temperature increase
of 10 ◦C doubles chemical reaction rates, a ratio that can be consulted to predict stability at
different temperatures [40].
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Increasing temperature advances the self-oxidation and decomposition processes
of hydroperoxides, as heat can contribute to free radical formation [41]. Essential oils
vary in their susceptibility to self-oxidation at different storage temperatures. In general,
monitoring of volatile plant extracts and essential oil composition demonstrates that
stability decreases with prolonged storage time, as well as a temperature rise from 0 to
28 ◦C [42], 4 to 25 ◦C [43] and 23 to 38 ◦C [44].

There was a statistical difference between the untreated EO and the EO stored in light
exposure at all concentrations (Figures 2 and 3). This indicates that six-month storage
in light exposure affects its toxicological stability in S. zeamais adults. This is possibly
due to the presence of ultraviolet light (UV) and visible light (Vis) being responsible for
accelerating the self-oxidation processes in the essential oils, triggering what results in free
radical formation [44]. Auto-oxidation involves a succession of chemical reactions that
alter the initial composition of the oil, leading to the production of low molecular weight
compounds and oxidized polymers, as well as the destruction of important fatty acids and
the formation of other compounds, compromising their stability [42].

Comparison of EO stored at 35 ◦C and in light exposure shows that the toxicological
stability of O. basilicum EO over S. zeamais was most affected by storage in light exposure.
The light is much more important than temperature in the oxidation of essential oils [42],
although the effect of light on oil oxidation is lessened with increasing temperature [45].
The effect of sunlight for 2 h caused degradation of the quality of ginger oil, while it
remained stable when stored in the dark for the same period of time [46].

Processing and storage of oils in exposure to light can lead to the generation of a wide
range of undesirable compounds, some of which are harmful to health because of their
high toxicity, thereby altering their stability [47]. Among the components of essential oils,
monoterpenes have been shown to degrade rapidly under the influence of visible light [48].
The same study also showed that there were transformation reactions in marjoram oil
during storage under visible light, which led to the formation of several unidentified
elements and smaller components.
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3.3. Toxicological Stability of Linalool and Estragole

The Probit model was adequate for concentration-mortality data, based on the low
χ2 values and the high p values obtained on the linalool and estragole curve stored under
different conditions over S. zeamais. For untreated linalool, the values of χ2 = 5.57 and
p = 0.34 were obtained. Lethal concentrations to cause 50% and 95% insect mortality (LC50
and LC95) were 34.6 µL L−1 and 330.3 µL L−1 of air, respectively (Table 2). The slope of the
curve was (1.67 ± 0.22), which indicates genetic homogeneity among individuals of the
S. zeamais population.

Table 2. Lethal concentrations of linalool stored under different conditions for fumigation Sitophilus zeamais.

Components LC50 (FI 95%)
(µL L−1 of Air)

LC95 (FI 95%)
(µL L−1 of Air) Inclination (±MSE 1) χ2 (df ) p

Linalool 34.6 (31.6–41.2) 330.3 (269.8–463.6) 1.67 ± 0.22 5.57 (5) 0.34
Linalool at 5 ◦C 33.9 (30.7–42.1) 339.3 (301.3–498.9) 1.64 ± 0.22 6.07 (5) 0.29
Linalool at 20 ◦C 39.4 (33.5–48.3) 382.7 (365.2–529.8) 1.51 ± 0.22 6.91 (5) 0.22
Linalool at 35 ◦C 132.4 (110.3–198.7) 495.6 (427.5–612.6) 1.39 ± 0.19 1.56 (5) 0.98
Linalool exposed to light 178.9 (152.4–215.6) 534.2 (518.3–725.5) 1.53 ± 0.23 1.84 (5) 0.96

LC = Lethal Concentration (µL L−1 of air); FI = Fiducial Interval; MSE 1 = Mean square error; χ2 = Chi square; p = Probability; df = degrees
of freedom.

Linalool caused higher mortality of S. zeamais adults when compared to the negative
control, showing that it has higher fumigant activity (Figure 3). Studies have shown that
essential oil components are able to inhibit cellular respiration enzymes, nervous system
enzymes such as acetylcholinesterase (AChE), and detoxification system enzymes such as
P450 and esterase [49], which weakens the insecticide metabolism in insects. Linalol acts
together with other compounds in the cholinergic system of insects, promoting the rapid
breakdown of the nervous system [50]. Linalool stored at 5 to 20 ◦C and without storage
differed statistically from each other in only two concentrations (36 and 40 µL L−1 of air),
indicating that temperatures up to 20 ◦C do not significantly affect its toxicological stability
for adults of S. zeamais during storage for two months. When comparing non-stored linalool
and linalool stored at 35 ◦C and in light exposure, there was a statistical difference in all
concentrations except one (8 µL L−1 of air) (Figure 3). Linalool stored at 35 ◦C was more stable
than linalool stored in light exposure, causing higher mortality of S. zeamais adults, which
shows that light exposure is more detrimental to linalool stability than temperature increase.

For untreated estragole, the values of χ2 = 5.48 and p = 0.35 were obtained. Lethal
concentrations to cause 50% and 95% insect mortality (LC50 and LC95) were 38.13 µL L−1

and 314.01 µL L−1 of air, respectively (Table 3). The slope of the curve was (1.79 ± 0.22),
which indicates genetic homogeneity among individuals of the S. zeamais population.

Table 3. Lethal concentrations of estragole stored under different conditions for Sitophilus zeamais by fumigationis.

Components LC50 (FI 95%)
(µL L−1 of Air)

LC95 (FI 95%)
(µL L−1 of Air)

Inclination
(±MSE 1) χ2 (df ) p

Estragole 38.1 (35.6–45.7) 314.0 (298.3–465.6) 1.79 ± 0.22 5.48 (5) 0.35
Estragole at 5 ◦C 37.2 (34.3–43.8) 305.4 (287.1–419.4) 1.79 ± 0.22 6.08 (5) 0.29
Estragole at 20 ◦C 41.0 (38.9–49.2) 335.0 (303.5–490.2) 1.80 ± 0.23 4.38 (5) 0.49
Estragole at 35 ◦C 56.5 (47.5–63.4) 395.2 (347.6–511.5) 1.94 ± 0.25 3.44 (5) 0.63
Estragole exposed to light 53.6 (45.9–61.3) 362.1 (323.7–501.7) 1.98 ± 0.17 6.96 (5) 0.43

LC = Lethal Concentration (µL L−1 of air); FI = Fiducial Interval; MSE 1 = Mean square error; χ2 = Chi square; p = Probability; df = degrees
of freedom.

Estragole caused higher mortality of S. zeamais adults when compared to the negative
control, showing that it has higher fumigant activity (Figure 4). Estragole stored at 5 to
20 ◦C and without storage differed statistically from only one concentration (32 µL L−1 of
air), indicating that temperatures up to 20 ◦C do not significantly affect its toxicological
stability for adults of S. zeamais during storage for two months. Comparing estragole
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without storage and linalool stored at 35 ◦C and in light exposure, there was a statistical
difference in all concentrations, indicating that the increase of storage temperature decreases
the toxicity of estragol for adults of S. zeamais (Figure 4). Estragole stored at 35 ◦C differed
statistically from estragole stored in light exposure by only one concentration (16 µL L−1

of air), which shows that both treatments decrease the toxicity of estragole for S. zeamais
adults to the same extent.
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Linalool LC50 and LC95 increased from 34.56 to 132.4 µL L−1 of air and from 330.3 to
495.6 µL L−1 of air respectively when stored at 35 ◦C for two months. The same occurred
with estragol LC50 and LC95 which increased from 38.1 to 56.5 µL L−1 of air and from 314.0
to 395.2 µL L−1 of air, respectively. This shows that storage at 35 ◦C decreases the toxicity
of this compound for S. zeamais adults. This can be explained by the fact that temperature
directly influences the stability of volatile compounds [41]. Generally, chemical reactions
accelerate with increasing heat due to temperature dependence of the reaction rate, as
expressed by the Arrhenius equation [42]. Terpenoids, especially terpenes and aldehydes,
are known to be susceptible to rearrangement processes at elevated temperatures. Terpenic
conversion reactions by heating have been reported for both isolated compounds [51,52]
and for essential oils [53]. Mircene, for example, suffered degradation as it was exposed
to higher storage temperatures for 120 days. The initial percentage of mircene fell from
17.38% (6 ◦C) to 3.99% at 37.5 ◦C [54].

In this work, the comparison between linalool stored at 35 ◦C and stored at 20 ◦C in
light exposure shows that it was more toxicologically stable on S. zeamais when exposed to
35 ◦C, indicating that light exposure is more detrimental to the stability of linalool than
increase in temperature. This is because some monoterpenes are more thermodynamically
stable while others demonstrate rapid degradation under the influence of visible light [50].
Linalol, for example, is 5.9 kJ mol −1 more stable than geraniol [55].

In contrast to linalool, the toxicological stability of estragole on S. zeamais was more
affected by increased storage temperature (35 ◦C) than by exposure to light. This can



Molecules 2021, 26, 6483 9 of 11

occur due to the evaporation process of low boiling compounds, mainly hydrocarbons and
sesquiterpenes [56].

There was no significant difference between linalol and estragole stored at 5 and
20 ◦C, which shows that they can be stored in this temperature range for two months
without decreasing their toxicological stability on S. zeamais. Three temperatures (4 ◦C
in a cold room, −20 ◦C in a freezer and 25 ◦C at room temperature) were used to assess
the stability of Thymus daenensis essential oil for three months [57]. The results indicated
that at room temperature, the amounts of thymol and carvacrol increased considerably
by 26.6% and 23% after 3 months, respectively. The increase in thymol and carvacrol by
storage at room temperature represents an increase in oil quality index. In addition, oil
compositions exhibited the smallest changes and maintained primary quality when stored
at low temperatures, particularly at 20 ◦C [57].

4. Conclusions

The essential oil of O. basilicum and its linalool and estragole components components
exhibited insecticidal potential against S. zeamais adults in corn grains by fumigation.
Increasing temperature (35 ◦C) and exposure to light during storage negatively affects
the stability of O. basilicum EO, reducing its toxicity against S. zeamais. Aiming at the
higher toxicity of O. basilicum EO to S. zeamais, the storage conditions suitable for it are at
temperatures of maximum 20 ◦C and without exposure to light.
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