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Abstract: The elucidation of the structure of enzymes and their complexes with ligands continues to
provide invaluable insights for the development of drugs against many diseases, including bacterial
infections. After nearly three decades since the World Health Organization’s (WHO) declaration of
tuberculosis (TB) as a global health emergency, Mycobacterium tuberculosis (Mtb) continues to claim
millions of lives, remaining among the leading causes of death worldwide. In the last years, several
efforts have been devoted to shortening and improving treatment outcomes, and to overcoming
the increasing resistance phenomenon. The structural elucidation of enzyme-ligand complexes is
fundamental to identify hot-spots, define possible interaction sites, and elaborate strategies to develop
optimized molecules with high affinity. This review offers a critical and comprehensive overview of
the most recent structural information on traditional and emerging mycobacterial enzymatic targets.
A selection of more than twenty enzymes is here discussed, with a special emphasis on the analysis
of their binding sites, the definition of the structure–activity relationships (SARs) of their inhibitors,
and the study of their main intermolecular interactions. This work corroborates the potential of
structural studies, substantiating their relevance in future anti-mycobacterial drug discovery and
development efforts.

Keywords: tuberculosis; structure-based drug design; fragment-based drug design; Mycobacterium
tuberculosis; structure–activity relationships (SARs)

1. Introduction

Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB), is the most
devastating human pathogen, as confirmed by the latest TB Report published in October [1].
The protracted antibiotic therapy, even if cheap and with high cure rates among treated
patients, presents a number of negative factors and is hindered by many issues, including
the phenomenon of persistence, the drug resistance, and the co-infection with HIV. Once
inhaled into the lungs, the bacterium is phagocytosed by macrophages, where it encounters
an environment limited in many nutrients, such as sugars and amino acids. Under these
nutritionally limited conditions, enzymes essential for the growth and the survival of Mtb
represent attractive targets for the design of new potential drugs.

Considering the increasing difficulty of modern-day drugs to effectively tackle TB,
many researchers are directing their efforts toward the discovery of new medicines.

Understanding enzyme inhibition processes can help conceptualize different types of
inhibitors and characterize potential anti-mycobacterial pathways/mechanisms. Exploiting
the structural information allows the thorough evaluation of diverse compounds, providing
the knowledge required to efficiently optimize leads toward differentiated candidate drugs.
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Here, we report an update on the latest structural studies (2018–present) performed to
elucidate the inhibition mechanisms of novel antitubercular agents against validated Mtb
target enzymes. Our work complements previous overviews of crystallographic structures
relevant for anti-TB drug discovery [2,3].

This compendium will hopefully prove useful in providing inspiration for the design
and development of new antitubercular agents, highlighting valuable data to be combined
with complementary medicinal chemistry approaches.

2. Mtb Enzymatic Targets

A selection of structural studies (2018–present) on chemical entities exhibiting anti-
TB properties and acting on specific Mtb enzymes is here reported with the intent to
highlight the most promising candidates and their key contacts within the binding site
of the target. The understanding of the ligand-enzyme interaction is fundamental to
rationalize medicinal chemistry efforts in the discovery and development of new drugs,
to predict potential off-target interactions with human counterparts, and to evaluate the
likelihood of possible transfers of resistance factors among bacteria.

2.1. Isocitrate Lyase 1 (ICL1)

Fatty acids have been shown to be a major source of carbon and energy for Mtb in
clinically infected lungs. Two catabolic pathways have been described for their utilization:
the β-oxidation cycle and the glyoxylate shunt. The glyoxylate shunt circumvents the
loss of two carbon dioxides from the tricarboxylic acid (TCA) cycle, thereby permitting
the net incorporation of carbon into cellular structures during growth on acetate. This
mechanism is widespread among prokaryotes, lower eukaryotes, and plants but it is absent
in vertebrates. The glyoxylate shunt is particularly important for the persistence of various
infectious agents, including Mtb. Interestingly, an upregulation of isocitrate lyases (ICL,
isoform 1 and 2) has been observed in bacteria and fungi during infection [4]. ICLs are key
enzymes converting isocitrate/methylisocitrate to glyoxylate/pyruvate and succinate in
the glyoxylate shunt and methylcitrate cycle, respectively (Scheme 1) [5]. Hence, because
ICLs play a crucial role in both persistence and virulence, they can be considered ideal
targets for the development of new anti-TB agents [4]. 
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Scheme 1. Reversible lysis reaction catalyzed by ICLs in the glyoxylate shunt: conversion of iso-
citrate to glyoxylate and succinate. 

  

Scheme 1. Reversible lysis reaction catalyzed by ICLs in the glyoxylate shunt: conversion of isocitrate
to glyoxylate and succinate.

For this purpose, the 3D structures of Mtb ICL1 in the apo form (PDB: 1F61) and in
complex with the inhibitors 3-bromopyruvate (1), 3-nitropropionate (2), and itaconate (3)
(Figure 1) were studied by means of X-ray diffraction (XRD). In the host, 3 is synthesized by
decarbonylation of cis-aconitate upon activation of immune cells [6]. Despite the enzyme
acts as a tetramer, it is also stable in solution as a dimer. The monomeric structure of ICL1
consists of sixteen α-helices, five 310-helices, twelve β-strands, and several loops; the active
sites are located near the interface of the two subunits.
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Figure 1. Chemical structure of compounds 1–3. 

  

Figure 1. Chemical structure of compounds 1–3.

The inhibition mechanism of 1 is based on a dehalogenation, followed by the formation
of a covalent adduct with the active site nucleophile Cys191; supposedly, this modification
produces conformational changes in the L5 loop and C-terminal tail, ultimately leading
to the closure of the binding region. The most recent structure of ICL1 in complex with
3 (IC50 = 420 µM) showed that the inhibitor was bound to the active site of the enzyme
(Figure 2, PDB: 6XPP). In detail, the hydrogen bonding interactions between the carboxylate
moieties of the inhibitor and Asn313, Ser315, Ser317, Thr347, Arg228, and Mg2+ were found
to be essential for the binding. Adding hydrophobic, aromatic, and polar moieties to the
alkene of 3 significantly lowered the inhibition potency, suggesting that its proximity to
Cys191 is a prerequisite for the covalent interaction to occur. The crystal structure of the
ICL-3 complex revealed that the enzyme was in its closed conformation, consistently with
previous data. This finding confirmed that the binding of the compound to the active site
is crucial to induce conformational changes in regions that control access to the binding
pocket [7].
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Figure 2. Crystal structure of 3 in complex with ICL1 (PDB: 6XPP). The ligand and interacting resi-
dues are represented as green and cyan sticks, respectively. The Mg2+ ion is shown as a golden 
sphere, while ordered water molecules are visualized as blue spheres. 

  

Figure 2. Crystal structure of 3 in complex with ICL1 (PDB: 6XPP). The ligand and interacting
residues are represented as green and cyan sticks, respectively. The Mg2+ ion is shown as a golden
sphere, while ordered water molecules are visualized as blue spheres.

The crystallographic information provided important insights into the mechanism
of ICL1, suggesting that the itaconate scaffold can be utilized to develop new selective
inhibitors, branching out at the C3 position of 3 to fill the spacious pocket occupied
by glyoxylate.

2.2. Methylmalonyl-CoA Mutase (MCM)

Mycobacterial B12-dependent methylmalonyl-CoA mutase (MCM) catalyzes the re-
versible isomerization of methylmalonyl-CoA (M-CoA) to succinyl-CoA via a 5′-deoxyadeno
-sylcobalamin (AdoCbl)-dependent radical mechanism (Figure 3).
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Figure 3. Mtb pathways targeted by 4.

The coenzyme A (CoA) derivative of 3, itaconyl-CoA (I-CoA, 4), is a suicide inacti-
vator of the human and mycobacterial MCMs. Because MCM plays an essential role in
lipid breakdown, inhibition studies on this enzyme have recently been reported [8]. The
mechanisms underlying 4-mediated MCM inhibition were studied through the EPR and
MS analyses of the reaction products between the 5′-deoxyadenosyl radical (dAdo•) and
4. The authors concluded that dAdo• added to the double bond of 4 affording a tertiary
carbon radical, stabilized by delocalization onto the adjacent carboxylate (Scheme 2).
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Scheme 2. Reaction between dAdo• and 4.

A crystallographic study of AdoCbl-MCM complexed with 4 allowed to characterize
the binding between the enzyme and the inhibitor (Figure 4). In the native heterodimeric
structure, AdoCbl inserted its dimethylbenzimidazole tail in a side pocket, while His265
served as the lower axial ligand. On the opposite face, the 5′-carbon of dAdo was 2.5 Å
away from the cobalt atom; the adenine was coplanar with the corrin ring and oriented
above the pyrrole rings. The binding of 4 induced a large conformational change in the
AdoCbl α unit, which collapsed around the binding pocket.

The authors concluded that the homolysis of the cobalt-carbon bond in AdoCbl
generated dAdo• and a spectator cobalamin radical; compound 4 triggered this cleavage,
mimicking a normal catalytic cycle, but proximity effects promoted suicidal addition of
dAdo• to its double bond.

The demonstration that 4 is an inhibitor of MCM is consistent with the reported
observation that the incidence of active TB is markedly lower in patients affected by
pernicious anemia, which causes B12 deficiency [9].
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Figure 4. Superimposition of the active sites of native MCM (green, PDB: 6OXC) and of its complex 
with 4 (cyan, PDB: 6OXD). The ligands are represented as colored sticks. 

  

Figure 4. Superimposition of the active sites of native MCM (green, PDB: 6OXC) and of its complex
with 4 (cyan, PDB: 6OXD). The ligands are represented as colored sticks.

2.3. Fumarate Hydratase

Fumarate hydratase (fumarase), a component of the citric acid cycle, is essential
for Mtb survival. This enzyme catalyzes the reversible hydration of fumarate to malate
(Scheme 3), and its depletion has been linked to an impaired mycobacterial growth due to
the accumulation of fumarate, which reacts with cysteine thiols. The resulting oxidative
stress causes the death of the microorganism both in vitro and in vivo. Unfortunately,
targeting fumarase poses a significant challenge because the protein is highly evolutionarily
conserved. In particular, the human and Mtb homologs share identical active site residues,
as well as a 53% overall sequence identity.
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Scheme 3. Reversible lysis reaction catalyzed by fumarase.

The mycobacterial enzyme is a 210 kDa class-II fumarase, featuring a homotetrameric
structure. Each subunit is characterized by an N-terminal domain (residues 1–137), a
central domain (residues 138–393), and a flexible C-terminal domain (residues 394–474).
The protein has four active sites, located in a cleft formed by three subunits, and covered
by a loop that allows the switch between “open” and “closed” states.

In 2016, the discovery of an inhibitor, compound 5 (IC50 = 2.5 µM), was reported [10].
The selectivity of the molecule was due to its binding to an allosteric pocket, composed
of unconserved residues located on two C-terminal domains of the fumarase tetramer
(Figure 5).

Despite 5 did not exhibit bactericidal activity, it was able to inhibit the growth of the
mycobacterium; hence, additional investigations were carried out in 2019 by the same re-
search group [11]. In detail, 5 was deconstructed into “fragment-like” molecules, affording
a library of compounds with a molecular weight in the range 204–326 Da. However, this
defragmentation approach proved to be unsuccessful, as evidenced by both biochemical
assays and differential scanning fluorimetry (DSF) tests. Therefore, a traditional structure–
activity relationship (SAR) study was undertaken. A series of compounds, resulting from
modifications of the different moieties of 5, was prepared and screened against the en-
zyme. The authors identified two benzoazepanyl derivatives, 6 and 7, showing a three-fold
stronger inhibition compared to 5, and a set of compounds (8–12, Figure 6) endowed with
a measurable minimal inhibitory concentration (MIC) against Mtb in vitro (6.3–9 µM in
7H9/DPPC). All derivatives maintained the dimeric binding mode to the allosteric site of
the enzyme, as confirmed by XRD. These encouraging results confirm the importance of
fumarase as a target for the development of bacteriostatic compounds against TB.
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Figure 5. On the left, depiction of the X-ray crystal structure of the fumarase-5 complex (PDB: 5F91). 
The four chains are evidenced in different colors, and the two bound inhibitors are represented as 
magenta spheres. On the top right, expansion of the binding site, showing the ligand as magenta 
sticks. Interacting residues are represented as yellow and light-blue sticks depending on the chain 
to which they belong. On the bottom right, chemical structure of 5. 

  

Figure 5. On the left, depiction of the X-ray crystal structure of the fumarase-5 complex (PDB: 5F91).
The four chains are evidenced in different colors, and the two bound inhibitors are represented as
magenta spheres. On the top right, expansion of the binding site, showing the ligand as magenta
sticks. Interacting residues are represented as yellow and light-blue sticks depending on the chain to
which they belong. On the bottom right, chemical structure of 5.
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Figure 6. Chemical structure of compounds 6–12.

2.4. Enoyl-Acyl Carrier Protein Reductase (InhA)

Enoyl-acyl carrier protein reductase (InhA) catalyzes the reduction of trans-2-enoyl-
acyl carrier protein (trans-2-enoyl-ACP) in the mycobacterial fatty acid biosynthetic path-
way (Scheme 4). This enzyme is the target of isoniazid, a frontline antitubercular drug,
which acts by forming a covalent adduct with NAD.



Molecules 2021, 26, 7082 7 of 43

Molecules 2021, 26, x FOR PEER REVIEW 4 of 19 
 

 

 

 
Scheme 4. InhA-catalyzed reduction of trans-2-enoyl-ACP. 

  

Scheme 4. InhA-catalyzed reduction of trans-2-enoyl-ACP.

The kinetic parameters are important characteristics of a drug. Equilibrium prop-
erties (Kd and IC50) are usually used to predict the in vivo efficacy, but variations in the
concentrations, for example of the inhibitor, must be considered too. Residence time, the
reciprocal of the dissociation rate constant, represents the “lifespan” of an enzyme–inhibitor
complex. Previous studies [12,13] showed that the active site loop of InhA undergoes an
isomerization from a closed state to an open one in the course of the catalytic process, and
that the residence time of ligands can be increased by tailoring their interactions during the
isomerization event. Different approaches have been employed over the years to identify
direct InhA inhibitors. Moreover, the increasing spread of isoniazid-resistant isolates has
forced the scientific community to envisage new strategies to bypass these adaptation
mechanisms. In this respect, fragment-based drug design (FBDD) has been considered by
different research teams. In 2018, Prati and collaborators screened 1360 fragments against
the NADH-bound form of InhA, using an 1H NMR technique (saturation transfer differ-
ence, STD) [14]. The 149 selected fragments were submitted to a biochemical assay and,
among the 32 compounds showing a potential activity, 15 were selected for crystallographic
studies. Six fragments (Figure 7) afforded crystals suitable for structure determination. The
InhA-NADH cocrystal structures of fragments 17 and 18 revealed additional interactions
with InhA compared to other fragments [14]. The incorporated functional groups allowed
an easy elaboration to afford optimized InhA inhibitors.
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Figure 7. Fragments 13–18 from which cocrystal structures were obtained.

More recently, a similar approach based on a virtual screening (VS) supported by
biological assays was published [15]. Sixteen compounds were selected and subjected to
in vitro tests; among them, two compounds, 19 and 20, proved to be active against Mtb
(Figure 8).
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The binding mode of the most potent compound 20 was investigated by X-ray crystal-
lography (Figure 9).
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Figure 9. Compound 20 bound to the active site of InhA (PDB: 6R9W). The ligand and interacting
residues are represented as green and cyan sticks, respectively. The NAD cofactor is shown as
pink sticks.

Compound 20 bound the InhA active site in a hydrophobic pocket, with its hydroxyl
group forming a hydrogen bond with the backbone carbonyl oxygen of Ala211. This study
also allowed to establish that the side chain of Tyr158 was in the “in” orientation. This
conformation was associated with the ternary InhA complex (substrate/cofactor-bound
form), whereas the “out” conformation was associated with the binary InhA complex
(cofactor-bound form). The inhibitor was located at some distance from the NAD+ cofactor,
with the benzimidazole group neighboring the NAD+ nicotinamide ring and the diphos-
phate group. Interestingly, the binding mode of 20 was different from that of most of the
other inhibitors: it replicated the interaction of the substrate acyl chain at a site distant from
the catalytic center and the NAD+ binding site. This similarity with the substrate binding
justified further studies and optimization.

In 2020, a new FBDD study was undertaken with the aim of finding novel InhA
inhibitors: a three-stage screening (thermal shift, ligand-based NMR, and X-ray crystal-
lography) led to the identification of several promising fragment hits (some of them are
shown in Figure 10, 21–25) [16].
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Figure 10. Chemical structure of compounds 21–25.

Starting from a library of 200 molecules, a thermal shift assay was used to test the
potential inhibitors in the presence of NAD+ and triclosan (positive control). Then, the
selected hits were examined by ligand-based NMR techniques. The 18 hits validated by
NMR were co-crystallized with InhA, and the X-ray diffraction data were collected. The
binding pockets of InhA were classified by these authors into three distinct sites, endowed
with different properties: site I, the catalytic site, site II, a hydrophobic region that binds
fatty acid chains, and site III, a solvent-exposed site known as the size-limiting region. The
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X-ray crystal structures included the NAD+ cofactor and the compounds, which occupied
the same area as the substrate (sites I and II). Interestingly, the crystal structure of InhA in
complex with 21 did not show Tyr158 in the usual “in” configuration, probably because
the residue was involved in a π-π stacking interaction with the compound, which was
sandwiched between it and Phe149 (PDB: 6SQ9).

Overall, the structural information allowed to perform fragment optimization, which
led to increased inhibitory activities against InhA. However, the effects on the enzyme
were not reflected in high antitubercular activities, suggesting that these compounds had
permeability issues or were metabolized.

2.5. Dihydrofolate Reductase (DHFR)

The folate biosynthetic pathway regulates the production of reduced folate cofactors,
essential for the de novo synthesis of methionine purines and deoxythymidine monophos-
phate (dTMP). The dihydrofolate reductase (DHFR) catalyzes the reduction of dihydrofolate
(DHF) to tetrahydrofolate (THF), using NADPH as the reducing agent (Scheme 5).
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Scheme 5. Catalytic activity of the DHFR enzyme.

Current Mtb DHFR inhibitors either show poor potency or fail to block the growth of
the pathogen, most likely due to a lack of permeability.

In 2019, Hajian and collaborators reported the screening of a class of “ionized non-
classical antifolates” (INCAs, Figure 11) versus DHFR [17].
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Figure 11. Chemical structure of INCA derivatives 26–32.

The presence of a single acidic functionality made the compounds ionic at all pH
values. Differently from lipophilic antifolates or classical antifolates, which carry a double
negative charge, INCAs were either zwitterions or featured a single net negative charge
(−1). The activity of these molecules was compared to that of p-amino salicylic acid (PAS,
31), the only antifolate currently used in anti-TB therapy (Figure 12).
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Figure 12. Inhibition mechanisms of INCAs and PAS [17].

The effect of INCAs was also investigated on an alternative mycobacterial folate
pathway, which produces THF and dTMP by employing two recently identified enzymes:
the reductase Rv2671 and a flavin-dependent thymidylate synthase. Notably, the presence
of these two enzymes provides the microorganism with a source of resistance to antifolates.
INCAs proved to be efficient inhibitors of both DHFR and Rv2671. Moreover, they showed
a long-lasting target occupancy, a desirable feature for antibacterial agents.

The crystallization of compounds 26 (Figure 13), 27, and 32 with DHFR allowed to
solve the structure of the ternary complex with NADPH. Considering the cocrystal with
26, the 2,4-diaminopyrimidine ring was positioned into a hydrophobic pocket, making
two hydrogen bonds with the side chain of Asp27, and two hydrogen bonds with Ile5 and
Ile94. The biaryl system made hydrophobic interactions with Glu28, Leu50, Pro51, Ile54,
and Leu57. The carboxylate formed a hydrogen bond with Arg60, a pivotal interaction
responsible of the high affinity of the ligand. The lower affinity of 30 was attributed to the
replacement of the benzoic acid with a pyridine, while the poor enzymatic activity of 32
was justified by the inverse orientation of the pteridine ring.
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Interacting residues are represented as cyan sticks, while ordered water molecules are shown as
blue spheres.
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Compounds 26 and 30 also displayed a potent inhibition versus Rv2671; Figure 14
shows the binding mode of 30 in the active site of Rv2671, as revealed by the crystallo-
graphic studies.
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Figure 14. Rv2671 in complex with NADPH (pink sticks) and 30 (green sticks). Interacting residues
are represented as cyan sticks, while water molecules are shown as blue spheres (PDB: 6DE5).

Because the presence of THF is essential to produce dTMP, a crucial building block of
DNA, the inhibition of DHFR arrests the growth of mycobacteria by disrupting essential
cellular functions, including DNA synthesis and cell wall metabolism.

In 2020, an FBDD approach on DHFR was described [18]. The authors used the
complex between a hit and DHFR as the starting point for further elaboration. The screening
was carried out on 1250 compounds by DSF; among the 37 positive hits, 30 fragments
were screened by 1D STD-NMR, resulting in the selection of 21 fragments, which were
characterized by isothermal titration calorimetry (ITC). The compounds showing the best
enzymatic affinity are reported in Figure 15. Most of them presented a benzoic acid moiety,
which played a crucial role in the interaction with DHFR, probably due to an ionic contact
with an arginine residue of the active site.
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Fragments 33–41 were crystallized in complex with DHFR; the characterization of
their interaction with the protein allowed to identify four subregions within the active
site groove:

(1) The active site entrance, featuring a positive charge;
(2) The slightly apolar central region of the active site;
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(3) The dipyrimidine binding site, characterized by strong negative charges;
(4) The glycerol-binding site, a specific region found in Mtb DHFR and not in the human

homolog.

Because of its selective binding to the glycerol pocket of Mtb DHFR, 33 was selected
for a SAR investigation, affording the compounds reported in Figure 16. Unexpectedly,
the structural analysis of the complexes between DHFR:NADPH and compounds 42–45
revealed the absence of interactions with the glycerol-binding pocket. However, these
derivatives showed improved affinities for the enzyme (from 600 µM to 17 µM), confirming
their potential value as DHFR inhibitors.
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2.6. Alanine Racemase (Alr)

Alanine racemase (Alr) and D-Ala:D-Ala-ligase (Ddl) are two enzymes involved
in the peptidoglycan biosynthetic pathway. D-cycloserine (DCS) is a broad-spectrum
antibiotic, used to treat multi- and extensively drug-resistant TB (MRD and XRD-TB),
that acts by blocking these two enzymes. The hypothesis that DCS inactivation of Alr is
due to the irreversible formation of an adduct with the pyridoxal-5′-phosphate (PLP) is
inconsistent with the observation that Alr is active after exposure to chemically relevant
DCS concentrations. In an article published in 2020 [19], the mechanism of Alr inhibition
by DCS was investigated and explained through the hydrolysis of a DCS-adduct. The
authors described the inhibition mechanism (Scheme 6) by the aid of various techniques,
including X-ray crystallography.

The subsequent fluorescence analysis revealed the formation of two inactivation
products, identified by chemical synthesis and NMR spectroscopy as the isoxazole and the
oxime. The isoxazole was in equilibrium with the aldimine, which led to the formation of
the oxime, as reported in Scheme 7.

The isoxazole-forming pathway, reversible at all steps and accompanied by the for-
mation of the stable oxime, explained the inhibition of Alr and the presence of the two
inactivation products. The crystal structure of Alr complexed with 46 (Figure 17) supported
the conclusions of this mechanistic study by showing both the external aldimine and
the isoxazole in one of the sites and confirming the existence of an equilibrium between
the species.
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While Alr enzymes from E. coli and other fast-growing bacteria are effectively inacti-
vated by DCS, those from Mtb (and likely other slow-growing bacteria) are not because of
the reversibility of the inhibition mechanism, which likely contributes to Alr reactivation.

2.7. L-Aspartate-α-Decarboxylase (PanD)

Although pyrazinamide (PZA) has been used for more than fifty years as a front-line
anti-TB drug, its mechanism of action is still not fully understood. It is a prodrug converted
into the active pyrazinoic acid 47 (POA) by the enzyme pyrazinamidase. Interestingly, sev-
eral mutations conferring resistance to PZA were located in the L-aspartate-α-decarboxylase
(PanD) gene, suggesting that PanD is the target of PZA. PanD catalyzes the decarboxylation
of L-aspartate to β-alanine (Scheme 8), as part of the pantothenate biosynthetic pathway,
essential for vitamin B5 and CoA biosynthesis in Mtb.

Molecules 2021, 26, x FOR PEER REVIEW 8 of 19 
 

 

 

 
Scheme 8. PanD-catalyzed decarboxylation of L-aspartate to β-alanine. 

  

Scheme 8. PanD-catalyzed decarboxylation of L-aspartate to β-alanine.

In 2020, Sun and co-workers defined the inhibition of PanD by 47 as competitive, and
studied the binding of 47 to PanD by means of X-ray diffraction [20]. The crystal structure
of the PanD-47 complex was solved and refined at 2.7 Å resolution. PanD is a proenzyme
that is converted into its active form after a cleavage between Glu24 and Ser25, and the
modification of Ser25 to a pyruvoyl group; the active protein consists of a β-chain and an
α-chain. In the complex, one molecule of 47 was bound to each active site, located at the
interface between two adjacent subunits of the PanD tetramer (Figure 18). The binding
pocket of 47 was relatively small (206 Å3) and not easily accessible; there was only a narrow
tunnel leading from the active site to the inside barrel of the tetramer, with a diameter of
about 3.4 Å. Neither aspartate nor 47 fit through the tunnel; therefore, the protein must
undergo a conformational change to allow the access of the substrate or the inhibitor to
the active site. This conformational modification was consistent with the slow on- and off-
rate of the binding of 47. Four hydrogen bonds contributed to the binding of 47 to PanD;
because these contacts are the same as those established by aspartate, 47 was confirmed to
be a competitive inhibitor.

Molecules 2021, 26, x FOR PEER REVIEW 18 of 51 
 

 

 
 

Figure 18. On the left, the PanD tetramer, with the four subunits evidenced in different colors (PDB: 
6OYY). The ligand 47 is represented as magenta spheres. On the right, the interaction of 47 (green 
sticks) with residues (cyan sticks) in the binding site of PanD; Arg54 belongs to a nearby subunit. 

In order to investigate the mechanism of resistance to 47, the authors studied the 
structures of a resistant mutant, very similar to the wild-type enzyme. None of the muta-
tions involved amino acids that directly contacted 47; most were on the C-terminal loops 
of the α and β chains, which seemed to form a flexible lid over the active site. 

The reported data allowed to conclude that PanD is the primary target of 47 and that 
the resistance to PZA derived from alterations in two loops, covering the active site and 
influencing the affinity, the residence time, and the binding interactions of POA. 

2.8. Decaprenylphosphoryl-β-D-ribose-2′-oxidase (DprE1) 
Arabinose polymers form a large fraction and an essential part of the mycobacterial 

cell wall. The conversion of decaprenylphosphoryl-β-D-ribose (DPR) to 
decaprenylphosphoryl-β-D-arabinose (DPA) appears to be the sole source of D-arabino-
furanosyl residues in Mtb. This transformation is catalyzed by two enzymes: the 
decaprenylphosphoryl-β-D-ribose-2′-oxidase (DprE1), mediating the FAD-assisted oxida-
tion of the 2′-hydroxyl group of DPR, and the decaprenylphosphoryl-β- D-ribose-2′-reduc-
tase (DprE2), which assists the reduction of the 2′-keto group via NAD+, affording the 
hydroxyl epimer DPA. 

In 2009, benzothiazinone (BTZ) derivatives were first identified as DprE1 inhibitors 
[21]. More recently, Richter and co-workers reconsidered these structures publishing an 
in-depth analysis of the inhibition mechanism of known and new NO2-BTZ analogues by 
means of enzymatic assays, MS spectroscopy, and crystallographic studies [22]. When 
NO2-BTZs enter the catalytic pocket of DprE1, which contains FADH2 generated by the 
oxidation of the substrate, the reduction of nitro to nitroso group results in the formation 
of a covalent bond with a close cysteine residue. To deepen the study of their mechanism 
of action and kinetic interaction, several BTZ derivatives were synthesized; using the same 
approach, new BOZ analogues, in which the sulfur atom in their skeleton was replaced 
by an oxygen, were prepared and tested (Figure 19). 

The mechanism of the inhibitory activity was studied by means of LC-MS experi-
ments on compound 49; the inhibitor was incubated with DprE1 in the presence of farne-
sylphosphoryl-β-D-ribofuranose (FPR), a close analogue of DPR and FAD. The LC-MS 
analysis of the products confirmed the proposed mechanism, depicted in Scheme 9. 

Figure 18. On the left, the PanD tetramer, with the four subunits evidenced in different colors
(PDB: 6OYY). The ligand 47 is represented as magenta spheres. On the right, the interaction
of 47 (green sticks) with residues (cyan sticks) in the binding site of PanD; Arg54 belongs to a
nearby subunit.

In order to investigate the mechanism of resistance to 47, the authors studied the struc-
tures of a resistant mutant, very similar to the wild-type enzyme. None of the mutations
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involved amino acids that directly contacted 47; most were on the C-terminal loops of the
α and β chains, which seemed to form a flexible lid over the active site.

The reported data allowed to conclude that PanD is the primary target of 47 and that
the resistance to PZA derived from alterations in two loops, covering the active site and
influencing the affinity, the residence time, and the binding interactions of POA.

2.8. Decaprenylphosphoryl-β-D-ribose-2′-oxidase (DprE1)

Arabinose polymers form a large fraction and an essential part of the mycobacterial cell
wall. The conversion of decaprenylphosphoryl-β-D-ribose (DPR) to decaprenylphosphoryl-
β-D-arabinose (DPA) appears to be the sole source of D-arabinofuranosyl residues in Mtb.
This transformation is catalyzed by two enzymes: the decaprenylphosphoryl-β-D-ribose-
2′-oxidase (DprE1), mediating the FAD-assisted oxidation of the 2′-hydroxyl group of
DPR, and the decaprenylphosphoryl-β-D-ribose-2′-reductase (DprE2), which assists the
reduction of the 2′-keto group via NAD+, affording the hydroxyl epimer DPA.

In 2009, benzothiazinone (BTZ) derivatives were first identified as DprE1 inhibitors [21].
More recently, Richter and co-workers reconsidered these structures publishing an in-depth
analysis of the inhibition mechanism of known and new NO2-BTZ analogues by means of
enzymatic assays, MS spectroscopy, and crystallographic studies [22]. When NO2-BTZs
enter the catalytic pocket of DprE1, which contains FADH2 generated by the oxidation of
the substrate, the reduction of nitro to nitroso group results in the formation of a covalent
bond with a close cysteine residue. To deepen the study of their mechanism of action and
kinetic interaction, several BTZ derivatives were synthesized; using the same approach,
new BOZ analogues, in which the sulfur atom in their skeleton was replaced by an oxygen,
were prepared and tested (Figure 19).

The mechanism of the inhibitory activity was studied by means of LC-MS exper-
iments on compound 49; the inhibitor was incubated with DprE1 in the presence of
farnesylphosphoryl-β-D-ribofuranose (FPR), a close analogue of DPR and FAD. The LC-MS
analysis of the products confirmed the proposed mechanism, depicted in Scheme 9.
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Scheme 9. Potential covalent mechanism of DprE1 inhibition by 49.

The cocrystal structures of DprE1 with the BTZ derivatives 48, 49, 50, and 51, and
with the BOZ compound 52 were all solved with two DprE1-inhibitor complexes in the
asymmetric unit (Figure 20). The five compounds formed a covalent bond with the cysteine
present in the active site (Cys387), while the trifluoromethyl group faced the same residues;
only subtle variations in the orientation of the compounds were reported, as well as
non-covalent contacts with DprE1. Notably, despite the similar enzyme-ligand contacts,
the inhibitory activity underwent considerable variations. The authors concluded that
the mechanism of action detailed in their study may support the development of a next
generation of DprE1 inhibitors.
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potent bioactive lipid in both adaptive and innate immune system. 
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2.9. Cytochromes CYP124 and CYP121

Mtb has evolved a sterol catabolizing system, which is believed to be essential for its
virulence; hence, the enzymes involved in the catabolism of host cholesterol are validated
targets for anti-TB drug discovery. The cholesterol catabolism is initiated by the 3β-
hydroxysteroid dehydrogenase (3βHSD) and by three monooxygenases (CYP142, CYP125,
and CYP124). Cholesterol is not an essential source of nutrition for Mtb during infection,
suggesting that these enzymes have a physiological role beyond cholesterol metabolism.
Cholesterol derivatives, like oxysterol and vitamin D3, are important factors of the human
immune system, able to directly regulate the inflammatory program of macrophages and
to participate in the establishment of the immune response.

In 2021, Varaksa and co-workers studied cholesterol metabolism in Mtb not only
as a source of carbon and energy, but also as a possible way to degrade immunoactive
cholesterol derivatives [23]. The authors reported that 3βHSD and CYP124, CYP125,
and CYP142 can metabolize human immunoactive oxysterols in vitro, and identified the
corresponding metabolic products, deriving from the oxidation of the hydroxyl moiety
at the 3-position and the introduction of a hydroxyl group at the 26-position (Figure 21).
Through spectrophotometric titration and activity assays, a series of sterol substrates of
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these enzymes were identified; the attention was focused on 25-hydroxy-cholesterol, a
potent bioactive lipid in both adaptive and innate immune system.
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rivatives of ergocalciferol (vitamin D2) and cholecalciferol (vitamin D3) to their hydroxy 
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involved in the degradation of oxysterols, two imidazole derivatives (CHImi, 53, and 
cpd5′, 54, Figure 22), known inhibitors of many CYPs, were studied on CYP124. 

  

Figure 21. Simplified depiction of the metabolism of host sterols by Mtb enzymes.

Among the three monooxygenases, CYP124 is the most active and, for this reason, its
complex with cholestenone was studied by X-ray diffraction at 1.65 Å resolution. A binding
tunnel with 24 lining residues was defined [21]; this passage narrows toward the catalytic
site to tightly enclose the aliphatic side chain, and it opens in the opposite direction to create
more space for the tetracycle. Since CYP124 efficiently converts 1α-hydroxy-derivatives of
ergocalciferol (vitamin D2) and cholecalciferol (vitamin D3) to their hydroxy products, the
structures of CYP124 in complex with secosteroids were solved and carefully described
in the same article. To test the effect of the suppression of the enzymes involved in the
degradation of oxysterols, two imidazole derivatives (CHImi, 53, and cpd5′, 54, Figure 22),
known inhibitors of many CYPs, were studied on CYP124.
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The structures of 53 and 54 in complex with CYP124 were solved and discussed in the
article (Figure 23) [24].
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The observation that steroid-metabolizing enzymes can hydroxylate several human
immunoactive molecules, starting from cholesterol, may pave the way to new pharmaco-
logical approaches aimed at breaking dangerous interrelations between Mtb and the host
immune system.

Among other mycobacterial cytochromes, CYP121 has sparked the interest of the
medicinal chemistry community because it is a very peculiar enzyme, absent in other
microorganisms or mammals. CYP121 catalyzes the oxidative crosslinking of the two
tyrosines of a Tyr-Tyr cyclodipeptide, affording mycocyclosin (Scheme 10).
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Scheme 10. CYP121-catalyzed biosynthesis of mycocyclosin.

The gene encoding CYP121 is essential, but the role of cyclotyrosine in Mtb biology
has yet to be determined. The unusual mycocyclosin and the oxidative reaction catalyzed
by CYP121, affording the formation of a C-C bond instead of the usual introduction of
an oxygen atom, prompted the study of analogues of the natural substrate, as possible
inhibitors of this enzyme. Previously, an anilinophenylpyrazole derivative had displayed a
nanomolar affinity for CYP121 (Kd = 15 nM). Starting from this result, Rajput and collabora-
tors synthesized a set of derivatives, investigating the role of the tyrosyl phenolic groups in
the binding affinity and modifying the 4-position of the aromatic ring [24]. Analogues lack-
ing one or both phenolic groups or having one or both transformed into the corresponding
methyl ether, were prepared. The phenolic groups were replaced with halogens; halogens
or methyl groups were introduced at the ortho or meta positions (Figure 24).
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The interaction of the natural substrate and its analogues with CYP121 were analyzed
by UV-VIS spectroscopy and electron paramagnetic resonance spectroscopy. X-ray crystal
structures of 55–63 bound to CYP121 were also obtained and described [24]. The binding
of the 3-methyl analogue of 55, compound 60, within the active site of the enzyme, is
illustrated in Figure 25. The compound was accommodated in a binding pocket distal
to the heme group, without involving steric clashes or inducing conformational changes,
forming hydrophobic interactions with Phe168 and Val78. The carbonyl group of the dike-
topiperazine ring formed a direct hydrogen bond with the side chain of Asn85. Moreover,
the binding of the ligand did not displace the water molecule associated with the Fe(III)
ion; in addition, more water molecules contacted the phenolic groups of 60 and Thr177,
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Glu385, and Arg386. The detailed descriptions of the complexes between CYP121 and
other analogues were also reported [24].
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Overall, the interaction pattern was highly conserved. Notably, in the complex with
the 3-iodoanalogue 56, the iodine atom was very close to the Fe(III) ion of the heme group,
filling the space otherwise occupied by a water molecule. The phenolic group of the
substituted aromatic ring was within the hydrogen-bonding distance of Arg386, indicating
a tight binding that well correlates with the high affinity observed for this compound. The
specific interaction between the iodine atom and either the Fe(III) ion or the heme group
may also contribute to the high binding affinity detected for this compound.

Combining the knowledge about the structural data and the biological roles the two
CYPs here described can be considered a promising strategy for the development of novel
therapeutic candidates.

A non-CYP enzyme involved in cholesterol catabolism is HsaD, an α,β-hydrolase
belonging to the meta-cleavage product (MCP) subfamily. It catalyzes the hydrolytic
cleavage of a carbon-carbon bond in 4,5–9,10-diseco-3-hydroxy-5,9,17-tri-oxoandrosta-
1(10),2-diene-4-oic acid (DSHA), yielding 9,17-dioxo-1,2,3,4,10,19-hexanorandrostan-5-oic
acid (DOHNAA) and 2-hydroxy-hexa-2,4-dienoic acid (HHD). HsaD has been shown to be
essential for the survival of Mtb within macrophages and overexpressed in hypervirulent
strains of M. bovis BCG. This interesting target was explored in an FBDD campaign in 2017.
Some interesting fragments were identified, modified to define the SAR, and cocrystallized
with the enzyme to determine the binding mode and pave the way for the design of more
complex molecules. Some of the fragments also exhibited a promising antitubercular
activity and a negligible toxicity on mammalian cells, confirming their potentiality as
starting points for the design of new antitubercular agents [25].

2.10. Ser/Thr Protein Kinase B (PknB)

Targeting essential virulence factors, like protein kinases involved in signal transduc-
tion, is considered a very promising approach. In bacteria, an important transmembrane
signaling system is regulated by the receptor-type serine/threonine protein kinases (STPKs).
PknB belongs to the transmembrane cluster of STPKs: its catalytic domain is at the N-
terminus, linked to the C-terminal sensor domain through a single transmembrane helix.
PknB plays a fundamental role in cell shape regulation and hypoxia-induced cellular
replication, and it is essential for the growth and survival of Mtb in the host; hence, it
can be regarded as a very attractive drug target. The activation mechanism involves the
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phosphorylation of Ser/Thr residues in the activation loop upon ATP binding to the active
site, leading to a conformational change from the catalytically inactive dephosphorylated
state to the active phosphorylated form. The dimerization, promoted by the binding of the
sensor domain to a ligand, stabilizes the active conformation of the kinase domain, facili-
tating intermolecular autophosphorylation, thus producing a fully active kinase domain
able to phosphorylate the substrates. Finally, the dephosphorylation by PstP restores the
inactive unphosphorylated monomeric form [26].

PknB was the first Mtb kinase for which the crystal structure of the catalytic domain
was described [27]. Most of the published works deal with compounds inhibiting the
kinase in the micro and sub-micromolar range, but with limited activity on mycobacteria.

In 2018, Wlodarchak and co-authors identified a new family of imidazopyridine
aminofurazans (IPAs) as PknB inhibitors by an in silico screening. A selection of the most
interesting IPA candidates is presented in Figure 26 (64–67). When co-administered with β-
lactams, these compounds worked at lower concentrations, differently from the antibiotics
traditionally used to treat mycobacterial infections; this is consistent with the role of PknB
in sensing cell wall stress. Among them, GSK690693 (66) showed sub-micromolar affinity
to the kinase (IC50 = 0.34 µM) and significantly lowered its antimycobacterial activity
on M. smegmatis or M. bovis BCG (bacillus Calmette-Guerin) in association to sub-MIC50
concentrations of meropenem, suggesting a synergistic action between PknB inhibitors and
β-lactams. The available crystal structure in complex with the target (PDB: 5U94) displayed
conserved features in its binding mode to the PknB hinge region [28].
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Figure 26. A selection of the most active compounds (64–67) belonging to the IPA class.

The structure of the PknB-66 cocrystal confirmed that the inhibitors are bound as
predicted (Figure 27). 66 overlapped the ATP binding position, with the aminofurazan ring
aligning with the adenine ring of ATP. The aminofurazan ring made two hydrogen bonds
to the backbone of the hinge region of PknB (Glu93 and Val95), and the dimethylpropargyl
alcohol made two hydrogen bonds to the back pocket via the backbone of Phe157 and the
side chain of Glu59. The piperidine ring made a weak hydrogen bond to the backbone of
the P-loop (Phe19) through an ordered water, whereas the nitrogen of the pyridine ring
formed a hydrogen bond with the catalytic lysine. Stacking interactions involved Met145
and Met155 with the imidazopyridine core, and Met92 with the aminofurazan ring. The
ligand binding pose was also consolidated by eight hydrophobic interactions.
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Figure 27. X-ray crystal structures of 66 (green sticks) bound to PknB (PDB: 5U94). Interacting
residues are shown as cyan sticks, while water molecules are depicted as blue spheres.

These data contributed to deepen the knowledge of mycobacterial signaling pathways
in Mtb, in which Ser/Thr kinases are actors of a complex interplay. Therefore, these
structure-based outcomes maintain a strong potential for the future development of new
anti-tubercular drug candidates.

2.11. Adenosine Kinase (AdoK)

Adenosine kinase (AdoK) is an attractive target for the development of new an-
timycobacterial agents because it belongs to the purine salvage pathway, whose efficient
functioning is essential for Mtb survival. Moreover, this enzyme has an important role
in the latent state, since Mtb must recycle bases and/or nucleosides to survive in the
hostile environment imposed by the host. Notably, the human homolog (hAdoK) has a
low sequence identity (<20%) to Mtb AdoK and exhibits several unique physicochemical
properties. Taken together, these peculiarities support the choice of AdoK as a target for
the search of new antibacterial drugs.

AdoK catalyzes the conversion of adenosine to AMP; the enzyme activity is dependent
on the presence of the Mg2+ ion and ATP (Scheme 11).
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High-resolution structures for AdoK (PDB: 2PKM, 2PKF, 2PKK, and 2PKN) demon-
strated that the apo form of the enzyme has the active site in an open conformation; after
adenosine binding, a lid domain undergoes a large conformational change, which leads to
the formation of interactions with the substrate and residues of the active site.

The purine salvage pathway in Mtb still leaves unexplored possibilities for drug
development; therefore, structural data of enzyme-inhibitor complexes may provide a
broader knowledge to drive the future search for chemical agents with novel mechanisms
of action and a more selective biological activity.
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Recently, Crespo et al. disclosed very potent and safe AdoK inhibitors by means of
a structure-based drug design (SBDD) approach [29]. Several 6-substituted adenosine
analogues complexed with AdoK, displaying high anti-Mtb activity in a whole-cell as-
say, were crystallized and solved revealing key insights into the region surrounding the
active site. The crystal structures of the target with iodotubercidin (68, PDB: 6C67) and
sangivamycin (69, PDB: 6C9N) gave information about the conformational flexibility and
chemical properties of the area surrounding the binding pocket, near the N7-position of the
adenosine scaffold. The complexes with 6-methylmercaptopurine riboside (70, PDB: 6C9P)
and 5′-aminoadenosine (71, PDB: 6C9Q) allowed to explore the 6- and 5′-positions, re-
spectively, providing a structural explanation behind the specificity of the N6-substituted
adenosine analogues (Figure 28).
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Figure 28. Chemical structure of compounds 68–71.

Improved derivatives were prepared by Crespo et al. based on the structural data,
which suggested the presence of a size threshold conferring specificity to the active site
vs the ATP site. This observation could be useful for the future design of bisubstrate-like
inhibitors characterized by small substituents at the N6-position and bulky groups at the
5′-position, which increase the number of favorable contacts with the enzyme and sterically
prevent the full closure of the lid domain [29]. Figure 29 reports the crystal structure of a
second-generation inhibitor (72), together with a summary of the SAR obtained for this set
of compounds.
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2.12. Thymidylate Kinase (TMPK)

In recent years, the thymidylate kinase (TMPK) has been selected as a target for
SBDD due to its essential role in DNA biosynthesis and because the configuration of
its active site is unique in the TMPK family [30]. Crystallographic analyses supported
the characterization of the substrate binding mode and the definition of the catalytic
mechanism, which involves the ATP-dependent phosphorylation of deoxythymidine 5‘-
monophosphate (dTMP). In particular, the structural data were pivotal to elucidate the
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process of lid closure upon ligand binding and determine the unusual location of the Mg2+

ion, which coordinates TMP in the active site pocket (PDB: 1W2G and 1N5K).
Guided by enzyme assays and by the X-ray characterization of the target, Merceron

et al. performed rational modifications on a series of ligands, disclosing very potent
inhibitors [30]. The researchers were inspired by the cocrystal structure of TMPK in
complex with 73 (IC50 = 10 µM, Figure 30): the thymine ring of the inhibitor was deeply
located into the catalytic pocket, forming a π−π stacking interaction with Phe70 and
hydrogen bonds between O4 and N3 and Arg74 and Asn100, respectively; the binding was
further stabilized by hydrophobic interactions with the target.
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Figure 30. On the left, representation of the cocrystal structure of 73 (green sticks) bound to TMPK
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The analysis of the ligand efficiency resulted in two novel chemical series: one consti-
tuted by phenoxybenzyl analogues, and the other by quinolin-2-yl analogues. Chemical
explorations led to the phenoxylquinolin-2-yl derivative 74 (Figure 31), which exhibited
a potent TMPK inhibitory activity and a good antimycobacterial activity (IC50 = 0.95 µM,
MIC99 = 12.17 µM against Mtb H37Ra).
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Figure 31. Chemical structure of compound 74.

With the aim of improving the MIC, Jian et al. [31] synthesized new hybrid molecules,
introducing an imidazo[1,2-a]pyridine or a 3,5-dinitrobenzamide moiety, which are known
to increase bacterial uptake [32]. This strategy afforded the safe analogues 75, 76, and 77
(Figure 32), having moderate TMPK inhibitory potencies, and antimycobacterial activities
in the low-micromolar range.
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Figure 32. Chemical structure and biological properties of compounds 75, 76, and 77. The three
portions of the compounds are evidenced in red, black, and blue.

Since 75 was structurally different from the previously studied derivatives, the authors
solved its cocrystal structure with TMPK, obtaining data at high resolution (PDB: 6YT1),
which showed that 75 adopted an L-shaped conformation, with the amide tail bent toward
the α7-helix (Figure 33). The inhibitor formed π−π stacking interactions, connecting its
heterocyclic system to Tyr39, Tyr103, and Phe70, and established polar contacts with Arg74
and Asn100. In addition, two antiparallel-oriented molecules of 75 contacted residues
of a symmetry-related protomer, involving Tyr39 and His53. The amide tail did not
show specific interactions, possibly accounting for the moderate inhibitory activity of the
compound. As for the 3,5-dinitrobenzamide derivatives, 76 displayed solubility issues in
the TMPK enzymatic assay, whereas 77 exhibited a similar inhibitory potency to 75.

The SBDD approach adopted in this study proved to be a valid strategy for the
discovery of new antimycobacterial agents.
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Figure 33. View of the binding mode of compound 75 (green sticks) into the TMPK active site
(PDB: 6YT1). Interacting residues (carbon atoms in cyan) are depicted as sticks.

2.13. tRNA (guanine37-N1)-methyltransferase (TrmD)

The tRNA (guanine37-N1)-methyltransferase (TrmD) is an essential enzyme in many
bacterial pathogens. It catalyzes a methyl transfer from S-adenosyl-L-methionine (SAM)
to the guanine N1 at nucleotide position 37 in a subset of bacterial t-RNA isoacceptors
(Scheme 12) [33]. The modified guanosine is essential for the maintenance of the correct
reading frame during translation [34].
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Scheme 12. Synthesis of m1G37-tRNA, catalyzed by TrmD.

Trm5, the functional homolog of TrmD in eukaryotes, has a dissimilar active site and
binds SAM differently compared to TrmD, suggesting that TrmD could be an attractive
target to develop antimicrobial agents.

Despite AZ51 (78), a thienopyrimidinone studied by Hill et al. in 2013, binds with low
affinity to the TrmD enzyme of mycobacteria and Gram-positive bacteria, the crystal struc-
ture of Mtb TrmD with 78 was successfully obtained at a resolution of 2.2 Å [33]. This com-
pound bound to the S-adenosyl-L-homocysteine (SAH) binding site without inducing con-
formational changes and interacted with three active-site loops of the enzyme (Figure 34).

The cocrystal structure of 78 with Mtb TrmD was compared to that obtained with the
homolog from Pseudomonas aeruginosa (Pa TrmD). The residues involved in the interaction
with 78 were strictly conserved. However, the binding of the compound did not induce the
flip of the side chain of Tyr111 in Mtb TrmD, while the corresponding residue (Tyr120) in
Pa TrmD turned 180◦ to form stacking interactions with the phenyl ring of the inhibitor,
suggesting a more rigid active site in Mtb TrmD compared to PaTrmD. In the absence
of the conformational changes at the wall loop, the piperidine ring of 78 was positioned
differently in Mtb TrmD, resulting in the loss of interactions between the terminal amine
and the side chain of Glu112. These structural studies prompted the synthesis of sev-
eral thienopyrimidinone derivatives, showing nanomolar activity against TrmD; the best
candidates (79–82) are reported in Figure 35 [33].
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Figure 34. Main interactions established in the active site of TrmD by 78, in green sticks (PDB: 6JOF).
Interacting residues are shown as cyan sticks.
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Figure 35. A selection of the most active thienopyrimidinone-based TrmD inhibitors (78–82).

The cocrystal structures of these compounds showed that they adopted similar binding
modes in both Mtb TrmD and Pa TrmD, by interacting with conserved residues. The most
significant discrepancy lay in their different ability to induce a conformational change in
the active-site wall loop and the flip of the Tyr side chain, which plays an important role
in inhibitor binding. Figure 36 shows the active-site residues of Pa TrmD and Mtb TrmD
involved in the interactions with the potent inhibitor 79 [33].
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Figure 36. Crystal structures of 79, in green sticks, in complex with Pa TrmD (A, PDB: 5ZHN) and
Mtb TrmD (B, PDB: 5ZHL). Interacting residues are visualized as colored sticks.

2.14. Nicotinic Acid Mononucleotide (NaMN) Adenylyltransferase (NadD)

Bedaquiline (BDQ), one of the few drugs recently approved for the treatment of
TB, acts by targeting ATP synthase, thus blocking the production of ATP. However, this
essential nucleoside can be obtained by other pathways, including glycolysis. Despite being
a less efficient process, glycolysis produces ATP faster than oxidative phosphorylation.
Unsurprisingly, the use of BDQ has been associated with an upregulation of glycolytic
enzymes. Notably, the NAD cofactor plays an essential role both as an electron donor in
the respiratory chain and as a key oxidant in glycolysis. Hence, its depletion effectively
hinders the two main sources of ATP in the mycobacterial cell. Among the key enzymes
involved in the biosynthesis of NAD (Scheme 13), NaMN adenylyltransferase (NadD) has
been recently validated as a new drug target for latent and active TB, due to its considerable
divergence to the human counterpart (NMNAT1−3) [35].

In an attempt to identify new inhibitors of NadD, ~1400 bioactive compounds were
screened against the recombinant NadD, leading to the identification of a new class of
benzimidazolium derivatives endowed with bactericidal activity on different mycobacteria,
including M. abscessus, MDR-Mtb, and dormant M. smegmatis [35]. Starting from the
originator (83), a library of derivatives was designed and synthesized; the best compounds
(84–86) are reported in Figure 37. The cocrystal structure of NadD with compound 85
(Figure 38), determined at 1.86 Å resolution, revealed that the binding of the inhibitor
induced the formation of a new quaternary structure in which two copies of the inhibitor
occupied symmetrical positions at the dimer interfaces [35].
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The structure of the inhibitor–target complex evidenced that the binding sites were
formed by chains B and A’, and chains B’ and A, respectively, and 85 occupied a hy-
drophobic pocket, exhibiting high steric complementarity with the surface of the two
enzyme chains.

The menthol moiety of the inhibitor made van der Waals interactions with several
hydrophobic residues of the pocket, including Leu151 and Leu158 from chain A’, while
Glu160 contributed to the positioning of the positively charged benzimidazole core. The
phenoxymethyl moiety was oriented away from the protein, allowing to accommodate
various potential substituents at the R1 position [35].

Notably, the class of compounds derived from 85 showed a strong bactericidal effect
against Mtb, including MDR-, XDR-, and TDR-strains, and a significant bactericidal ef-
fect under nonreplicating conditions in M. smegmatis. Therefore, the inhibition of NadD
represents a viable strategy to kill dormant and MDR strains, also in combination therapies.

2.15. Enhanced Intracellular Survival (Eis) Transferase

Kanamycin (KAN) and amikacin (AMK) belong to the class of the aminoglycoside
antibiotics, injectable second-line agents commonly used for the treatment of resistant
TB infections. In recent years, resistance to both KAN and AMK has emerged in some
Mtb isolates, gradually becoming a marker of XDR-TB, along with an insensitivity to
fluoroquinolones. The principal mechanism of inactivation of these drugs is based on the
overexpression of the Eis protein, an acetyltransferase that catalyzes the multi-acetylation
of aminoglycosides at different positions. While a single modification is not sufficient to
abolish the antibiotic effect, the wide and complex Eis active site can determine an efficient
acetylation on multiple sites and on a large variety of substrates. For this reason, the use
of novel Eis inhibitors in association with KAN or AMK could be a valid approach to
counteract the spreading resistance to aminoglycosides.

An HTS screening on ~23,000 molecules led to the identification of a new class of
Eis inhibitors containing a thieno[2,3-d]pyrimidine moiety. As a reference compound,
Punetha et al. [36] chose a molecule containing a 1,2,4-triazino[5,6b]indole-3-thioether core
(PDB: 6B3T), partially isosteric with the tricyclic moiety of the new class of inhibitors [37].
The crystal structures of Eis in complex with 12 ligands showed that these molecules occu-
pied the aminoglycoside binding pocket, inhibiting the acetyl transfer with a competitive
mechanism. The tricyclic moieties of all compounds were sandwiched between Trp36 and
Phe84, but differently oriented with respect to the moiety of the reference compound 87
(Figure 39). The most hydrophobic ring, unsubstituted or modified by small nonpolar or
weakly polar groups, was in contact with the lipophilic wall of the binding pocket (lined
by Trp13, the aliphatic portion of Arg37, Val40, Leu63, and Met65), whereas the large
substituent on the opposite ring extended along the substrate binding cleft toward the
solvent, a general direction of the thioether side chain.

The crystal structure of 88 (IC50 = 0.75 ± 0.06 µM; PDB: 6VUZ, Figure 39) with Eis
revealed that the linker placed the positively charged amino group of the piperidine
equidistant from the carboxyl groups of Asp26, Glu401, and the C-terminal carboxyl group,
forming strong salt bridges. The piperidine ring was found in different conformations, all
related by rotations along the C−N bond connecting the ring to the linker.

Some compounds of this series revealed toxicity against Mtb and mammalian cells,
while 88 was nontoxic to Mtb, but potent in Eis inhibition and endowed with synergic
activity with KAN, emerging as a promising compound for further studies [36].

In a previous manuscript, Green and co-authors [38] used three compounds (89–91,
Figure 40) belonging to different structural families to demonstrate how Eis mutations can
influence the potency of the inhibitors.
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Figure 39. Zoomed-in views of the binding sites of the complexes between Eis and 87 (A, PDB: 6B3T),
and 88 (B, PDB: 6VUZ). The ligands and interacting residues are represented as green and cyan
sticks, respectively.
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Figure 40. Compounds 89–91, active against Eis.

Compound 89 belongs to the same family of analogue 87 [36] and its crystal structure
showed the same interactions illustrated above for 87 and 88. Despite belonging to a dif-
ferent chemical class, compound 90 was characterized by a similar interaction pattern. In
detail, it established hydrophobic interactions in the binding pocket through its pyrrolopy-
razine core: the pyrrole portion interacted with Ile28 and Ser32, while the pyrazine portion
with Phe27 and Ala33 (Figure 41). The fluorophenyl group was positioned between Asp26
and Glu401. The cationic nitrogen of the pyrazine ring formed a cation−π contact with
Trp36 and a sulfate anion, neutralizing its charge. The acetophenone ring was sandwiched
between Trp36 and Phe84, and its oxygen established a weak hydrogen bond with the
hydroxyl group of Ser83. Moreover, it formed contacts with a hydrophobic pocket formed
by Trp13, the aliphatic stem of Arg37, Val40, Leu63, and Met65. The main interactions
established by compound 91 were substantially similar to the ones reported above. The
only notable difference was that its quinoxalinedione moiety formed a parallel π–π stacking
interaction with the phenyl ring of Phe24. Interestingly, this residue was found to be pivotal
for the acetylation of aminoglycosides, like KAN.
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box, respectively. 

Each MenD monomer is composed of three domains: while domains I and III are 
involved in the catalytic function, domain II does not participate directly in the binding of 
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Figure 41. Depiction of 90 bound to Eis (PDB: 6P3U). The ligand and interacting residues are
represented as green and cyan sticks, respectively.

Starting from this information, seven residues (Asp26, Trp36, Arg37, Leu63, Met65,
Ser83, and Phe84) not directly involved in the acetyl transfer function of Eis, but observed
to interact with the inhibitors, were mutated into alanine residues to determine the effects
on aminoglycoside acetylation and on inhibitor binding. The results showed that mutations
in only three amino acids (Asp26Ala, Trp36Ala, and Phe84Ala) rendered all inhibitors
inactive, suggesting that the future design of inhibitors should not depend on interactions
with these residues [38].

2.16. 2-Succinyl-5-enolpyruvyl-6-hydroxy-3-cyclohexadiene-1-carboxylate Synthase (MenD)

Menaquinone, also known as vitamin K2, is a redox cofactor consisting of a quinone
core linked to a “side chain”, formed by a variable number of repeating isoprene units.
This molecule is essential for energy generation in both actively growing and persistent
Mtb, and its inhibition has been correlated to a reduced growth of the pathogen. The
first step of its biosynthetic pathway is catalyzed by the thiamine diphosphate (ThDP)-
dependent enzyme MenD, a member of the pyruvate oxidase (POX) family (Scheme 14).
This tetrameric enzyme converts isochorismate to 2-succinyl-5-enolpyruvyl-6-hydroxy-3-
cyclohexene-1-carboxylic-acid (SEPHCHC), ultimately leading to the key precursor 1,4-
dihydroxy-2-naphthoic acid (DHNA, 92) [39].
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Scheme 14. Simplified biosynthetic pathway leading to the production of menaquinone. The reaction
catalyzed by MenD and the allosteric inhibitor DHNA (92) are highlighted with a red and blue
box, respectively.
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Each MenD monomer is composed of three domains: while domains I and III are
involved in the catalytic function, domain II does not participate directly in the binding of
substrates or cofactors. Recently, Bashiri and collaborators determined that this structure
is involved in the allosteric regulation of the enzyme activity. In detail, they discovered
through crystallographic studies that domain II binds DHNA (92), a downstream intermedi-
ate of menaquinone synthesis, resulting in a negative feedback regulation. An NMR-based
activity assay showed that the activity of MenD at a concentration of 5 µM was reduced by
76% in the presence of 20 µM of 92. Further increases in the concentration of the inhibitor
did not significantly influence the activity, suggesting the saturation of the enzyme. A UV
spectrophotometry-based assay was employed to determine the IC50, which was found
to be 53 nM. Because 92 acts as an allosteric inhibitor of MenD, a characterization of its
binding mode may prove useful for the design of synthetic compounds capable of blocking
this enzyme. The crystal structure of the MenD-92 complex revealed that the compound
bound in a cleft is located between domains I and II and formed by residues 94–97, 232–235,
276–278, 299–306, and capped by residues 112–120 from a neighboring subunit (Figure 42).
In detail, the compound occupied an “arginine cage”, composed by Arg97, Arg277, and
Arg303; while Arg277 and Arg303 packed on the two sides of the planar ring of 92, Arg97
formed a H-bond with its carboxylate group. Additional H-bonds between the hydroxyl
groups of the ligand and Tyr95/Arg303 contributed to stabilize the complex. The region
between residues 112–120 from the other subunit of the dimer and belonging to a flexible
active-site loop, interacted with 92 through van der Waals contacts with Gly115. Moreover,
Thr114 bound to Asp306 of the allosteric cleft. Unsurprisingly, this mobile region was fully
ordered only in the presence of the bound inhibitor. Further alanine mutagenesis experi-
ments established the three arginine residues making up the so-called “cage” as the most
important for 92 binding and feedback inhibition, indirectly corroborating their key role
in signal propagation from the allosteric site to the active site of MenD [39]. Interestingly,
these residues were found to be present only in bacteria closely related to Mtb: therefore,
MenD represents an ideal, selective target for the development of novel antitubercular
agents. Notably, the structural and biochemical studies established that the candidate
inhibitor should have the ability to simultaneously interact with the key Arg97, Arg277,
and Arg303 residues.
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degradation. TrpAB is composed of two protein subunits, α (TrpA) and β (TrpB), forming 
a linear αββα heterotetramer containing two active sites, separated by a 25-Å long chan-
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Figure 42. Representation of 92 (green sticks) bound to the allosteric site of MenD (PDB: 6O0N).
Thr114 and Gly115, belonging to the flexible loop of the neighboring subunit, are depicted as blue
sticks, while the remaining interacting residues are in orange.

2.17. Tryptophan Synthase (TrpAB)

While humans and animals have lost the ability to produce tryptophan as a result of
evolutionary processes, bacteria still retain the capacity to synthesize this amino acid when
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its exogenous concentration is low. Despite being dispensable under normal conditions,
Mtb TrpAB becomes essential when the host adaptive immune response stimulates the
expression of indoleamine 2,3-dioxygenase (IDO-1), an enzyme responsible for L-Trp
degradation. TrpAB is composed of two protein subunits, α (TrpA) and β (TrpB), forming
a linear αββα heterotetramer containing two active sites, separated by a 25-Å long channel.
Structurally, TrpA has a (β/α)8-barrel fold, while TrpB is made up of two three-layer (αβα)
sandwich domains. The active site of TrpA is located at the top of the central β-barrel and
capped by α-Leu6. Its binding site accommodates indole 3-glycerol phosphate (IGP) and
converts it to glyceraldehyde-3-phosphate and indole. The latter then travels through the
channel toward the active site of TrpB, located in a cleft carrying the bound PLP cofactor,
where it displaces the hydroxyl group of L-Ser to form L-Trp (Scheme 15). The activity of the
enzyme is regulated allosterically by the alternation of open and closed conformations. In
the open state, the active sites are accessible to the substrates; conversely, in the closed state
they are sealed off, while the channel connecting the subunits remains open to allow the
movement of the intermediate indole. The switch between open and closed conformations
is pivotal to the activity of the enzyme and is coordinated by the so-called communication
domain (COMM) [40].
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The crystallographic structure of TrpAB was described for the first time in 2017 by
Wellington and co-workers, who analyzed both the apo form and the complex with the
azetidine inhibitor BRD4592 (93, MIC = 1.6-3 µM, Figure 43) [42]. Later, in 2020, the same
group investigated the cocrystal structures of the enzyme with GSK1 (94, MIC = 0.76 µM
vs Mtb H37Rv) and GSK2 (95, MIC = 1.1 µM vs Mtb H37Rv), two inhibitors developed by
the University of Birmingham and GlaxoSmithKline (Figure 43) [40,43].
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Figure 43. Molecular structure of the three TrpAB inhibitors.

The soaking of these molecules in crystals of TrpAB (P212121) allowed the obtainment
of structures at 2.4 Å resolution. The analysis of their binding mode revealed that they
both bound to the same allosteric site, formed by a cavity located at the interface of the α

and β subunits and intersecting the hydrophobic channel linking the two active sites. A
similar binding was also observed for the previously disclosed 93. Despite being chemically
different, all three molecules share the same features, namely a large, linear hydrophobic
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moiety with a small, hydrophilic head. The former formed hydrophobic interactions
with the side chains of β-Phe188, β-Phe202, β-Pro208, β-Ile184, and β-Leu34. The latter
established contacts with different amino acids depending on the molecule, with the only
exception of α-Gly66, which was shared by all three of them. In detail, 94 formed H bonds
through its sulfolane moiety with the backbone amides of α-Gly66, β-His294, and α-Gly295,
and with ordered water molecules (Figure 44). The sulfonamide group of 95 established
H bonds with the main-chain residues α-Gly66 and α-Met67, and with the side chain
of α-Asp136. Moreover, its methyl group fitted in a solvent pool located between the α

and β subunits; consequently, six water molecules became highly ordered, forming stable
contacts with the side chains of α-Asp136, α-Tyr62, β-Thr308, and other backbone atoms.
Hence, despite 95 did not directly interact with the β subunit, its coordination network
resulted in the stabilization of the α/β interface. As for 93, the secondary amine forming
the hydrophilic head interacted with α-Asp64, α-Gly66, and β-His294 [40].
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while subunits β are in blue and orange. 94 molecules are represented as red and magenta spheres in
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Overall, the known TrpAB inhibitors stabilized the enzyme in the αoβc form (α-open,
β-closed), drastically reducing its flexibility, and hindering the communication between
the α and β subunits. As a result of the obstruction of the linking tunnel, indole cannot
migrate to the TrpB active site and finalize the catalytic cycle.

2.18. Salicylate Synthase (MbtI)

Iron is the essential cofactor of several biosynthetic processes involved in the survival
and pathogenicity of most bacteria. Hence, the restriction of the accessibility of this metal
has evolved as a fundamental part of the mammalian innate immune system. At the same
time, bacteria have developed strategies to counteract this defense mechanism. Mtb relies
on numerous pathways to internalize both heme and non-heme iron: one of the most
important processes is based on the biosynthesis of iron chelators, known as mycobactins
and carboxymycobactins. These low-molecular-weight siderophores have a high affinity
for iron and can efficiently sequester it from host carriers. The first step of the biosynthetic
process leading to the production of carboxy-/mycobactins is catalyzed by MbtI, a Mg2+-
dependent enzyme that allows the two-step conversion of chorismate to salicylate via
isochorismate (Scheme 16).

In 2018, Chiarelli and collaborators disclosed a new class of 5-phenyl-2-furoic acid-
based competitive inhibitors of MbtI, after a virtual screening campaign [44]. Subsequent
SAR studies led to the discovery of more active derivatives (96–99, Figure 45), also exhibit-
ing promising antimycobacterial effects in whole-cell assays and a negligible cytotoxicity
against MRC-5 fibroblasts [45–47].
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are highlighted with a red box.
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Figure 45. A selection of the best furan-based MbtI inhibitors.

In 2020, Mori and collaborators successfully co-crystallized the lead inhibitor 98
(IC50 = 6.3 µM, MIC99 = 250 µM) with MbtI at a resolution of 2.09 Å (PDB: 6ZA4, Figure 46),
revealing an unexpected binding mode [46]. The absence of the catalytic Mg2+ ion in the
crystal determined the 180◦ rotation of the ligand with respect to the original computational
simulation. Further investigations on the role of the cofactor in catalysis and inhibition
revealed that MbtI has a low affinity for Mg2+ in its unbound form and, consequently, the
Mg2+-ligand interaction is not necessary to block the catalytic process. The inhibitor bound
to the active site, with the enzyme in open conformation. The analysis of the binding
mode of the compound revealed the presence of H bonds between its carboxylic group
and Tyr385, Arg405, Gly419, and an ordered water molecule; the oxygen of the furan
interacted with Arg405, while the phenyl ring formed a cation−π interaction with Lys438
and a van der Waals contact with Thr361. The CN group formed a H bond with Lys205, a
key amino acid involved in the first step of the catalytic reaction. Further studies on the
binding of Mg2+ to the enzyme led to the obtainment of the first crystal structure of MbtI
complexed with the ion in its physiological position (PDB: 6ZA5, Figure 46). The analysis
of the electron density revealed the presence of salicylate in the active site, despite neither
chorismate nor any reaction intermediate was supplied in the crystallization environment.
This structure shed light on the binding mode of the substrate/product of the catalytic
reaction and suggested that the enzyme was functional in the expression vector (E. coli).
Moreover, the enzyme appeared to be in its closed conformation, having the mobile loops
(268−293 and 324−336) in a fully ordered state. The Mg2+ ion interacted with Glu297,
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Glu434, and two ordered water molecules, which in turn made H bonds to Glu294 and
Glu431. In addition to that, the metal was coordinated by the carboxylic moiety of salicylate,
which also formed additional H bonds with the peptide backbone through Gly270 and
Gly421 and with the side chain of Thr271. The hydroxyl group and the phenyl ring did
not form significant interactions. The contacts between the ligand and Gly270 or Thr271
were identified as key factors influencing the enzyme conformation [46]. Overall, these
structural data are being used to optimize these derivatives and may also prove pivotal to
design new inhibitors of MbtI.
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Figure 46. View of the binding modes of 98 (A) and salicylate (B) in the active site of MbtI. The ligands
are depicted as green sticks, while the interacting residues are in cyan. The Mg2+ is represented as a
gold sphere, while ordered water molecules are colored blue.

2.19. Malate Synthase G (GlcB)

GlcB is involved in the glyoxylate shunt of the tricarboxylic acid (TCA) cycle of Mtb.
This enzyme catalyzes the condensation and subsequent hydrolysis of acetyl-coenzyme A
(acetyl-CoA) and glyoxylate to form malate and CoA (Scheme 17). GlcB has been shown to
play a critical role in the virulence and persistence of the mycobacterium; moreover, it has a
large, accessible active site and has no human homologs [48]. Overall, these characteristics
make this enzyme an ideal target for the development of anti-TB agents.
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In 2012, Krieger and co-workers identified a new class of phenyl-diketo acids (PDKA)
that inhibited GlcB by mimicking the glyoxylate substrate [50]. These structures (100–103,
Figure 47) proved to be potent and non-toxic, prompting structural studies to characterize
their binding mode.
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Figure 47. A selection of PDKA derivatives (100–103) active as GlcB inhibitors.

Six years later, Ellenbarger and collaborators published twenty cocrystal structures of
GlcB with different PDKA derivatives [48]. Their interaction in the active site was found to
be quite conserved (Figure 48).
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In detail, the ligand coordinated the catalytic Mg2+ cofactor with its ketoacid moiety;
the octahedral sphere was completed by Glu434, Asp462, and two water molecules, which
were stabilized by further contacts with the acidic residues of the active site. The positively
charged Arg339 formed H bonds with the two ketones of the PDKA tail. Finally, Asp633
was involved in long-range electrostatic interactions with Arg339 and the Mg2+ ion, and in
an anion-π contact with the phenyl group of the inhibitor, with a mean distance of ~3.5 Å.
This latter interaction proved to be extremely important for the activity, but also quite
sensitive to changes in the substituents around the phenyl ring. While most contact points
remained relatively fixed in all the structures, the orientation of Asp633 was found to be
considerably variable, impacting the formation of the interaction with the ligand. Despite
a clear relationship between the substitution of PDKAs and the inhibitory activity could
not be established, the authors observed that bulky or numerous, strongly electronegative
substituents were linked to high IC50 values, whereas one or two electronegative sub-
stituents at positions 2 and 6 and a hydroxyl or methyl group at position 3 or 4 resulted in
a lower IC50. After realizing that traditional approaches invariably led to unreliable predic-
tions, Ellenbarger and co-workers developed an ad hoc computational model based on the
crystallographic information (PDB: 3SB0, Figure 48), eventually succeeding in obtaining
dependable results [48].

2.20. β-ketoacyl-AcpM Synthase (KasA)

Cell wall biosynthesis constitutes an invaluable source of molecular targets for the de-
velopment of anti-TB agents. Among its most important components are mycolic acids, C60-
C90 branched-chain β-hydroxylated fatty acids that comprise the mycolyl-arabinogalactan
peptidoglycan (m-AGP) cell wall complex. Their production depends on two fatty acid
synthases, FAS-I and FAS-II (Scheme 18), which catalyze the elongation of fatty acid chains
thus originating two branches, the carboxylated α-alkyl C26 fatty acid branch (FAS-I) and
the meromycolic acid branch (FAS-II), which are then condensed by type I polyketide
synthase 13 (Pks13). The enzymes KasA and KasB, two components of the FAS-II pathway,
function in tandem to carry out acyl chain elongation to achieve meromycolic acids from
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acyl primers provided by FAS-I. In particular, KasA has been shown to sustain the viru-
lence and persistence of Mtb in vivo, thus representing an ideal candidate for medicinal
chemistry efforts [51].
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In 2018, Kumar and collaborators reported an indazole sulfonamide inhibitor, DG167
(104, Figure 49), which displayed an excellent MIC of 0.39 µM against Mtb H37Rv and a
lack of cross-resistance with first-line drugs [53]. The same compound had already been
published independently by Abrahams in 2016 [54]. However, 104 proved to be inactive
in vivo, likely due to pharmacokinetic issues related to its N-demethylation [51]. The
compound was successfully crystallized with KasA at 2.0 Å (PDB: 5W2P). Despite two
molecules were present in the active site, only one of them was found to be biologically
relevant. It bound to the phospholipid (PL) binding site, forming hydrophobic interac-
tions throughout the acyl channel, and establishing H bonds with Glu199 through its
sulfonamide moiety [53]. In 2020, the same group designed a series of transposed indole
derivatives to overcome the issues of 104 [51].
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Crystallographic investigations around two members of this series (105 and 106,
PDB: 6P9K and 6P9M, respectively; Figure 49) revealed that the two compounds bound
to the same PL site. Their aliphatic moiety mimicked the PL acyl tail, inserting into a
hydrophobic pocket; moreover, the sulfonamide and the indole N-H groups established
H-bonds with Glu199 and Glu120. The two compounds differed in the positioning of
the moieties and in some hydrophobic contacts. Despite the promising results in vitro,
the indole series was inactive in vivo, which prompted the authors to design a new class
of transposed indazole derivatives. Among them, JSF-3285 (107, Figure 49) emerged for
its excellent antitubercular activity (MIC = 0.20 µM against Mtb H37Rv), lack of toxicity,
and favorable pharmacokinetic profile. The crystallographic analysis (PDB: 6P9L) showed
a similar binding mode with respect to the previous analogues, with the exception that
the fluorobutyl chain extended deeper in the hydrophobic pocket, forming an additional
interaction with Ile202 (Figure 50) [51].
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Unfortunately, in the same year, Cunningham and collaborators discovered that all
104 analogues were positive to the Ames assay, revealing their mutagenic potential, linked
to the formation of reactive anilines [55]. Extensive efforts were put into the modification of
the scaffold. Briefly, the sulfonamide group and the aliphatic chain proved to be essential,
and all changes to the nature and substitution of the six- and five-membered rings resulted
in compounds that were either inactive or still mutagenic [55]. Therefore, despite the
preliminary results for these compounds were extremely promising, new scaffolds for the
inhibition of KasA should be investigated.

2.21. Dethiobiotin Synthase (DTBS)

Dethiobiotin synthase (DTBS) is a crucial enzyme involved in the penultimate step
of the biosynthesis of biotin (Scheme 19). The inhibition of this mycobacterium-specific
enzyme is an interesting strategy to fight TB due to the essential role of biotin in the cell
wall lipid synthesis, during the latent phase of the life cycle of the mycobacterium.
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Structural studies on DTBS showed that the enzyme was organized in biologically
relevant homodimers, and that the cavity formed between two neighboring subunits
hosted the DAPA binding site. The DAPA alkyl chain established hydrogen bonds through
the terminal amines and the carboxylic group. Residues Gly8–Thr16 (P-loop) interacted
with the basic phosphate units of the nucleotide substrate, which was also stabilized by
hydrogen bonds with Gly169, Pro197, Ala200, and Ala201 (PDB: 6CVE) [56].

Guided SAR studies, starting from a cyclopentylacetic acid fragment identified via an
in silico screening performed by Abell et al. [57], led to the conclusion that a β-ketoacid
group appended to the cyclopentyl ring and an acidic moiety at the para position of
the aromatic ring significantly improved the binding affinity due to the formation of a
critical salt bridge interaction with Lys37. Additionally, the insertion of a tetrazole on
the aromatic ring, such as in 108 (Ki = 5 µM, Figure 51), improved the binding affinity by
around 3 orders of magnitude relative to the other binders, despite they all adopted an
almost identical binding pose in the crystal structure. These studies highlighted that the
tetrazole derivatives could be conveniently developed into novel antitubercular agents in
future years.
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3. Conclusions

The latest research works devoted to the structural analysis of complexes between
mycobacterial enzymes and new anti-TB agents are here reported. These studies have
greatly contributed to expanding the knowledge of the role of the selected targets in TB
infection, as well as to identifying and developing optimized leads, also providing insights
into their mechanism of action. One of the major goals of the structural biology community
has always been to characterize the structures of ligand–target complexes to support the
development of new drugs. As shown here, the structural data are instrumental for the
hit-to-lead stage and can be successfully implemented by conventional structure-based
drug design or fragment-based approaches.

Nowadays, one of the main challenges in anti-TB drug discovery is represented by
the need to clarify the complex interplay among enzymes tuning Mtb physiology and
regulating key processes in pathogenesis. In this context, the recent developments in
X-ray crystallography [58], cryo-EM [59], and integrative structural biology methods [60]
have contributed to increase the number of available tools to tackle these challenges. For
instance, combining crystallographic and cryo-EM data may facilitate the targeting of
flexible complexes and the identification of new enzymatic conformations that could not,
otherwise, be evidenced by conventional structural methods. Moreover, the integration of
biophysical and structural biology data, allowing the study of the targets in their larger
biological context (e.g., complexes or cellular compartments), will aid the optimization
of the affinity and selectivity of the enzymatic inhibitors. Taken together, these analyses
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will hopefully contribute to shed light on the physiology of Mtb and allow the design of
improved anti-TB compounds.

Therefore, it is foreseeable that, despite the technical challenges, target-based and
structure-based approaches will have an increasing relevance in the future of drug discov-
ery. In this context, the recent advancements in -omics technologies have already led to the
successful development of preclinical TB drug candidates, and to a better understanding
of the pathogenesis of Mtb infection. Another fundamental tool that is going to support
future research efforts is represented by the advances in pre-clinical microbiological studies
that will optimize and expedite the later phases of the drug discovery process.
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