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Abstract: Biocompatible nanoparticles (NPs) of hydrophobic poly(benzyl malate) (PMLABe) were
prepared by nanoprecipitation. The influence of nanoprecipitation parameters (initial PMLABe,
addition rate, organic solvent/water ratio and stirring speed) were studied to optimize the resulting
formulations in terms of hydrodynamic diameter (Dh) and dispersity (PDI). PMLABe NPs with a
Dh of 160 nm and a PDI of 0.11 were isolated using the optimized nanoprecipitation conditions. A
hydrophobic near infra-red (NIR) photothermally active nickel-bis(dithiolene) complex (Ni8C12) was
then encapsulated into PMLABe NPs using the optimized nanoprecipitation conditions. The size
and encapsulation efficiency of the NPs were measured, revealing that up to 50 weight percent (wt%)
of Ni8C12 complex can efficiently be encapsulated with a slight increase in Dh of the corresponding
Ni8C12-loaded NPs. Moreover, we have shown that NP encapsulating Ni8C12 were stable under
storage conditions (4 ◦C) for at least 10 days. Finally, the photothermal properties of Ni8C12-loaded
NPs were evaluated and a high photothermal efficiency (62.7 ± 6.0%) waswas measured with NPs
incorporating 10 wt% of the Ni8C12 complex.

Keywords: biocompatible nanoparticles; poly(benzyl malate); nanoprecipitation; metal-bis(dithiolene);
photothermal

1. Introduction

Since the “magic bullet” postulated by Paul Ehrlich at the beginning of the 20th
century [1], tremendous progress has been realized in the field of nanomedicine [2], as
highlighted by the increases number of nanocarriers already approved or under clinical
trials [3–5]. It should be noted that nanocarriers designed for use in humans have to answer
to very strict specifications. Indeed, from their administration to their total elimination,
nanocarriers and their constituents, have to: (i) be biodegradable or bioassimilable and
biocompatible; and (ii) have a low opsonin recognition, a high loading capacity and a
controlled drug release at the site of action. Among the nanovectors developed as drug
carriers, polymeric nanoparticles (NPs) have attracted a great deal of attention because
of the numerous possibilities of polymeric material modification allowing their physico-
chemical properties and those of corresponding nanocarriers to be adjusted to improve drug
loading capacity and overall efficiency [5–9]. To design biocompatible and biodegradable
nanocarriers, various natural and/or synthetic polymers have been used, among which the
best known and most widely used are poly(lactic acid) and its derivatives [3]. However,
these polyesters lack functional groups useful for further modifications. In this context,
poly(malic acid) (PMLA, Figure 1), developed specifically for biomedical applications, is of
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interest because: (i) it can be easily modified to introduce molecules of interest thanks to
its lateral carboxylic acid functions, (ii) it is known to be biodegradable into malic acid, a
Kreps’ cycle molecule, and (iii) it can be either biosynthesized [7,10] or synthesized through
ring opening polymerization (ROP) of β-substituted β-lactones using either lipases or
carboxylates as initiators [11–13].
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strong NIR absorbers with efficient photothermal properties under NIR irradiation in 
solid–state, in gel and in solution [22]. Recently, it has also been demonstrated that such 
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The encapsulation of photothermal agents into NPs is under investigation to develop
stimuli-responsive NPs for diagnostic, photothermal therapy or photo-controlled drug
release [14,15]. Light, as a stimulus, can enable good spatio-temporal activation for localized
diagnostic and treatment. Several types of molecular photothermal agents, such as cyanine,
Bodipy, croconaine and porphyrin derivatives have been encapsulated into organic NPs to
develop photoactive systems in the NIR region [16–20]. However, their uses are usually
limited due to their instability and their photobleaching upon laser irradiation [21].

Metal-bis(dithiolene) complexes are photothermally and photochemically stable,
strong NIR absorbers with efficient photothermal properties under NIR irradiation in
solid–state, in gel and in solution [22]. Recently, it has also been demonstrated that such
hydrophobic metal-bis(dithiolene) complexes can be encapsulated into the hydrophobic
inner-core of NPs based on PEG-b-PMLABe block copolymers for the controlled release of
doxorubicin under NIR laser irradiation [23].

In our quest to develop biocompatible NPs encapsulating metal-bis(ditiolene) phother
mally-active complexes for in vivo theranostic applications, we now turn on our attention
on the hydrophobic PMLABe polymer. Biocompatible PMLABe-based NPs are easily
and reproducibly obtained using the simple nanoprecipitation method, first described
by Thioune et al. [24], which consisted of the rapid addition of hydrophobic polymer or
amphiphilic block copolymer, solubilized into a water-miscible organic solvent, into an
aqueous medium that may or may not contain surfactants. PMLABe was shown to self-
assemble into aqueous medium without the presence of a surfactant, thus leading to stable
well-defined NPs [25]. Nevertheless, the influence of key nanoprecipitation parameters
such as stirring speed, addition rate, initial concentration of PMLABe into organic solvent
and the organic solvent/water ratio on NP characteristics (hydrodynamic diameters and
dispersity) was never evaluated. Moreover, the influence of initial number of hydrophobic
molecules to be encapsulated on the characteristics and encapsulation efficiency of NPs
has never been studied.

Consequently, in the present work, first, the influence of the previously cited param-
eters on the main characteristics (hydrodynamic diameter, dispersity and hydrophobic
photothermal complex encapsulation efficiency) of PMLABe73-based NPs were evaluated
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in order to select the best conditions leading to NPs with the lowest hydrodynamic diame-
ter (Dh) and dispersity (PDI). Second, after selecting the best nanoprecipitation parameters,
the encapsulation of a hydrophobic photothermal nickel-bis(dithiolene) Ni8C12 was inves-
tigated to determine the highest encapsulation efficiency (E.E.). Finally, the photothermal
properties of the PMLABe73 NPs incorporating the dithiolene complex were evaluated
under NIR laser irradiation in aqueous solutions.

2. Results and Discussion

For the present study, the selected poly(benzyl malate), PMLABe73, was synthesized
through the anionic ring opening polymerization (aROP) of benzyl malolactonate (MLABe),
a monomer prepared in four steps starting from DL-aspartic acid as described previously,
in the presence tetraethylammonium benzoate as an initiator (Scheme 1) [25].
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because of sample adsorption onto the SEC column and the different nature of the 
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The molecular structure and the weight average molar mass were ascertained by 1H
NMR spectroscopy and size exclusion chromatography (SEC) (Figures S1–S3). The theoret-
ical molar mass of PMLABe73 was fixed by the monomer (MLABe)/initiator (tetraethylam-
monium benzoate) ratio and chosen at 15,000 g/mol (number of repeating benzyl malate
units: 73). The polymerization reaction was followed by FT-IR, and was stopped when
all the monomer was consumed as highlighted by the disappearance of the lactonic band
at 1850 cm−1 (Figure S1). The purified PMLABe73 had good structure as highlighted by
its 1H NMR spectrum (Figure S2), and a measured weight average molar mass close to
the theoretical one (measured Mw was lower than the theoretical one because of sample
adsorption onto the SEC column and the different nature of the standards used) with a
dispersity showing a homogenous polymer sample (Figure S3).

This hydrophobic polymer was then used to set up the optimal nanoprecipitation
leading to well-defined, reproducible NPs.

2.1. Influence of the Principal Nanoprecipitation Conditions onto NPs Characteristics

The influence of four nanoprecipitation key parameters (stirring speed, addition rate,
initial concentration of PMLABe into organic solvent and the organic solvent/water ratio)
on the hydrodynamic diameter and dispersity of the pure PMLABe73-based NPs was
evaluated.

First, NP diameters and dispersity were measured by dynamic light scattering (DLS)
on an NP suspensions obtained by nanoprecipitation of PMLABe73 as a function of the
stirring rate. For this purpose, PMLABe73 solubilized into THF at a concentration of
5 mg/mL was added into water using a ratio of THF:water of 1:2 and an addition rate of
55.14 mL/h. The stirring speed was varied from 300 to 1200 rpm (round per minute), and
the NP suspensions thus obtained were analyzed by DLS (Figure 2a).
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As shown in Figure 2a, the hydrodynamic diameter of the NPs was slightly influenced
by the stirring rate applied during the nanoprecipitation, ranging from 160 to 200 nm, with
the lowest value being obtained at a stirring rate of 1200 rpm. The dispersity of the NP
suspensions varied from 0.07 to 0.17, with the lowest PDI obtained at a stirring rate of
600 rpm.

The stirring speed weakly affected the nanoparticle size. PDI, however, appears to be
more sensitive to the stirring speed. A high stirring speed results in the smallest NPs with
good PDI.

Subsequently, a stirring speed of 1200 rpm during the nanoprecipitation step was
chosen and the addition rate was varied between 55.14 mL/h, a very fast organic solution of
PMLABe73 addition into water, and 5.51 mL/h, a very slow organic solution of PMLABe73
addition into water (Figure 2b). As shown in Figure 2b, the NP hydrodynamic diameter
and dispersity values slightly increased with the decrease of the addition rate. The NP
diameter ranged from 160 nm at high addition speed to 180 nm at low addition speed, and
the PDI increased from 0.07 to 0.14. The lowest hydrodynamic diameters and dispersity
values were thus obtained from a very fast addition of the organic phase containing the
PMLABe73 in the aqueous phase. The addition rate of 55.14 mL/h was thus selected for
the rest of the present study.

An important parameter that might have a great influence on both the hydrodynamic
diameter and dispersity of NP suspensions is the initial hydrophobic polymer concentration
in the organic solvent. Indeed, a too high polymer concentration in the organic solvent
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and therefore in the aqueous phase might lead to the formation of aggregates, or even a
precipitate, while a too low polymer concentration in both the organic and aqueous phases
might lead to unstable nanoaggregates or only unimers in suspension into the aqueous
phase (Figure 2c). As shown by results shown in Figure 2c, both the hydrodynamic
diameter and dispersity slightly increased when the initial concentration of PMLABe73
varied from 1 to 10 mg/mL. However, it can be noticed that the size increase was very
limited, between 1 and 5 mg/mL.

Thus, the initial PMLABe73 concentration of 5 mg/mL in THF was kept to evaluate
the influence of the THF:water ratio on the NP characteristics (Figure 2d). As shown by
the results shown in Figure 2d, the THF:water ratio had a significant influence on the
two studied parameters. For the same initial PMLABe73 concentration, the hydrodynamic
diameter of the NPs decreased from 220 nm to 160 nm with an increase in the THF:water
ratio, while the dispersity of the resulting NP suspensions varied from 0.05 to 0.13. From
these results, it appeared that THF:water ratios of 1:2 and 1:5 might obtain NP suspensions
with acceptable hydrodynamic diameter and dispersity lower than 0.11 (Figure 2d).

Based on these experiments, it appears that the use of a stirring rate of 1200 rpm,
an addition speed of 55.14 mL/h, a PMLABe73 concentration of 5 mg/mL in THF and a
THF:water ratio lower than 1:2 is suitable to obtain good quality nanoparticle dispersion
with a hydrodynamic diameter around 160 nm and a low dispersity of around 0.11. Thus,
these conditions were kept to study the influence of the initial quantity of hydrophobic
molecules to be encapsulated on the characteristics and encapsulation efficiency of the NPs.

The PMLABe73 NPs obtained using the optimized nanoprecipitation conditions de-
tailed above were further analyzed by transmission electron microscopy (TEM) and the
images show that the nanoparticles had a spherical shape (Figure 3). The images also con-
firm a low dispersity, with a mean diameter of around 46 ± 14 nm. The average diameter
measured by TEM was lower than that measured by DLS because the hydration layer is
not visible by TEM.
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Figure 3. TEM images of the PMLABe73 NPs obtained at a stirring rate of 1200 rpm, a polymer
concentration of 5 mg/mL, an addition rate of 55.14 mL/h and a THF:water ratio of 1:2.

2.2. Evaluation of the Effect of Initial Amount of Photothermal Agent on NPs Characteristics and
Encapsulation Efficiency

Because these NP suspensions were first designed to allow the vectorization of hy-
drophobic photothermal agents to improve site-specific PhotoThermal therapy (PTT), the
nickel-bis(dithiolene) complex Ni8C12 (Figure 4) was selected to evaluated the effect of
initial quantity of this photothermal agent on NP characteristics.
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Figure 4. Structure of the selected photothermal agent Ni8C12.

Under laser irradiation in the NIR region Ni8C12 is a highly stable hydrophobic
photothermal agent. The photothermal properties of this metal complex were deeply
investigated in solution and it has a photothermal conversion efficiency of 48% under
940 nm laser irradiation in toluene [26].

Several PMLABe73 solutions at 5 mg/mL in THF with percentages in weight of
the photothermal complex Ni8C12 from 9.1 weight percent (wt%) to 50 wt% were pre-
pared. These organic solutions were further nanoprecipitated into water at addition rate of
55.14 mL/h and a stirring speed of 1200 rpm. The evolution of the hydrodynamic diameter,
dispersity and encapsulation efficiency (E.E.) was followed by DLS (Dh and PDI) and UV
analysis (E.E.). Figure 5 shows the obtained results.
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encapsulation efficiency (E.E.) as a function weight percent of Ni8C12 (for E.E., only one measurement
was performed).

As shown in Figure 5a, no significant differences were observed between NP suspen-
sions loading the photothermal agent Ni8C12, no matter the weight percentage selected.
However, the encapsulation efficiency (E.E.) decreased with the increase in the initial
quantity of Ni8C12 (Figure 5b).

The stability of the Ni8C12-loaded NPs was evaluated under storage conditions (4 ◦C).
NPs loaded with 10 wt% of Ni8C12 were prepared as described above, and their stability
was followed by measuring the evolution of their hydrodynamic diameter and dispersity
(Figure 6).

As shown by data gathered in Figure 6, the hydrodynamic diameter of the Ni8C12-
loaded NPs was stable under storage at 4 ◦C, while the dispersity fluctuated during the first
5 days. After th equilibration period of 5 days, no significant evolution of hydrodynamic
diameter and dispersity was noted on the NP suspensions stored at 4 ◦C.

These results show that large amounts of hydrophobic Ni8C12 complex can be encap-
sulated inside the NPs without affecting their diameter and polydispersity PMLABe is a
good biocompatible polymer to form high quality NP suspensions incorporating a large
amount of hydrophobic photothermal agents, showing a long stability at 4 ◦C compatible
with in vivo applications.
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2.3. Photothermal Properties of PMLABe-Based NPs Encapsulating the Photothermal Agent

To investigate the photothermal properties of these PMLABe-based NPs encapsulating
photothermal nickel-bis(dithiolene) complexes, we selected the NPs with one of the highest
encapsulation efficiencies (E.E.) and the lowest PDI, i.e., the NPs containing 10 wt% Ni8C12.
In addition, NPs with low complex content were used to demonstrate the high photo-
thermal efficiency of this class of molecular agents. The absorption spectrum of an aqueous
suspension of PMLABe NPs incorporating 10 wt% of Ni8C12 complex is presented in
Figure S4. A strong absorption band centered at 901 nm, extending from 740 nm up to
1200 nm was observed, and it confirms the encapsulation of the nickel-bis(dithiolene)
complex into the PMLABe NPs. In fact, this low-energy absorption band is characteristic
of neutral Ni-bis(dithiolene) complexes and is attributed to an electronic transition from
the HOMO (Lπ) of b1u symmetry to the LUMO (Lπ *-dxy) with a metallic character of
b2g symmetry [27]. The absorption band observed in the UV region is assigned to π–π*
transitions localized at the dithiolene ligands.

The photothermal properties of the resulting PMLABe NPs incorporating 10 wt%
Ni8C12 complex were evaluated by irradiating aqueous suspensions at different concentra-
tions with a continuous 880 nm laser with adjustable laser power from 1 to 3 W·cm−2. This
laser wavelength was selected for its close proximity to the absorption maximum of the
encapsulated complexes. The solutions were irradiated for 17 min (1020 s) to reach a steady
state. After turning off of the laser, the cooling regimes of the solutions were recorded
for another 17 min. Figure 7 shows a typical recorded temperature profile. The recorded
temperature increase (∆T) of a solution of Ni8C12 loaded PMLABe NPs at a concentration
of 300 µg·mL−1 under 880 nm laser irradiation and a laser power of 3 W·cm2 was 45.6 ◦C,
whereas the ∆T was only 7.6 ◦C with pure water, highlighting a clear photothermal effect.

The temperature increases were also recorded as a function of the laser power and
the concentration of NPs (Figure 8). The ∆T increased linearly with the concentration of
polymers, i.e., the concentration of the nickel-bis(dithiolene) complex, and the laser power,
reflecting that the temperature increase can be finely tuned by a proper choice of the laser
power and the concentration of the doped polymer.

The photothermal efficiency (η) value of the photothermal agent was calculated
according to the following equation described by Roper and al. based on the energy
balance of the system [28]:

η = (hS∆Tmax − Qwater)/I × (1 − 10−A) (1)

where h is the heat-transfer coefficient, S is the surface area of the container, ∆Tmax is the
maximum steady-state temperature change of the solution, I is the power of the laser and
A the absorbance at 808 or 940 nm. Qwater was measured independently and represents
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heat dissipated from light absorbed with a pure water solution. The hS value is derived
according to Equation (2):

τs = mwaterCwater/hS (2)

where τs is the sample system time constant, mwater (2 g) and Cwater (4.18 J·g−1·K−1) are
the mass and the heat capacity of water. τs is given by the slope of the linear fitting from
the time of the laser off state vs. –ln(∆T/∆Tmax).
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A photothermal efficiency (η) of 62.7± 6.0% (95% confidence interval, N = 9, σ8 = 7.9%,
t95%; σ8 = 2.306) was determined in the PMLABe NPs incorporating 10 wt% of Ni8C12
complex suspensions. It should be noted that the photothermal efficiency measurements
must be carried out on sufficiently diluted solutions to avoid colloidal diffusion which can
lead to an underestimation of the photothermal activity.

Finally, the stability of the photothermal NPs under laser irradiation was evaluated by
successive heating and cooling cycles. The suspensions were irradiated for 8 min, instead
of the 17 min previously used for the η measurements, explaining the lower maximal
temperature reached. The NPs appear to be highly stable after several heating and cooling
cycles since no fatigue in the temperature increase was observed (Figure 9). The increase
of the maximal temperature observed between each cycle was attributed to a slower
cooling speed than the heating speed. DLS measurements also confirm that the mean
hydrodynamic diameter of the photothermal NPs was weakly affected by prolonged laser
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irradiation. The average diameter of 123 nm (PDI 0.11) measured after laser irradiation
was close to that of the initial suspension (140 nm, PDI 0.12).
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3. Materials and Methods

A PMLABe73 polymer was synthesized as previously described [26]. Briefly, 1.4 mg of
tetraethyl ammonium benzoate (initiator) was first dried under vacuum overnight in order
to eliminate any trace of water. A total of 1.10 g of benzyl malolactonate (MLABe) was trans-
ferred using a cannula to the flask containing the initiator under a nitrogen atmosphere and
the temperature was set to 37 ◦C. The completion of the reaction was monitored by FT-IR
analysis (disappearance of the C=O lactonic band at 1850 cm−1, Figure S1). The polymer
was then dissolved in 1 mL of acetone and added dropwise into 200 mL of ethanol under
constant stirring. After the precipitation of the polymer, the supernatant was removed
and the recovered polymer was placed under vacuum overnight to remove all traces of
solvent. The weight average molar mass (Mw) and the dispersity (Ð = Mw/Mn) values of
the PMLABe73 were measured by size exclusion chromatography (SEC) in THF at 40 ◦C
(flow rate = 1.0 mL/min) on a GPC2502 Viscotek apparatus equipped with a Viscotek VE
3580 RI refractive index detector, a Viscotek TGuard guard column, Org 10 mm × 4.6 mm,
an LT5000 L gel column (for samples soluble in organic medium) 300 mm × 7.8 mm, and
GPC/SEC OmniSEC software. The polymer samples were dissolved in THF (2 mg/mL).
All elution curves were calibrated with polystyrene standards. PMLABe73 was also charac-
terized by 1H NMR (400 MHz, Acetone-d6), δ (ppm): 2.97 (m, 2nH); 5.14 (m, 1nH); 5.53 (m,
2nH); 7.33 (m, 5nH); 8.04–8.06 (d, 2H) (Figure S2). SEC (THF, 40◦C, polystyrene standards):
Mw = 9500 g/mol, Ð = 1.51 (Figure S3).

The nickel-bis(dithiolene) Ni8C12 complexes were prepared as previously reported [29].
Briefly, 3,4,3′,4′-tetra(dodecanoxy)benzyl was sulfureted with P4S10 in dioxane, followed
by hydrolysis of the intermediate phosphorous thioesters in the presence of a nickel salt
such as NiCl2·6H2O to directly afford the oxidized, neutral nickel complex. The green
compound was purified by column chromatography on silica gel and crystallized by slow
evaporation of dichloromethane from a CH2Cl2/MeOH mixture. 1H NMR (300 MHz,
CDCl3) δ 7.57 (d, J = 2.0 Hz, 4H), 7.43 (dd, J = 8.4, 2.0 Hz, 4H), 6.85 (d, J = 8.5 Hz, 4H),
4.16–3.90 (m, 16H), 1.96–1.72 (m, 16H), 1.64–1.13 (m, 144H), 0.88 (t, J = 6.5 Hz, 24H).

The molar absorptivity (ε) of Ni8C12 in THF at 940 nm was calculated using the
Beer–Lambert law by measuring the average absorbance at 940 nm of three solutions of
Ni8C12 in THF (C = 2 × 10−5 mol·L−1).
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Ultrapure water (18.2 Mohm) was produced on a Purelab Classic ELGA purification
system and NORMAPUR THF was purchased from VWR Chemicals and used as received.
A total of 300 (1H) MHz NMR spectra were recorded on a Bruker Avance 300 spectrometer
at room temperature using perdeuterated solvents as internal standards. FT-IR spectra were
recorded on an Avatar 320FT-IR Thermo Nicolet spectrometer between 500 and 4000 cm−1

by direct measurement.
PMLABe73-based NPs were prepared using the nanoprecipitation method described

by Thioune et al. based on the self-assembly of a hydrophobic polymer in aqueous
medium [25]. To this end, the polymer was first solubilized in THF, a water-miscible
organic solvent, and then rapidly added to an aqueous solution. As initial conditions, the
PMLABe73 (5 mg) was thus solubilized in 1 mL of THF and then rapidly added to 2 mL of
ultrapure water under vigorous stirring (1200 rpm) with an addition rate of 55.14 mL/h.
The mixture was then stirred at room temperature for 10 min. In this process, the hy-
drophobic polymer (PMLABe73) aggregated in contact with the water, thus leading to
the formation of NPs. The THF was then evaporated under reduced pressure (rotary
evaporator) and the final volume was adjusted to 2 mL by the addition of ultrapure water.

The set up used for these experiments is shown in Scheme 2. This set-up was main-
tained constant during the experiments. It consisted of a syringe pump to control the
addition rate and a stirring plate on which the stirring speed was displayed. The nanopre-
cipitations were performed in a 10 mL round-bottomed flask containing a 7 mm × 15 mm
olive-shaped PTFE magnetic stirring bar.
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Scheme 2. Drawing of the setup used, constructed from a Fisherbrand™ KDS100 Legacy syringe
pump and 2 mL plastic syringes with Sterican (0.80 mm × 120 mm) hypodermic needles for injection
into a 10 mL glass round-bottom flask placed over a Heidolph MR Hei-Tec magnetic stirrer.

The hydrodynamic diameters (Dh) and dispersity (PDI) of the prepared NPs were
measured by Dynamic Light Scattering (DLS) with a Zetasizer Nano-ZR90 (Malvern)
apparatus at 25 ◦C using a He-Ne laser at 633 nm and a detection angle of 90◦. DLS
measurements were performed five times.

The PMLABe73-based NPs encapsulating the photothermal molecular agent were
prepared as follows: 5 mg of PMLABe73 was solubilized in 800 µL of THF and 200 µL
of a solution of Ni8C12 in THF at a concentration of 2.5 mg/mL was then added so that
the amount of complex was 10% of the polymer mass (10%/polymer), i.e., 0.5 mg. This
solution (polymer + complex in THF) was then rapidly added to 2 mL of ultrapure water
under vigorous stirring. The mixture was stirred at room temperature for 10 min, then the
THF was evaporated under reduced pressure (rotary evaporator). The final volume was
adjusted to 2 mL by the addition of ultrapure water. The number of dithiolene complexes
effectively encapsulated into the PMLABe73-based NPs was determined by UV-vis-NIR
titration. After nanoprecipitation of the PMLABe73/Ni8C12 mixture, the water solution was
centrifuged and the supernatant was collected and evaporated. The residue was dissolved
in THF and properly diluted to determine the exact amount of Ni8C12 encapsulated in
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the whole preparation. For this purpose, the molar absorptivity (ε) of Ni8C12 in THF was
preliminarily determined (ε = 30,200 M−1·cm−1). The UV-Vis-NIR absorption spectra in
solution were recorded on a Shimadzu UV3600 Plus spectrophotometer. The samples were
placed in 1 cm path length quartz cuvettes.

Transmission electron microscopy (TEM) images were recorded using a Jeol 2100
microscope equipped with a Glatan Orius 200D camera using a 200 KeV accelerating
voltage on the THEMIS platform (ISCR–Rennes). Each sample was deposited on a Formvar-
carbon film-coated 300-mesh copper grid. After 6 min, the excess sample was removed
and a staining was realized with phosphotungstic acid (1 volumic percent).

For the photothermal studies, 2 mL of NP suspension was irradiated through a glass
cuvette with an 880 nm-wavelength semiconductor laser (Changchun New Industries
Optoelectronics Tech. CO. LTD., Changchun, China) for 17 min. The power intensity of
the laser could be adjusted externally (0–10 W). The output power was independently
calibrated using an optical power meter. A thermocouple with an accuracy of ±0.1 ◦C
connected to a STANDARD ST-8891E Moineau instruments thermometer was inserted into
the solution. The thermocouple was inserted at such a position that direct irradiation by
the laser was avoided. The temperature was measured every 1 s.

4. Conclusions

These investigations showed that the nanoprecipitation is a robust technique to pre-
pare well-defined PMLABe-based NPs with a mean hydrodynamic diameter between 120
and 180 nm and dispersity between 0.07 and 0.17. The hydrodynamic diameter and the
dispersity were weakly affected by the stirring speed and the addition rate but appeared to
be more sensitive to the initial concentration of PMLABe in the organic solvent and the
organic solvent:water ratio, even if the effects remained moderate. The initial conditions
used (PMLABe73 solubilized into THF at a concentration of 5.01 mg/mL added into water
using a THF:water ratio of 1:2 with an addition rate of 55.14 mL/h and a stirring speed
of 1200 rpm) are well optimized conditions to obtain PMLABe NPs with a hydrodynamic
diameter of 160 nm and a dispersity of 0.11. The present work has also revealed that
hydrophobic molecular agents can be efficiently incorporated into such PMLABe-based
NPs up to 50 wt% with high encapsulation efficiency, and that the obtained suspensions are
highly stable over time under 4 ◦C storage conditions. The prepared PMLABe-based NPs
encapsulating a molecular photothermal agent displayed good photothermal properties
under NIR irradiation. Strong temperature increases could, in fact, be generated without
disintegration of the NPs under laser irradiation. Such photothermal NPs constituted by
biodegradable polymers are stable and can be considered efficient photothermal agents;
they may be of great interest as contrast agents for photoacoustic bioimaging and as pho-
tothermal agents for therapy in biological media under NIR laser irradiation. Future studies
will be devoted to the study of PMLABe-based copolymers encapsulating other types of
metal-bis(ditholene) complexes for potential applications in nanomedicine.

Supplementary Materials: The following are available online. Figure S1: FT-IR spectrum of
A). MLABe, and B). PMLABe73; Figure S2: 1H NMR spectrum of PMLABe73 in CD3COCD3;
Figure S3: SEC of PMLABe73 (THF, 40◦C, 1mL/min, Polystyrene standards); Figure S4: Absorption
spectra of a suspensions of PMLABe NPs incorporating 10 wt% of Ni8C12 complexes in water
(Cpol = 300 µg·mL−1; CNi8C12 = 30 µg·mL−1). Details on the encapsulation efficiency measurements.
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