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Abstract: Metabolomics profiling using liquid chromatography-mass spectrometry (LC-MS) has
become an important tool in biomedical research. However, resolving enantiomers still repre-
sents a significant challenge in the metabolomics study of complex samples. Here, we introduced
N,N-dimethyl-L-cysteine (dimethylcysteine, DiCys), a chiral thiol, for the o-phthalaldehyde (OPA)
derivatization of enantiomeric amine metabolites. We took interest in DiCys because of its potential
for multiplex isotope-tagged quantification. Here, we characterized the usefulness of DiCys in
reversed-phase LC-MS analyses of chiral metabolites, compared against five commonly used chiral
thiols: N-acetyl-L-cysteine (NAC); N-acetyl-D-penicillamine (NAP); isobutyryl-L-cysteine (IBLC);
N-(tert-butoxycarbonyl)-L-cysteine methyl ester (NBC); and N-(tert-butylthiocarbamoyl)-L-cysteine
ethyl ester (BTCC). DiCys and IBLC showed the best overall performance in terms of chiral separation,
fluorescence intensity, and ionization efficiency. For chiral separation of amino acids, DiCys/OPA
also outperformed Marfey’s reagents: 1-fluoro-2-4-dinitrophenyl-5-L-valine amide (FDVA) and 1-
fluoro-2-4-dinitrophenyl-5-L-alanine amide (FDAA). As proof of principle, we compared DiCys and
IBLC for detecting chiral metabolites in aqueous extracts of rice. By LC–MS analyses, both methods
detected twenty proteinogenic L-amino acids and seven D-amino acids (Ala, Arg, Lys, Phe, Ser, Tyr,
and Val), but DiCys showed better analyte separation. We conclude that DiCys/OPA is an excellent
amine-derivatization method for enantiomeric metabolite detection in LC-MS analyses.

Keywords: chiral metabolomics; rice water; d-amino acids; enantiomer separation; dimethyl labeling

1. Introduction

In the post-genomics era, metabolomics profiling has become an important tool
in biomedical research [1–4]. For highly complex metabolomes, reversed-phase liquid
chromatography–tandem MS (RP-LC-MS/MS) analyses is the standard tool for high-
throughput discovery [5–9]. One of the fundamental limitations of RP-LC-MS is the lack
of stereoselectivity, but many important metabolites are chiral molecules. Recently, chiral
metabolomics has become an area of emerging interest [10–15].

Initial interests in chiral metabolomics began with D-amino acids, which are physio-
logically active substances in mammals [16,17]. In fact, D-serine, D-aspartate, D-alanine,
and D-cysteine are found in many tissues and body fluids, and several D-amino acids
are important neurotransmitters in the brain [18,19]. Enantiomeric amino acids and their
derivatives may be useful biomarkers and novel drug candidates; their detection is impor-
tant in pharmacological research, clinical analysis, agriculture, and food science [20–22].
Using isotope tagging, advanced MS instrumentation, and new MS data analysis schemes,
it is possible to carry out non-targeted chiral metabolomics profiling and discover novel
chiral biomarkers beyond just amino acids [23].

A classic reagent for the derivatization of amine metabolites is o-phthalaldehyde (OPA),
widely utilized in commercial amino acid analyzers [24–27]. The chemical reaction with
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OPA to form fluorescent isoindole derivatives requires a nucleophilic thiol. Coupling OPA
to chiral thiols enables chiral separation via diastereomer formation. Chiral thiols tested
for OPA derivatization included N-acetyl-L-cysteine (NAC) [28]; N-acetyl-D-penicillamine
(NAP) [29]; isobutyryl-L-cysteine (IBLC) [30]; N-(tert-butoxycarbonyl)-L-cysteine methyl
ester (NBC) [31]; N-(tert-butylthiocarbamoyl)-L-cysteine ethyl ester (BTCC) [32]; N-R-
mandelyl-L-cysteine (NMC) [33,34]; and 2,3,4,6-tetra-o-acetyl-1-thio-β-D-glucopyranose
(TATG) [34].

In advanced chiral metabolomics profiling, labeling with heavy isotopes is very
important for quantification. To our knowledge, no study has introduced isotope la-
bels via thiol/OPA derivatization. We are particularly interested in developing N,N-
dimethyl-L-cysteine (DiCys) with OPA as a potential strategy for isotope tags in chiral
metabolomics. DiCys can be easily synthesized in one step from L-cysteine by reductive
amination (dimethyl labeling), using formaldehyde (CH2O) and sodium cyanoborohydride
(NaBH3CN). The fact that CD2O, 13CH2O, 13CD2O and NaBD3CN are commercially avail-
able at relatively low costs means that +2, +4, +6, and +8 Da tags can be easily generated via
dimethyl labeling [35,36]. Moreover, 13C- and 15N-cysteines are also commercially avail-
able, which means that up to 10-plex isotope labeling (+0 – +9 Da) is feasible (Figure S1,
supplementary materials).

Due to the potential of DiCys/OPA as a versatile isotope-labeling method, this study
sought to understand its performance in standard RP-LC-MS analyses of chiral metabolites.
DiCys was evaluated against five commonly used chiral thiols: NAC, NAP, IBLC, NBC,
and BTCC. The reaction mechanism of DiCys/OPA with amines is shown in Figure 1a, and
the chemical structures of the other thiols are shown in Figure 1b. They were compared
based on their fluorescence intensity, separation performance, stability, and ionization
efficiency for amino acid enantiomers. DiCys/OPA was also compared against Marfey’s
reagents, which are commonly used for resolving chiral amino acids. Finally, we compared
DiCys against IBLC in identifying D-amino acids in aqueous extracts of rice. Our data
suggest that DiCys/OPA is an excellent derivatization method to resolve chiral amines in
RP-LC-MS metabolomics profiling.
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Figure 1. (a) Derivatization reaction of amino acids with DiCys/OPA. (b) Structures of chiral thiols:
NAC, NAP, IBLC, NBC, and BTCC.

2. Results and Discussion
2.1. Stability and Fluorescence of DiCys Derivatives

Some of the most abundant amine-containing metabolites in biological samples are
amino acids. L and D amino acid pairs are also among the most important enantiomeric
metabolites in terms of biological functions. The charged carboxylate group makes it
somewhat challenging to resolve all 20 proteinogenic amino acids by RP-HPLC. Therefore,
we chose amino acids as model metabolites to study DiCys/OPA derivatization.
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One of the reported disadvantages of OPA/thiol derivatization is the instability of
the product [24,25]. Here, we evaluated the stability of OPA adducts with DiCys and
five additional chiral thiols—NAC, NAP, IBLC, NBC, and BTCC. We monitored the flu-
orescence intensities of OPA/thiol-derivatized amino acids at 4 ◦C for 60 min (Figure S2
supplementary materials), and there was no visible sign of fluorophore breakdown, con-
sistent with previous reports [37]. This should therefore be stable enough for routine
LC-MS workflows.

We also quantified the fluorescence intensities of five L-amino acids derivatized with
six chiral thiols (Figure 2a) after HPLC separation. Our results indicated that IBLC, NAC,
and DiCys derivatives produced stronger fluorescence. In contrast, the NAP and NBC
derivatives exhibited very low fluorescence intensities.
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Figure 2. Fluorescence intensities (a) and ion intensities (b) of the OPA/thiol-derivatized L-amino
acids (Glu, Ser, Ala, Tyr, and Phe) at equal concentrations. The center bar represents the mean, and
the whiskers represent ±2 standard deviations.

2.2. Separation of Enantiomers

When Chernobrrovkin et al. compared NAC, NAP, IBLC, and NMC as chiral thiols for
OPA derivatization [33], they found that NAC and NMC provided better chiral resolution
than NAP and IBLC. However, the resolution factors may depend on the column; mobile
phase composition; flow rate; and gradient [38,39]. We previously found that optimal
elution condition for OPA adducts was around pH 8 instead of the typical acidic condi-
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tions [40]. Therefore, we conducted RP-LC separation at pH 8 to resolve five enantiomer
pairs (Glu, Ser, Ala, Tyr, and Phe) (Figure 3). The best resolution was obtained with IBLC
and DiCys, and the worst was with BTCC (Table S1 supplementary materials). Quantitative
conversion to derivatized products for both enantiomers and the lack of racemization were
confirmed by MS detection.
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2.3. Ionization Efficiency and MS/MS Properties

Amino acids exhibit low ionization efficiencies in ESI-MS experiments, and OPA
derivatization may bring significant enhancements [40]. As shown in Figure 2b, all six thiol
adducts have shown 25–100-fold higher ionization efficiencies over non-derivatized amino
acids, making them generally useful for ESI-MS detection. In MS analyses, it is easy to
identify derivatized amino acid enantiomers in the mass chromatogram based on double-
peak detection via selected ion monitoring. To fragment OPA adducts requires relatively
high collision energies: around 20 V [40]. The fragmentation patterns of DiCys/OPA
adducts with seven amino acids are shown in Figure S3 supplementary materials, with a
neutral loss of the thiol group in all cases.

2.4. Comparing DiCys/OPA against Marfey’s Reagents

For the enantiomeric separation of amino acids, Marfey’s reagent has been used
widely [41–44]. This has led to the development of several Marfey variants, including: 1-
fluoro-2-4-dinitrophenyl-5-L-alanine amide (FDAA); 1-fluoro-2-4-dinitrophenyl-5-L-Valina
amide (FDVA); and the corresponding Phe, Ile, and Leu versions [44]. Here, we com-
pared the most commonly used Marfey’s variants, FDAA and FDVA, to the performance
of DiCys/OPA. DiCys was the best of the three regarding chiral amino acid separation
(Figure S4 supplementary materials). DiCys/OPA derivatives also have the advantage
of being fluorogenic, while Marfey’s derivatives are non-fluorescent. Therefore, we con-
clude that DiCys/OPA is highly suitable for resolving chiral analytes, better than popular
methods such as NAC/OPA and Marfey’s reagents.

2.5. Enantiomer Identification in Rice Water with DiCys/OPA

To test the usefulness of DiCys/OPA, we analyzed the aqueous extracts of edible
rice, otherwise known as rice water. Rice water is the starchy water that remains after
soaking or cooking rice, containing vitamins, amino acids, and minerals. It has been
used traditionally in the treatment of skin and hair in Asian countries [45–47]. Little is
known about the composition of amino acid enantiomers in rice water. Therefore, we
separately applied DiCys/OPA and IBLC/OPA derivatization to rice water samples. Their
RP-HPLC chromatograms are shown in Figure 4, and we observed almost twice as many
visible fluorescent peaks with DiCys compared to IBLC. It shows that DiCys is suitable for
separating a wide range of naturally occurring amine metabolites.

By MS and MS/MS detection, we could identify all twenty proteinogenic L-amino
acids and seven D-amino acids (Ala, Arg, Lys, Phe, Ser, Tyr, and Val) in rice water samples
using either DiCys or IBLC. Figure 5 shows the integrated ion intensities of individual
amino acids. The retention time, precursor ion, and product ion information are listed
in Tables S2 and S3 supplementary materials. The ratios between D/L amino acids are
shown in Table 1. Interestingly, the highest D/L ratios were found for the two posi-
tively charged amino acids, Arg and Lys. Their physiological roles and gustatory effects
remain undetermined.

3. Materials and Methods
3.1. Reagents

L and D amino acids (Glu, Ser, Ala, Tyr, Phe), L-Cys, OPA, ammonium bicarbonate,
perchloric acid (ACS reagent, 70%), formaldehyde (37% w/w), dichloromethane, ninhydrin,
fluorescamine, Ellman’s reagent (DTNB), NAC, NAP, IBLC, NBC, and BTCC were pur-
chased from Sigma-Aldrich (St. Louis, MO, USA). Methanol and acetonitrile (ACN) were
purchased from Baker (Radnor, PA, USA). Boric acid and sodium tetraborate were pur-
chased from Acros (Geel, Belgium). Sodium cyanoborohydride was purchased from Fluka
(Buchs, Switzerland). FDAA and FDVA were purchased from Thermo Fisher (Waltham,
MA, USA).
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3.2. Synthesis of N,N-Dimethyl-L-Cysteine

A total of 100 mg of L-cysteine was dissolved in 10 mL dilute HCl (pH 2.5) and
mixed with 8.25 mmol of sodium cyanoborohydride (NaBH3CN) for 10 min at 4 ◦C. Then,
8.25 mmol of formaldehyde (37% w/w) was added, stirred for 30 min, and the reaction
was monitored by ninhydrin staining on thin-layer chromatography plates. The DiCys
product was purified via silica-gel column chromatography using MeOH/CH2Cl2. DiCys
fraction was acidified to pH 2.5 by adding 0.1 N HCl and evaporated to dryness at 60 ◦C.
DiCys powder was dissolved in deionized water and quantified using the Ellman assay.
The reaction yield was 87%. HRMS (ESI/Q-TOF) m/z: M = C5H11NO2S, calculated for
[M + H]+ = 150.0583, found 150.0589.

3.3. Rice Water Preparation

Sushi rice samples were purchased from a local grocery store in Taiwan. In total, 50 g
of the dried rice was placed in 50 mL of deionized water. After shaking for 30 min, the
solution was passed through filter paper. The rice water was lyophilized and dissolved in
250 µL of 0.01% perchloric acid and filtered twice through 0.22 µm nylon filters. Finally,
we quantified total amines using a fluorescamine assay [48].
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Table 1. The ratios of D-amino acid to L-amino acid in rice water.

Amino Acids D/L Ratio

Ala 0.09
Arg 0.31
Lys 0.30
Phe 0.09
Ser 0.10
Tyr 0.12
Val 0.03
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3.4. Derivatization Reactions

The following reagents were prepared freshly before use: L, D-glutamic acid; L, D-
serine; L, D-alanine; L, D-arginine; D-valine; L, D-tyrosine; L, D-phenylalanine; and L,
D-lysine. These reagents were used as amino acid standards and dissolved in 0.01%
perchloric acid. The thiols (DiCys, NAC, NAP, IBLC, NBC, and BTCC) were dissolved
in methanol to 150 mM. The OPA solution (50 mM) was prepared by dissolving 1.5 mg
OPA in a mixture of 20 µL MeOH and 180 µL of 1 M borate buffer (pH 10.7); then, 5.03 mg
of FDAA was dissolved in 500 µL ACN (37 mM), and 5.55 mg of FDVA in 500 µL ACN
(37 mM).

After this, 20 µL of 50 mM OPA, 20 µL of 1 M borate buffer (pH 10.7), and 20 µL of
150 mM thiol were combined. We then added either 20 µL of 2.5 mM amino acid solution
or rice water sample, and the mixture was vortexed and incubated at 4 ◦C for 2 min under
dark conditions. The solution was diluted to a final volume of 200 µL with 50% ACN, and
20 µL of the mixture was injected into the HPLC.

A total of 20 µL of 37 mM Marfey’s reagent (FDAA or FDVA) was mixed with 20 µL
of 2.5 mM amino acid solution, 8 µL of 1 M NaHCO3 (pH 8.0), and 31.5 µL of acetone. The
mixture was incubated at 40 ◦C for 1 h, quenched by adding 6 µL of 2 M HCl, before 20 µL
of the mixture was injected into the HPLC.

3.5. LC-MS Analysis

The Agilent 1260 HPLC system (Santa Clara, CA, USA) was equipped with an
autosampler, a quaternary pump, a column oven, a UV-Vis absorbance detector, and
a fluorescence detector. The Hydrosphere C18 column (250 × 4.6 mm, 5 µm bead diame-
ter) used for separation was acquired from YMC (Kyoto, Japan). The aqueous mobile phase
(A) consisted of 2 mM ammonium bicarbonate (pH 8.0), whilst mobile phase B contained
7% MeOH in ACN. Elution was performed at a flow rate of 1 mL/min at 40 ◦C using the fol-
lowing gradient program: 0–5 min, 10%; 5–10 min, 10–12%; 10–20 min, 12–22%; 20–30 min,
22–38%; 30–40 min, 38–60%; 40–47 min, 60–83%; 47–50 min, 83–100%; 50–54 min, 100%;
54–57 min, 100–10%; 57–60 min, 10%. The HPLC was connected to Bruker micrOTOF-QII
(Bremen, Germany) operated in positive mode. Full MS spectra were recorded from (m/z)
100 to 600. ESI source parameters were nebulizer gas (nitrogen) at 0.3 bar, drying gas
(nitrogen) at 4 L/min, and 180 ◦C.

4. Conclusions

We systematically evaluated the suitability of six chiral thiols (DiCys, NAC, NAP,
IBLC, NBC, and BTCC) for OPA-assisted separation of amino acid enantiomers. The best
separation efficiencies in RP-HPLC were found with DiCys and IBLC. For fluorescence
detection, IBLC, NAC, and DiCys gave stronger signals while NAP only gave very weak
signals. All six reagents enhanced ionization efficiencies by 25–100 fold, useful for MS detec-
tion. Previously, IBLC has been a popular reagent for resolving chiral amino acids [30,49],
and our data supported its usefulness. More importantly, our study was the first to intro-
duce DiCys/OPA for enantiomeric separation, and its performance was comparable to
IBLC in our tests. DiCys also outperformed Marfey’s reagents FDAA and FDVA, which
were specially developed for chiral separation purposes. We conclude that DiCys is a highly
versatile reagent for resolving enantiomeric amines in chiral metabolomics experiments.

The greatest advantage of DiCys is its potential for multiplex heavy-isotope labeling.
Using well-established chemistries [35], heavy isotope versions from +1 Da to +9 Da may
be easily synthesized in one step using commercially available reagents. This may provide
10-plex labeling at an affordable cost for high-throughput metabolomics experiments.
Combined with fluorogenic detection and excellent chiral separation, DiCys is one of the
most versatile amine derivatization reagents currently available.

In real-world metabolomics profiling of rice water, DiCys provided better separation of
amine metabolites than IBLC. Both allowed us to detect twenty proteinogenic L-amino acids
and identify seven D-amino acids—Ala, Arg, Lys, Phe, Ser, Tyr, and Val. These D-amino
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acids are primarily associated with sweetness for humans [50,51], suggesting that D-amino
acids may be important for the gustatory taste. Moreover, D-amino acids synthesized by
gut microbiomes may affect our immune systems [52,53]. How D-amino acids in rice diet
may affect our gut microbiome–immune axis will warrant further investigation.

Supplementary Materials: The following are available online: Figures S1–S4 and Tables S1–S3.
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