
molecules

Review

Spin Exchanges between Transition Metal Ions Governed by
the Ligand p-Orbitals in Their Magnetic Orbitals

Myung-Hwan Whangbo 1,2,* , Hyun-Joo Koo 1 and Reinhard K. Kremer 3

����������
�������

Citation: Whangbo, M.-H.; Koo,

H.-J.; Kremer, R.K. Spin Exchanges

between Transition Metal Ions

Governed by the Ligand p-Orbitals in

Their Magnetic Orbitals. Molecules

2021, 26, 531. https://doi.org/

10.3390/molecules26030531

Academic Editors:

Alessandro Stroppa and Igor Djerdj

Received: 19 December 2020

Accepted: 15 January 2021

Published: 20 January 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Chemistry and Research Institute for Basic Sciences, Kyung Hee University,
Seoul 02447, Korea; hjkoo@khu.ac.kr

2 Department of Chemistry, North Carolina State University, Raleigh, NC 27695-8204, USA
3 Max Planck Institute for Solid State Research, Heisenbergstrasse 1, D-70569 Stuttgart, Germany;

rekre@fkf.mpg.de
* Correspondence: whangbo@ncsu.edu; Tel.: +0f1-919-515-3464

Abstract: In this review on spin exchanges, written to provide guidelines useful for finding the spin
lattice relevant for any given magnetic solid, we discuss how the values of spin exchanges in transition
metal magnetic compounds are quantitatively determined from electronic structure calculations,
which electronic factors control whether a spin exchange is antiferromagnetic or ferromagnetic, and
how these factors are related to the geometrical parameters of the spin exchange path. In an extended
solid containing transition metal magnetic ions, each metal ion M is surrounded with main-group
ligands L to form an MLn polyhedron (typically, n = 3–6), and the unpaired spins of M are represented
by the singly-occupied d-states (i.e., the magnetic orbitals) of MLn. Each magnetic orbital has the
metal d-orbital combined out-of-phase with the ligand p-orbitals; therefore, the spin exchanges
between adjacent metal ions M lead not only to the M–L–M-type exchanges, but also to the M–L
. . . L–M-type exchanges in which the two metal ions do not share a common ligand. The latter can
be further modified by d0 cations A such as V5+ and W6+ to bridge the L . . . L contact generating
M–L . . . A . . . L–M-type exchanges. We describe several qualitative rules for predicting whether
the M–L . . . L–M and M–L . . . A . . . L–M-type exchanges are antiferromagnetic or ferromagnetic by
analyzing how the ligand p-orbitals in their magnetic orbitals (the ligand p-orbital tails, for short)
are arranged in the exchange paths. Finally, we illustrate how these rules work by analyzing the
crystal structures and magnetic properties of four cuprates of current interest: α-CuV2O6, LiCuVO4,
(CuCl)LaNb2O7, and Cu3(CO3)2(OH)2.

Keywords: Keywords: spin exchange; magnetic orbitals; ligand p-orbital tails; M–L–M exchange;
M–L . . . L–M exchange; α-CuV2O6; LiCuVO4; (CuCl)LaNb2O7; Cu3(CO3)2(OH)2

1. Introduction

An extended solid consisting of transition metal magnetic ions has closely packed
energy states (Figure 1a,b) so that, at a given non-zero temperature, the ground state as
well as a vast number of the excited states can be thermally occupied. The thermodynamic
properties such as the magnetic susceptibility and the specific heat of a magnetic system
represents the weighted average of the properties associated with all thermally occupied
states, with their Boltzmann factors as the weights. Such a quantity is difficult to calculate
if all states were to be determined by first principle electronic structure calculations.

To generate the states of a given magnetic system and subsequently calculate the
thermally-averaged physical property, a model Hamiltonian (also called a toy Hamiltonian)
is invariably employed [1–3]. A typical model Hamiltonian used for this purpose is the
Heisenberg-type spin Hamiltonian, Hspin, expressed as:

Hspin = ∑
i>j

JijŜi · Ŝj (1)
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where the energy spectrum of a magnetic system as the sum of the pairwise spin exchange
interactions JijŜi · Ŝj is approximated. The spin operators Ŝi and Ŝj (at the spin sites i and j,

respectively) can be treated as the spin vectors
→
S i and

→
S j, respectively, unless they operate

on spin states. If all magnetic ions of a given system are identical with spin S, each term
→
S i ·

→
S j can be written as

→
S i ·

→
S j = S2 cos θij where θij is the angle between the two spin

vectors. In such a case, Equation (1) is rewritten as:

Hspin = ∑
i>j

JijS
2cosθij (2)

Figure 1. (a,b) Allowed energy states of a magnetic solid. Between the lowest-lying excited state and
the ground state, there is no energy gap in (a), but a non-zero energy gap in (b). (c–e) Examples of
simple spin lattices: a uniform chain in (c); isolated spin dimers in (d); and an alternating chain in (e).
Here, all nearest-neighbor spins are antiferromagnetically coupled.

In a collinearly ordered spin arrangement of a magnetic solid, every two spin ar-
rangements are either ferromagnetic (FM, i.e., parallel (θij = 0◦)) or antiferromagnetic
(AFM, i.e., antiparallel (θij = 180◦)). With the definition of a spin Hamiltonian as in
Equation (1), AFM and FM spin exchanges are represented by positive and negative Jij
values, respectively. For any collinearly ordered spin arrangement, the total energy is
readily written as a function of the various spin exchanges Jij.

The energy spectrum allowed for a magnetic system, and hence its magnetic properties,
depend on its spin lattice. The latter refers to the repeat pattern of predominant spin
exchange paths, i.e., those with large |Jij| values. For example, between the ground and
the excited states, a uniform half-integer spin AFM chain (Figure 1c) has no energy gap
(Figure 1a), whereas an isolated AFM dimer (Figure 1d) and an alternating AFM chain
(Figure 1e) have a non-zero energy gap (Figure 1b). The spin lattice of a given magnetic
solid is determined by its electronic structure, which makes it interesting how to identify
the spin lattice of a magnetic solid on the basis of its atomic and electronic structures. Strong
AFM exchanges between magnetic ions are often termed magnetic bonds, in contrast to
chemical bonds determined by strong chemical bonding. Thus, Figure 1c represents a
uniform AFM chain, and Figure 1d represents isolated AFM dimers. The magnetic bonds
do not necessarily follow the geometrical pattern of the magnetic ion arrangement dictated
by chemical bonding.

In a magnetic solid, transition metal ions M often share a common ligand L to form
M–L–M bridges (Figure 2a). The spin exchange between the magnetic ions in an M–L–M
bridge has been termed “superexchange” [4–7]. Whether the spin arrangement between
two metal ions becomes FM or AFM, as described by the Goodenough–Kanamori rules
formulated in the late 1950s, depends on the geometry of the M–L–M bridge [5–9]. Ever
since, the Goodenough–Kanamori rules have greatly influenced the thinking of inorganic
and solid-state chemists dealing with magnetic systems. Since the early 2000s, it has become
increasingly clear that the magnetic properties of certain compounds cannot be conclusively
explained unless also one takes into consideration the spin exchanges of the M–L . . . L–M
(Figure 2b) or the M–L . . . A . . . L–M (Figure 2c) types, termed super-superexchanges [1–3],
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in which the metal ions do not share a common ligand. In the late 1950s, it was impossible
to imagine that spin exchanges could take place in such paths in which the M . . . M
distances were very long, because the prevailing concept of chemical bonding at that
time, mainly based on the valence bond picture [10], suggested that an unpaired electron
of a magnetic ion is accommodated in a pure d-orbital of M. In an extended solid, each
transition metal ion M is typically surrounded with main-group ligand atoms L to form an
MLn polyhedron (n = 3–6), and each unpaired electron of MLn resides in a singly-occupied
d-state (referred to as a magnetic orbital) of MLn, in which the d-orbital of M is combined
out-of-phase with the p-orbitals of L. In this molecular orbital picture, the unpaired spin
density is already delocalized from the d-orbital of M (the “magnetic orbital head”) to the
p-orbitals of L (the “magnetic orbital tails”) [1–3]. Thus, it is quite natural to think that the
spin exchange between the metal ions in an M–L . . . L–M path takes place through the
overlap between the ligand p-orbital tails present in the L . . . L contact. This interaction
between the p-orbital tails can be modified by the empty dπ orbitals of the d0 cation A
(e.g., V5+ and W6+) in an M–L . . . A . . . L–M exchange.

Figure 2. Three types of spin exchange paths associated with two magnetic ions: (a) M–L–M, (b) M–L . . . L–M, and (c) M–L
. . . A . . . L–M, where A represents a d0 cation such as V5+ or W6+. The M, L, and A are represented by red, blue, and green
circles, respectively.

Given that spin exchanges between magnetic ions are determined by the p-orbital
tails of their magnetic orbitals, it is not surprising that spin exchanges of the M–L . . .
L–M or M–L . . . A . . . L–M type can be stronger than those of the M–L–M type, and that
spin exchanges are generally strong only along a certain direction of the crystal structure.
Although this aspect has been repeatedly pointed out in review articles over the years [1–3],
it is still not infrequent to observe that experimental results are incorrectly interpreted
simply because spin lattices have been deduced considering only the M–L–M type spin
exchanges. Such an unfortunate mishap is akin to providing solutions in search of a
problem. In this review, written as a tribute to John B. Goodenough for his long and
illustrious scientific career culminating with the Nobel Prize in 2019, we review what
electronic factors govern the nature of the M–L–M, M–L . . . L–M and M–L . . . A . . . L–M
type spin exchanges, with an ultimate goal to provide several qualitative rules useful for
finding the spin lattice relevant for any given magnetic system.

Our work is organized as follows: Section 2 examines how to quantitatively determine
the values of spin exchanges by carrying out the energy-mapping analysis based on elec-
tronic structure calculations. Section 3 explores the electronic factors controlling whether a
spin exchange is AFM or FM. In Section 4, we derive several qualitative rules that enable
one to predict whether the M–L . . . L–M and M–L . . . A . . . L–M type spin exchanges are
AFM or FM by analyzing how their ligand p-orbitals are arranged in the exchange paths. To
illustrate how the resulting structure–property relationships operate, in Section 5 we exam-
ine the crystal structures and magnetic properties of α-CuV2O6, LiCuVO4, (CuCl)LaNb2O7
and Cu3(CO3)2(OH)2. Our concluding remarks are presented in Section 6.

2. Energy Mapping Analysis for Quantitative Evaluation of Spin Exchanges

This section probes how to define the relevant spin Hamiltonian for a given magnetic
system on a quantitative level. This requires the determination of the spin exchanges to
include in the spin Hamiltonian. For various collinearly ordered spin states of a given
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magnetic system, one finds the expressions for their relative energies in terms of the spin
exchange parameters Jij to evaluate, performs DFT+U [11] or DFT+hybrid [12] electronic
structure calculations for the ordered spin states to determine the numerical values for their
relative energies, and finally maps the two sets of relative energies to find the numerical
values of the exchanges.

2.1. Using Eigenstates

To gain insight into the meaning and the nature of a spin exchange, we examine a
spin dimer made up of two S = 1/2 ions (Figure 3a). The spin Hamiltonian describing the
energies of this dimer is given by:

Hspin = JŜi · Ŝj, (3)

Figure 3. (a) Spin dimer made up of two S = 1/2 ions at sites i and j. Each site has one unpaired spin.
The magnetic orbitals at the sites i and j are represented by φi and φj, respectively. (b) The bonding
and antibonding states, Ψ1 and Ψ2, resulting from the interactions between φi and φj, are split in
energy by ∆e. (c) The singlet and triplet electron configurations resulting from Ψ1 and Ψ2.

The spin states allowed for this dimer are the singlet and triplet states, ΨS and ΨT, respectively.

ΨT = |↑↑〉, |↓↓〉, (|↑↓〉+ |↓↑〉)/
√

2
ΨS = (|↑↓〉 − |↓↑〉)/

√
2

(4)

It can be readily shown that these states are the eigenstates of the spin Hamiltonian by
rewriting Equation (3) as:

Hspin = JŜizŜjz + (J/2)[Ŝi+Ŝj− + Ŝi−Ŝj+] (5)

where Ŝmz (m = i, j) is the z-component of Ŝm, while Ŝm+ and Ŝm− are the raising and
lowering operators associated with Ŝm, respectively. Then, it is found that:

HspinΨT = (J/4)ΨT
HspinΨS = (−3J/4)ΨS

(6)

Thus:
∆Eeigen = ET − ES = 〈ΨT|Hspin|ΨT〉 − 〈ΨS|Hspin|ΨS〉 = J (7)

Therefore, the spin exchange J is related to the energy difference between the singlet
and triplet states of the spin dimer, as illustrated in Figure 4a.
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The legends HS and BS in (b) refer to the high-symmetry and broken-symmetry states, respectively.

2.2. Using Broken-Symmetry States

In general, it is not an easy task to find the eigenstates of a general spin Hamiltonian
(e.g., Equation (1)), which makes it difficult to relate the spin exchanges to the energy differ-
ences between the eigenstates of a magnetic system. However, the energies for the broken-
symmetry (BS) states (i.e., the non-eigenstates) of a spin Hamiltonian are easy to evaluate.
For the magnetic dimer in Section 2.1, the high-spin (HS) state, ΨHS = |↑↑〉 or |↓↓〉, which
has an FM spin arrangement, is an eigenstate of the spin Hamiltonian (Equation (3)).
However, the low-spin (LS) state can be expressed as:

ΨLS = |↑↓〉 or |↓↑〉

This state has an AFM spin arrangement and is the BS state of the spin Hamiltonian.
Using Equation (5), it is found that:

Hspin|↑↓〉 = (−J/4) |↑↓〉+ (J/2) |↓↑〉
Hspin|↓↑〉 = (−J/4) |↓↑〉+ (J/2) |↑↓〉 (8)

Therefore:
〈↑↓|Hspin|↑↓〉 = 〈↓↑|Hspin|↓↑〉 = −J/4 (9)

From Equations (6) and (9), we obtain:

∆EBS = 〈ΨHS|Hspin|ΨHS〉 − 〈ΨBS|Hspin|ΨBS〉 = J/2 (10)

The spin exchange J is related to the energy difference between the states including
the BS states (Figure 4b).

2.3. Energy Mapping

For a general spin lattice, the energy difference between any two states (involving BS
and HS states) can be readily determined by using the spin Hamiltonian of Equation (3),
which is expressed as a function of unknown constants Jij. To evaluate the spin exchanges Jij
of a general spin Hamiltonian, it is necessary to numerically determine the relative energies
of various ordered spin states. This is done by performing DFT+U [11] or DFT+hybrid [12]
electronic structure calculations for the collinearly ordered spin states of a magnetic system
on the basis of the electronic Hamiltonian, Helec. These types of calculations ensure that the
electronic structures calculated for various ordered spin states have a bandgap as expected
for a magnetic insulator. Suppose that N different spin exchange paths Jij are considered to
describe a given magnetic solid. If one considers N + 1 ordered spin states, for example,
one can determine N different relative energies ∆Espin(i) (i = 1, 2,···, N) expressed in terms
of N different spin exchanges Jij (in principle, one could use more spin states, but at least
N+1 are necessary; using more would produce error bars and increase the precision of
the analysis). By carrying out electronic structure calculations for the N+1 ordered spin
states of the magnetic system, one obtains the numerical values for the N different relative
energies ∆Eelec(i) (i = 1, 2,···, N). Then, by equating the ∆Espin(i) (i = 1, 2, ···, N) values
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to the corresponding ∆Eelec(i) (i = 1, 2, ···, N) values, the N different spin exchanges Jij
are obtained.

∆Espin(i) (i = 1, 2, ···, N)↔ ∆Eelec(i) (i = 1, 2, ···, N) (11)

The spin exchanges discussed so far are known as Heisenberg exchanges. There
are other variants of interactions between spins which, though weaker than Heisenberg
exchanges in strength, are needed to explain certain magnetic properties not covered by the
symmetrical Heisenberg exchanges. They include Dzyaloshinskii–Moriya exchanges (or
antisymmetric exchanges) and asymmetric exchanges [2,3]. The energy-mapping analysis
based on collinearly ordered spin states allows one to determine the Heisenberg spin
exchanges only. To evaluate the Dzyaloshinskii–Moriya and asymmetric spin exchanges,
the energy-mapping analysis employs the four-state method [2,13], in which non-collinearly
ordered broken-symmetry states are used. A further generalization of this energy-mapping
method was developed to enable the evaluation of other energy terms that one might
include in a model spin Hamiltonian [14].

3. Qualitative Features of Spin Exchange

A spin Hamiltonian appropriate for a given magnetic system is one that consists
of the predominant spin exchange paths. Such a spin Hamiltonian can be determined
by evaluating the values of various possible spin exchanges for the magnetic system by
performing the energy-mapping analysis as described in Section 2. If the spin lattice is
chosen without quantitatively evaluating its spin exchanges, one might inadvertently
choose a spin lattice irrelevant for the interpretation of the experimental data. When
simulating the thermodynamic properties using a chosen set of spin exchanges, the values
of the spin exchanges are optimized until they provide the best possible simulation even
if the chosen spin lattice is incorrect from the viewpoint of electronic structure. Thus,
in principle, more than one spin lattice might provide an equally good simulation. In
interpreting the experimental results of a magnetic system with a correct spin lattice, it is
crucial to know what electronic and structural factors control the signs and the magnitudes
of spin exchanges.

3.1. Parameters Affecting Spin Exchanges

To examine what energy parameters govern the sign and magnitude of a spin ex-
change, we revisit the spin exchange of the spin dimer (Figure 3a) by explicitly considering
the electronic structures of its singlet and triplet states. For simplicity, we represent each
spin site with one magnetic orbital. As will be discussed in Section 5, the nature of the
magnetic orbital plays a crucial role in determining the sign and magnitude of a spin
exchange. We label the magnetic orbitals located at the spin sites i and j as φi and φj,
respectively (Figure 3a). These orbitals overlap weakly, and hence interact weakly, to form
the in-phase and out-of-phase states, Ψ1 and Ψ2, respectively, with energy split ∆e between
the two (Figure 3b). The overlap integral 〈φi|φj

〉
between φi and φj is small for magnetic

systems, so Ψ1 and Ψ2 are well approximated by:

Ψ1 ≈

(
φi +φj

)
√

2
, Ψ2 ≈

(
φi −φj

)
√

2
(12)

For simplicity, it is assumed here that the in-phase combination (i.e., the bonding
combination) is described by the plus combination, which amounts to the assumption that
the overlap integral 〈φi|φj

〉
is positive. The energy split ∆e is approximately proportional

to the overlap integral:
∆e ∝ 〈φi|φj

〉
(13)
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In understanding the qualitative features describing the electronic energy difference
between the singlet and triplet states, ∆Eelec, and hence the spin exchange J, it is necessary
to consider two other quantities. One is the on-site repulsion Uii:

Uii = 〈φi(1)φi(2)|1/r12| φi(1)φi(2)〉 (i = 1, 2) (14)

where the product φi(m)φi(m) is the electron density ρii(m) associated with the orbital
φi(m) occupied by electron m (=1, 2). Thus, Uii is the self-repulsion when the orbital φi
is occupied by two electrons. If the spin sites i and j are identical in nature, the on-site
repulsion Ujj at the site j is the same as Uii, therefore it is convenient to use the symbol U to
represent both Uii and Ujj (i.e., U = Uii = Ujj). The other quantity of interest is the exchange
repulsion Kij between φi and φj:

Kij =
〈
φi(1)φj(2)|1/r12| φj(1)φi(2)

〉
(15)

This is the self-repulsion arising from the overlap electron density:

ρij(m) = φi(m)φj(m) (m = 1, 2) (16)

To illustrate the difference between the overlap integral and overlap electron density,
we consider the px and py atomic orbitals located at a same atomic site (Figure 5a,b). The
product pxpy represents the overlap electron density ρxy, which consists of four overlapping
regions (Figure 5c); two regions of positive electron density (colored in pink) and two
regions of negative electron density (colored in cyan). The overlap integral 〈px|py

〉
is the

sum of these four overlap electron densities, which adds up to zero.

Figure 5. The overlap density resulting from two p-orbital at a given atomic site: (a) a px orbital;
(b) a py orbital; and (c) the overlap density between the two orbitals, ρxy = pxpy. The pink and cyan
regions have positive and negative values, respectively.

The exchange repulsion between px and py is written as:

Kxy = 〈px(1)px(2)|1/r12| py(1)py(2)
〉

(17)

Equation (17) is given by the sum of the self-repulsion resulting from each overlapping
region of the overlap electron density ρxy (Figure 5c). Each overlapping region, be it positive
or negative, leads to a positive repulsion; therefore, the exchange repulsion Kxy is positive.

3.2. Two Competing Components of Spin Exchange

In Figure 3c, the configuration ΨT represents the triplet state of the dimer while
the configurations ΨS1 and ΨS2 each represent a singlet state. For a magnetic system,
for which ∆e is very small, the singlet state is not well described by ΨS1 alone and is
represented by a linear combination of ΨS1 and ΨS2, i.e., ΨS = c1ΨS1 + c2ΨS2, where
the mixing coefficients c1 and c2 are determined by the interaction between ΨS1 and
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ΨS2, namely, 〈ΨS1|Helec|ΨS2〉 = Kij, as well as by the energies of ΨS1 and ΨS2, that
is, 〈ΨS1|Helec|ΨS1〉 = E1 and 〈ΨS2|Helec|ΨS2〉 = E2. After some lengthy manipulations
under the condition, Kij >> |E1−E2|, which is satisfied for magnetic systems, the en-
ergy difference between the triplet and singlet states, and hence the spin exchange J, is
expressed as [15]:

J = ET − ES ≈ −2Kij +
(∆e)2

U
(18)

Note that the spin exchange J consists of two components, J = JF + JAF, where:

JF = −2Kij < 0

JAF = (∆e)2

U > 0
(19)

The magnitude of the FM component | JF| increases as the exchange repulsion Kij

increases, namely, as the overlap density
∣∣∣ρij

∣∣∣ = ∣∣∣φiφj

∣∣∣ increases. The strength of the
AFM component JAF increases with increasing the energy split ∆e, i.e., with increasing the
overlap integral 〈φi|φj

〉
, while JAF decreases as the on-site repulsion U increases.

As already discussed in Section 2, the quantitative values of spin exchanges can be
accurately determined by the energy-mapping analysis based on first-principles DFT+U
or DFT+hybrid calculations. The purpose of Equations (18) and (19) is not to determine
the numerical value of any spin exchange, but to show that each spin exchange J consists
of two competing components, JF and JAF, that the overall sign of J is determined by
which component dominates, and which electronic parameters govern the strength of
each component.

4. Spin Exchanges Determined by the Ligand p-Orbitals in the Magnetic Orbitals

To illustrate how spin exchanges of transition metal magnetic ions are controlled
by the ligand p-orbitals in their magnetic orbitals, we consider various spin exchanges
involving Cu2+ (d9, S = 1/2) ions as an example, which typically form axially elongated
CuL6 octahedra (Figure 6a). The energies of their d-states are split as (xz, yz) < xy < 3z2–r2

< x2–y2 (Figure 6b) so that the magnetic orbital of each Cu2+ ion is represented by the
x2–y2 state, in which the Cu x2–y2 orbital induces σ-antibonding with the p-orbitals of four
equatorial ligands L (Figure 6c). In this section, we examine how the various types of spin
exchanges associated with Cu2+ ions are controlled by the ligand p-orbitals of their x2–y2

states. The major component of the magnetic orbital of a Cu2+ ion (Figure 6d) is the Cu
d-orbital (i.e., the magnetic orbital “head”), and the minor component the ligand p-orbitals
(i.e., the magnetic orbital “tail”). In this section, we probe how the nature and strengths of
M–L–M, M–L . . . L–M and M–L . . . A . . . L–M-type exchanges are determined by how the
ligand p-orbital tails of their magnetic orbitals are arranged in their exchange paths.

Figure 6. (a) An axially elongated CuL6 octahedron. (b) The electron configuration of a Cu2+(d9) ion at an axially elongated
octahedral site. (c) The magnetic orbital of the Cu2+(d9) ion at an axially elongated octahedral site, which is contained in the
CuL4 equatorial plane. (d) The head and tails of the magnetic orbital.
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4.1. M–L . . . L–M and M–L . . . A . . . L–M Spin Exchanges

The next-nearest-neighbor (nnn) spin exchange Jnnn (Figure 7a) that occurs in a CuL2
(L = O, Cl, Br) ribbon chain, is obtained by sharing the opposite edges of CuL4 square
planes. This spin exchange is an example of a strong Cu–L . . . L–Cu exchange (Figure 7b),
when the L . . . L contact distance is in the vicinity of the van der Waals distance. The
latter will be assumed to be the case in what follows. The two magnetic orbitals interact
across the L . . . L contacts through the overlap of their p-orbital tails. This through-space
interaction leads to the in-phase and out-of-phase combinations (Ψ+ and Ψ−, respectively)
of the magnetic orbitals (Figure 7c), with energy split ∆e between the two (Figure 7d). This
makes the AFM component JAF non-zero. The overlap electron density associated with the
interacting p-orbital tails is nearly zero, so the FM component JF is practically zero. As a
result, Jnnn becomes AFM.

Molecules 2019, 24, x FOR PEER REVIEW 10 of 29 

 
through-space interaction in the M–L…L–M exchange leads to a weak overall M–
L…A…L–M spin exchange due to the effect of the through-bond interaction (Figure 8c). 

An example of very weak Cu–L…L–Cu exchange is shown in Figure 9a, in which the 
two magnetic orbitals are arranged such that the p-orbital tails are orthogonal to each 
other (Figure 9b), and their overlap vanishes so that the energy split between +ψ  and −ψ  
vanishes (i.e., Δe = 0) (Figure 9c) so that JAF = 0. In addition, JF should vanish because the 
overlap electron density resulting from the p-orbital tails will be practically zero. Then, 
the spin exchange J would be zero. If the L…L contact of such an M–L…L–M exchange 
path is bridged by a d0 transition metal cation A to form an M–L…A…L–M spin exchange 
(Figure 9d), the −ψ  state of the M–L…L–M path interacts with the empty dπ orbital of A, 
thereby lowering its energy (Figure 9e) while that of the +ψ  state is unchanged. Thus, 
when the M–L…L–M exchange has a very weak through-space interaction, the through-
bond interaction induces the large energy split Δe, so that the overall M–L…A…L–M spin 
exchange becomes strong (Figure 9f). 

In short, a strong M–L…L–M exchange becomes a weak M–L…A…L–M exchange 
when the L…L linkage is bridged by d0 cations, while a weak M–L…L–M exchange 
becomes a strong M–L…A…L–M exchange when the L…L linkage is bridged by a d0 
cation. 

 
Figure 7. (a) The next-nearest-neighbor spin exchange Jnnn in a CuL2 ribbon chain made up of edge-
sharing CuL4 square planes. (b) A case of strong Cu–L…L–Cu exchange, which represents the 
next-nearest-neighbor exchange Jnnn. (c) The in-phase and out-of-phase combinations of the two 
magnetic orbitals, +ψ  and −ψ , respectively, associated with the Cu–L…L–Cu exchange. (d) The 
large energy split Δe resulting from the through-space (TS) interaction in the Cu–L…L–Cu 
exchange becomes small in the Cu–L…A…L–Cu exchange as a result of the through-bond (TB) 
interaction that occurs with the −ψ  state. (e) A Cu–L…A…L–Cu exchange generated when each 

L…L contact is bridged by a d0 metal cation A. (f) The bonding interaction of the −ψ  state with 
the dπ orbital of A. 

Figure 7. (a) The next-nearest-neighbor spin exchange Jnnn in a CuL2 ribbon chain made up of edge-sharing CuL4 square
planes. (b) A case of strong Cu–L . . . L–Cu exchange, which represents the next-nearest-neighbor exchange Jnnn. (c) The
in-phase and out-of-phase combinations of the two magnetic orbitals, Ψ+ and Ψ−, respectively, associated with the Cu–L
. . . L–Cu exchange. (d) The large energy split ∆e resulting from the through-space (TS) interaction in the Cu–L . . . L–Cu
exchange becomes small in the Cu–L . . . A . . . L–Cu exchange as a result of the through-bond (TB) interaction that occurs
with the Ψ− state. (e) A Cu–L . . . A . . . L–Cu exchange generated when each L . . . L contact is bridged by a d0 metal cation
A. (f) The bonding interaction of the Ψ− state with the dπ orbital of A.

In the M–L . . . L–M spin exchange Jnnn discussed above, there are two equivalent
exchange paths due to the ribbon structure. Suppose that each L . . . L contact of the M–L
. . . L–M exchange path is bridged by a d0 transition metal cation A (e.g., V5+ and W6+)
to form an M–L . . . A . . . L–M spin exchange (Figure 7e). We now analyze the relative
strengths of the M–L . . . L–M and M–L . . . A . . . L–M spin exchanges. Across the L . . .
L contact of the M–L . . . L–M path, the p-orbital tails of L are combined in-phase in Ψ+,
but out-of-phase in Ψ−. Thus, the empty dπ orbital of the cation A interacts in-phase with
Ψ− (Figure 7f) to lower the energy of Ψ−, but it does not interact with Ψ+, therefore the
energy of Ψ+ is unaffected. This selective interaction of the bridging d0 cation A with
the L . . . L contact of the M–L . . . L–M spin exchange has a dramatic consequence on
the strength of an M–L . . . A . . . L–M spin exchange. When the M–L . . . L–M exchange
has a strong through-space interaction, the through-bond interaction reduces the large
energy split ∆e to a small value, thereby weakening the overall M–L . . . A . . . L–M spin
exchange (Figure 7d).
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Another example of a strong M–L . . . L–M exchange occurs when the p-orbital tails
of L are pointed to each other along the L . . . L contact (Figure 8a). The through-space
interaction between the magnetic orbitals leads to the in-phase and out-of-phase combina-
tions, Ψ+ and Ψ−, respectively (Figure 8b), with a large energy split ∆e between the two
(Figure 8c) and a negligible overlap electron density between the interacting p-orbital tails.
As a result, the M–L . . . L–M spin exchange becomes AFM. If the L . . . L contact of an M–L
. . . L–M exchange path is bridged by a d0 transition metal cation A to form an M–L . . . A
. . . L–M spin exchange (Figure 8d), only the Ψ− state of the M–L . . . L–M path interacts
effectively with one of the empty dπ orbitals of A (Figure 8e). Thus, a strong through-space
interaction in the M–L . . . L–M exchange leads to a weak overall M–L . . . A . . . L–M spin
exchange due to the effect of the through-bond interaction (Figure 8c).

Figure 8. (a) A case of strong Cu–L . . . L–Cu spin exchange where the two Cu–L bonds leading to the L . . . L contacts are
linear. (b) The in-phase and out-of-phase combinations (Ψ+ and Ψ−, respectively) of the two magnetic orbitals, resulting
from the through-space (TS) interactions. (c) The energy split ∆e between Ψ+ and Ψ− is large when the overlap between
the p-orbital tails is large. (d) A Cu–L . . . A . . . L–Cu exchange generated when the L . . . L contact is bridged by a d0 metal
cation A. (e) The bonding interaction of the Ψ− state with the dπ orbital of A. (f) The large energy split ∆e resulting from
the through-space (TS) interaction in the Cu–L . . . L–Cu exchange becomes small in the Cu–L . . . A . . . L–Cu exchange as a
result of the through-bond (TB) interaction that occurs primarily with the Ψ− state.

An example of very weak Cu–L . . . L–Cu exchange is shown in Figure 9a, in which
the two magnetic orbitals are arranged such that the p-orbital tails are orthogonal to each
other (Figure 9b), and their overlap vanishes so that the energy split between Ψ+ and Ψ−
vanishes (i.e., ∆e = 0) (Figure 9c) so that JAF = 0. In addition, JF should vanish because the
overlap electron density resulting from the p-orbital tails will be practically zero. Then, the
spin exchange J would be zero. If the L . . . L contact of such an M–L . . . L–M exchange
path is bridged by a d0 transition metal cation A to form an M–L . . . A . . . L–M spin
exchange (Figure 9d), the Ψ− state of the M–L . . . L–M path interacts with the empty dπ

orbital of A, thereby lowering its energy (Figure 9e) while that of the Ψ+ state is unchanged.
Thus, when the M–L . . . L–M exchange has a very weak through-space interaction, the
through-bond interaction induces the large energy split ∆e, so that the overall M–L . . . A
. . . L–M spin exchange becomes strong (Figure 9f).
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Figure 9. (a) A case of weak Cu–L . . . L–Cu spin exchange, where the two Cu–L bonds leading
to the L . . . L contacts are orthogonal. (b) The in-phase and out-of-phase combinations (Ψ+ and
Ψ−, respectively) of the two magnetic orbitals. (c) The vanishing energy split ∆e resulting from the
through-space (TS) interaction in the Cu–L . . . L–Cu exchange is enhanced in the Cu–L . . . A . . .
L–Cu exchange as a result of the through-bond (TB) interaction that occurs primarily with the Ψ−
state. (d) A Cu–L . . . A . . . L–Cu exchange generated when the L . . . L contact is bridged by a d0

metal cation A. (e) The in-phase interaction of the Ψ− state with the dπ orbital of A.

In short, a strong M–L . . . L–M exchange becomes a weak M–L . . . A . . . L–M exchange
when the L . . . L linkage is bridged by d0 cations, while a weak M–L . . . L–M exchange
becomes a strong M–L . . . A . . . L–M exchange when the L . . . L linkage is bridged by a
d0 cation.

4.2. M–L–M Spin Exchanges

The Goodenough–Kanamori rules cover these types of spin exchanges [5–9]. For the
sake of completeness, we discuss these types of spin exchanges from the viewpoint of the
ligand p-orbital tails on the basis of Equations (18) and (19). Let us consider a Cu2L6 dimer
resulting from two CuL4 square planes obtained by sharing an edge (Figure 10a), where the
ligand L can be O, Cl, or Br. The two magnetic orbitals associated with the nearest-neighbor
(nn) spin exchange Jnn, presented in Figure 10b, interact at the bridging ligands L of the
M–L–M paths. If the CuL4 units have an ideal square planar shape, the ∠M–L–M angle
becomes 90◦ so that the two p-orbital tails at the bridging ligands L are orthogonal to each
other. Thus, as discussed in Section 3, the overlap integral between them is zero. Therefore,
the in-phase and out-of-phase combinations of the two magnetic orbitals (Figure 10b) is
not split in energy, so ∆e = 0 (Figure 10c) and JAF = 0. However, the overlap electron
density between the two p-orbital tails at the bridging ligand L is not zero, i.e., JF > 0. Thus,
the M–L–M spin exchange becomes FM. When the ∠M–L–M angle deviates from 90◦

(Figure 10d), the two p-orbital tails at the bridging ligands L are no longer orthogonal
to each other so the overlap integral between them is non-zero. Therefore, the in-phase
and out-of-phase combinations of the two magnetic orbitals (Figure 10e) differ in energy,
so ∆e > 0 (Figure 10f) and JAF is non-zero. The overlap electron density between the two
p-orbital tails is non-zero, so JF is non-zero. Thus, whether the spin exchange is FM or
AFM depends on which component, JF or JAF, dominates, which in turn depends on the
∠M–L–M angle φ. Typically, the angle φ where FM changes to AFM is slightly greater
than 90◦ due to the involvement of the ligand s-orbital [15], which is commonly neglected
for simplicity.
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Figure 10. (a–c) A Cu–L–Cu spin exchange with ∠M–L–M angle φ = 90◦: This occurs in a Cu2L6 dimer shown in (a), which
is made up of two coplanar CuL4 square planes by sharing an edge. The in-phase and out-of-phase combinations of the two
magnetic orbitals in (b), and the energy split ∆e between the two in (c). (d–f) A Cu–L–Cu spin exchange with ∠M–L–M
angle φ > 90◦: This occurs when two non-coplanar CuL4 square planes are corner-shared as in (d). The in-phase and
out-of-phase combinations of the two magnetic orbitals in (e), and the energy split ∆e between the two in (f). (g–k) Effect of
the molecular anions OH− on the spin exchange of the edge-sharing Cu2O6 dimer: the shared edge consists of two OH−

ions in (g); the p-orbital tail of one OH− ligand in a CuO4 square plane expected if the OH− is treated as O2− in (h); the
three oxygen lone pairs associated with an isolated OH− in (i); the tilting of the O 2p-orbital tail by mixing two oxygen lone
pairs in (j); and the arrangement of the tilted O 2p-tails at the bridging O atoms of the Cu2O6 dimer in (k).

So far in our discussion, it has been implicitly assumed that each main-group ligand
L exists as a spherical anion (e.g., each O as an O2− anion, and each Cl atom as a Cl−

anion). However, this picture is not quite accurate when the ligand atom makes a strong
covalent bonding with another main-group element to form a molecular anion such as
OH−. Suppose that each O atom on the shared edge of the CuO6 (L = O) dimer is not
a O2− but an OH− anion (Figure 10g). Then, the ligand p-orbital tail on that O cannot
be the p-orbital pointed along one lobe of the Cu x2–y2 orbital (Figure 10h) because it is
incompatible with the O–H bonding, which has three directional O lone pairs depicted
in Figure 10i. To satisfy both the strong covalent-bonding with H and the weak covalent-
bonding with Cu, the O lone pair of OH− tilts slightly toward one lobe of the x2–y2 orbital
(Figure 10j). As a result, the ligand p-orbital tails, arising from the two magnetic orbitals at
the bridging O atoms, are not orthogonal as in Figure 10b but become more parallel to each
other (Figure 10k). As a result, the spin exchange between the two Cu2+ ions in Figure 10g
becomes AFM (see below). Another molecular anion of interest is the carbonate ion CO3

2−,
in which each O atom makes a strong covalent bond with C; therefore, the O atoms of
CO3

2− should not be treated as isolated O2− anions in their coordination with transition
metal cations. In general, the presence of molecular anions such as OH− and CO3

2− in
a magnetic solid makes it difficult to deduce, on a qualitative reasoning, what its spin
lattice would be. This is where the quantitative energy-mapping analysis is indispensable,
because it does not require any qualitative reasoning.

4.3. Qualitative Rules for Spin Exchanges Based on the p-Orbital Tails of Magnetic Orbitals

In a magnetic orbital of an MLn polyhedron, the d-orbital of M dictates by its symmetry
which p-orbitals of the ligands L become the p-orbital tails. From the viewpoint of orbital
interaction, a spin exchange between magnetic ion is none other than the interaction
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between their magnetic orbitals. The latter is caused by the interaction between their
p-orbital tails, not by that between their d-orbital heads. In other words, a spin exchange
is not a “head-to-head” interaction but a “tail-to-tail” interaction. By considering these
tail-to-tail interactions described above, we arrive at the following four qualitative rules
governing the nature and strengths of the M–L . . . L–M and M–L . . . A . . . L–M type
exchanges under the assumption that the L . . . L contact distance is in the vicinity of the
van der Waals distance:

(1) When the p-orbital tails generate a large overlap integral but a small overlap electron
density, the M–L . . . L–M exchange is AFM.

(2) When the p-orbital tails generate a small overlap integral but a large overlap electron
density, the M–L . . . L–M exchange is FM.

(3) When the p-orbital tails generate neither a non-zero overlap integral nor a non-zero
overlap electron density, the M–L . . . L–M exchange vanishes.

(4) When the M–L . . . L–M exchange is strongly AFM, the corresponding M–L . . . A . . .
L–M becomes a weak exchange. When the M–L . . . L–M exchange is a weak exchange,
the corresponding M–L . . . A . . . L–M becomes strongly AFM.

These rules on the M–L . . . L–M and M–L . . . A . . . L–M exchanges should be used
together with the Goodenough–Kanamori rules in choosing a proper set of spin exchanges
to evaluate using the energy-mapping analysis based on DFT+U or DFT+hybrid calcula-
tions. In principle, this analysis can provide quantitative values for any possible exchanges
of a given magnetic system. However, even this quantitative tool cannot determine the
value of any spin exchange unless it is included in the set of spin exchanges for the energy-
mapping analysis. It is paramount to consider in detail the structural features governing
the strengths of spin exchanges in order not to miss exchange paths crucial for defining the
correct spin lattice of a given solid.

5. Representative Examples

In Section 4, we analyzed the structural features governing the nature of the three types
of spin exchanges, i.e., M–L–M, M–L . . . L–M and M–L . . . A . . . L–M, which occur in vari-
ous magnetic solids. This section will discuss the occurrence of these exchanges in actual
magnetic solids by analyzing the crystal structures and magnetic properties of four rep-
resentative magnetic solids, α-CuV2O6, LiCuVO4, (CuCl)LaNb2O7 and Cu3(CO3)3(OH)3.
α-CuV2O6, LiCuVO4, and (CuCl)LaNb2O7 were chosen to show that correct spin lattices
can be readily predicted by the qualitative rules of Section 4.3, although they have to be
confirmed by performing the energy-mapping analyses. Azurite Cu3(CO3)2(OH)2 was cho-
sen to demonstrate that the spin lattice of a certain magnetic system cannot be convincingly
deduced solely on the basis of the qualitative rules. The magnetic ions of such a system
are coordinated with molecular anions in which the first-coordinate main-group ligands
L make strong covalent bonds with other main-group elements (e.g., H in the OH− ion,
and C in the CO3

2− ion). In such a case, use of the energy-mapping analysis is the only
recourse with which to find the spin lattice correct for a given system.

5.1. Two-Dimensional Behavior of α-CuV2O6

The magnetic properties of α-CuV2O6 were initially analyzed in terms of a one-
dimensional (1D) spin S = 1/2 Heisenberg chain model with uniform nearest-neighbor
AFM spin exchange [16–18]. However, a rather high Néel temperature of ~22.4 K indicated
the occurrence of a substantial interchain spin exchange of the order of 50% of the intra-
chain exchange, casting serious doubts on the applicability of a simple chain description.
α-CuV2O6 consists of CuO4 chains, made up of edge-sharing CoO6 octahedra, which run
along the a-direction (Figure 11a). If the two axially elongated Cu–O bonds are removed
from each CuO6 octahedron to identify its CuO4 equatorial plane containing the magnetic
orbital, one finds that each CuO4 chain of edge-sharing CoO6 octahedra becomes a chain
of stacked CuO4 square planes (Figure 11b). In each stack-chain along the a-direction,
adjacent CuO4 square planes are parallel to each other such that the adjacent magnetic
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orbitals generate neither a non-zero overlap nor a non-zero overlap electron density. The
same is true between adjacent CuO4 square planes along the b-direction (Figures 11c and
12a). However, between adjacent CuO4 square planes along the c-direction, an almost
linear Cu–O . . . O–Cu contact occurs with O . . . O distance of 2.757 Å (Figures 11c and
12b), slightly shorter than the van der Waals distance of 2.80 Å. Thus, this Cu–O . . . O–Cu
spin exchange along the c-direction (Jc) should be substantial.

Figure 11. Crystal structure of α-CuV2O6, where the blue spheres represent the Cu atoms, and the large and small red
spheres the V and O atoms, respectively: (a) A CuO4 chain along the a-direction, which is made up of edge-sharing,
axially-elongated, CuO6 octahedra. (b) A stack of CuO4 square planes along the a-direction, which results from the chain
of edge-sharing CuO6 octahedra by removing the axial Cu-O bonds. (c) Stacks of CuO4 square planes running along the
c-direction. (d) One sheet of CuO4 stack chains parallel to the a–b plane condensed with chains of corner-sharing VO4

tetrahedra on one side of the sheet. (e) Stacking of CuV2O6 layers forming α-CuV2O6.

Figure 12. Spin exchange paths and spin lattice of α-CuV2O6: (a) Spin exchange along the b-direction,
Jb; (b) Spin exchange along the c-direction, Jc; (c) Spin exchange along the a-direction, Ja; (d) Spin
exchange along the (a + b)-direction, Ja+b; (e) Rectangular spin lattice made up of Jc and Ja+b.
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Each sheet of CuO4 stack-chains parallel to the a–b plane is corner-shared with V2O6
chains, above and below the sheet (Figure 11d), to form layers of composition CuV2O6
(Figure 11e). Each V2O6 chain is made up of corner-sharing VO4 tetrahedra containing V5+

(d0, S = 0) ions. As a consequence, adjacent CuO4 square planes are corner-shared with
V2O6 chains (Figure 12c). The adjacent CuO4 square planes are not bridged by a single
VO4 tetrahedron; therefore, the spin exchange along the a-direction, Ja, is expected to be
weak. Along the (a + b)-direction, two adjacent CuO4 square planes are bridged by VO4 to
form two Cu–O . . . V5+ . . . O–Cu paths, in which the two Cu–O bonds in each path have a
near-orthogonal arrangement.

As already discussed (Figure 10), this Cu–O . . . V5+ . . . O–Cu spin exchange should be
substantial due to the through-bond effect of the V5+ cation. Consequently, the spin lattice
of α-CuV2O6 must be described by a two-dimensional (2D) rectangular lattice defined
by Ja+b and Jc. In support of this analysis, the energy-mapping analysis based on DFT+U
calculations with Ueff = 4 eV show that Ja+b and Jc are the two dominant spin exchanges,
and are nearly equal in magnitude, namely, Ja+b = 86.8 K and Jc/Ja+b = 0.88 [19]. In
agreement with this finding, one re-investigation of the magnetic properties of α-CuV2O6
clearly attested a 2D S = 1/2 rectangular spin lattice model with an anisotropy ratio of
0.7 [19]. The magnetic structure determined from neutron powder diffraction data was in
best agreement with these DFT+U calculations. In terms of chemical bonding, α-CuV2O6
consists of CuV2O6 layers stacked along the c-direction. There is no chemical bonding
between adjacent layers; only van der Waals interactions. In terms of magnetic bonding,
however, α-CuV2O6 consists of 2D spin lattices parallel to the (a + b)-c plane. There is
negligible magnetic bonding perpendicular to this plane.

5.2. One-Dimensional Chain Behavior of LiCuVO4

LiCuVO4 consists of axially elongated CuO6 octahedra, which form edge-sharing
CuO4 chains along the b-direction, which are corner-shared with VO4 tetrahedra containing
V5+ (d0, S = 0) ions (Figure 13a). When the axial Cu–O bonds are deleted, one finds CuVO4
layers in which the CuO2 ribbon chains are corner-shared by VO4 tetrahedra (Figure 13b). A
perspective view of a single CuVO4 layer approximately along the c-direction (Figure 13c)
shows that each VO4 tetrahedron bridges two neighboring CuO2 ribbon chains. Thus, the
spin exchanges of interest are the nearest-neighbor exchanges Jnn of the Cu–O–Cu type
and the next-nearest-neighbor spin exchange Jnnn of the Cu–O . . . O–Cu type within each
CuO2 ribbon chain as well as the interchain spin exchange Ja along the a-direction of the
Cu-O . . . V5+ . . . O-Cu type (Figure 13d).

In the absence of the V5+ ion, the exchange Ja would be similar in strength to Jnnn.
However, the O . . . V5+ . . . O bridges will weaken the strength of Ja, as discussed in
Figure 7. Furthermore, there is no spin exchange path between adjacent CuVO4 layers.
Consequently, the spin lattice of LiCuVO4 is a 1D chain running along the b-direction,
as is the 1D ribbon chain. The major cause for the occurrence of the 1D chain character
is the Cu–O . . . V5+ . . . O–Cu spin exchange, which nearly vanishes because the effect
of the through-space interaction is canceled by that of the through-bond interaction. In
agreement with this reasoning, DFT+U calculations with Ueff = 4 eV show that Jnnn is
strongly AFM (i.e., 208.7 K), while Jnn and Ja are weakly FM (i.e., Jnn/Jnnn = −0.12, and
Ja/Jnnn = −0.08) [20].

As in the case of α-CuV2O6, the magnetic properties of LiCuVO4 were initially
analyzed in terms of a 1D chain with uniform nearest-neighbor Heisenberg spin ex-
change [21–23]. The magnetic susceptibility of LiCuVO4 showed a typical broad maximum
at about 28 K, characteristic for 1D behavior with strong intrachain spin exchanges, whereas
long-range AFM ordering was detected only below ~2.2 K. The need to modify this simple
1D description was brought about by Gibson et al., who determined the magnetic structure
of LiCuVO4 from single crystal neutron diffraction [24]. They found that the spins of
each CuO2 ribbon chain had a cycloid structure (Figure 14a) with adjacent Cu2+ moments
making an angle of slightly less than 90◦. The incommensurate cycloid structure is ex-
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plained by spin frustration due to competing exchange Jnn, which is FM, and Jnnn, which
is AFM [20,24–26]. If all the spins of a CuO2 ribbon chain were to be collinear, the ribbon
chain cannot satisfy all nearest-neighbor exchanges FM and all next-nearest-neighbors AFM
simultaneously. Thus, the spin arrangement of the CuO2 ribbon chain is spin-frustrated. To
reduce the extent of this spin frustration, the spins of the ribbon chain adopt a noncollinear
spin arrangement. The noncollinear spin arrangement observed for LiCuVO4 has a cycloid
structure in each ribbon chain, in which the nearest-neighbor spins are nearly orthogonal
to each other, while the next-nearest-neighbor spins generate a near-AFM arrangement
(Figure 14a) [24,25]. In a cycloid, each successive spin in the CuO2 ribbon chain rotates in
one direction by a certain angle. Thus, a cycloid structure is chiral in nature, which means
that the alternative cycloid structure opposite in chirality but identical in energy is equally
probable (Figure 14b) [27].

Figure 13. (a) The crystal structure of LiCuVO4 viewed approximately along the b-direction, where the blue and green
spheres represent the Cu and Li atoms, respectively, and the large and small red spheres represent the V and O atoms,
respectively. (b) The CuVO4 lattice resulting from LiCuVO4 by removing the axial Cu–O bonds and Li atoms. (c) A
perspective view of a single CuVO4 layer approximately along the c-direction. (d) The spin exchange paths present in a
single CuVO4 layer, where the labels nn, nnn and a represent the spin exchanges Jnn, Jnnn and Ja, respectively.

Figure 14. (a,b) Two cycloids, which are opposite in chirality but are identical in energy.

In general, when the temperature is lowered below a certain temperature, TSDW, a
moderately spin-frustrated magnetic system gives rise to two cycloids of opposite chirality
with equal probability. The resulting superposition of the two (Figure 15a–c) leads to a state
known as a spin density wave (SDW) [27,28]. The latter becomes transverse if the preferred
spin orientation at each magnetic ion is perpendicular to the SDW propagation direction,
but becomes longitudinal if the spin orientation prefers the SDW propagation direction
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(Figure 15d–f). When the temperature is lowered further below TSDW, the electronic
structure of the spin-lattice may relax to energetically favor one of the two chiral cycloids so
that one can observe a cycloid state at a temperature slightly below TSDW. The repeat unit
of a cycloid is determined by the spin frustration present in the magnetic system, therefore
a cycloid phase is typically incommensurate.

Figure 15. The superposition of the two chiral cycloids in (a); (b) leads to the transverse SDW in (c). The superposition of
the two chiral cycloids in (d); (e) leads to the longitudinal SDW in (f). For ease of illustration, the angle of the spin rotation
was taken to be 45◦.

In the cycloid state, LiCuVO4 exhibits ferroelectricity [29–31], because a cycloid struc-
ture lacks inversion symmetry. The polarization of LiCuVO4 can be switched with magnetic
and electric fields [32–35]. LiCuVO4 has attracted special attention for the possibility of
inducing new phases by applying external magnetic fields. Saturation of the Cu moments
occurs above ~45 T, depending on the orientation of the crystal [36]. The competition
between Jnn and Jnnn in LiCuVO4 is considered a promising setting for unusual bond
nematicity and spin nematic phases close to the full magnetic saturation [37–45].

5.3. Spin Gap Behavior from the CuO2Cl2 Perovskite Layer of (CuCl)LaNb2O7

(CuCl)LaNb2O7 consists of CuClO2 and LaNb2O7 layers, which alternate along the
c-direction by sharing their O corners [46]. Each LaNb2O7 layer represents two consecutive
layers (Figure 16a) of LaNbO3 perovskite. The building blocks of the CuClO2 layer are the
CuCl4O2 octahedra with their O atoms at the apical positions forming a linear O–Cu–O
bond aligned along the c-direction. Suppose that the CuCl4 equatorial planes are square in
shape with four-fold rotational symmetry around the O–Cu–O axis (Figure 16b,c), and such
CuCl4O2 octahedra corner-share their Cl atoms to form a perovskite layer CuClO2. Then,
the highest-occupied d-states of each CuCl4O2 octahedron are degenerate and have three
electrons to accommodate, causing a Jahn–Teller instability of each CuCl4O2 octahedron.
In the CuClO2 layer, the CuCl4O2 octahedra must undergo a cooperative Jahn–Teller
distortion. In the tetragonal structure (SG, P4/mmm) of (CuCl)LaNb2O7 [46], each Cl
site is split into four positions (Figure 16d). A Jahn–Teller distortion available to such a
CuCl4O2 octahedron is an axial-elongation, in which one linear Cl–Cu–Cl bond is shortened
while lengthening the other linear Cl–Cu–Cl bond, as shown in Figure 16e, which can be
simplified as in Figure 16f. By choosing one of the four split positions from each Cl site,
it is possible to construct the CuClO2 layer with a cooperative Jahn–Teller distortion, as
presented in Figure 17a, which shows the Cu–Cl–Cu–Cl zigzag chains running along the
b-direction with the plane of each CuCl2O2 rhombus perpendicular to the a–b plane. Each
Cl site has four split positions when all these four possibilities occur equally.

With the local coordinate axes of each CuCl2O2 rhombus taken as in Figure 17a, then
the magnetic orbital of the Cu2+ ion can be described as the x2–z2 state in which Cu x2–z2

orbital makes σ-antibonding interactions with the p-orbitals of O and Cl. Extended Hückel
tight binding calculations [47] for the CuCl2O2 rhombus show that in the magnetic orbital
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of the CuCl2O2 rhombus, the Cu2+ ion is described by 0.646 (3z2–r2) − 0.272 (x2–y2). The
latter is rewritten as:

0.646(3z2 − r2)− 0.272(x2 − y2) ≈ [2(3z2 − r2)− (x2 − y2)]/3
∝ (z2 − x2) + 0.25(x2 − y2) ≈ (z2 − x2)

Figure 16. (a) One LaNb2O7 layer of tetragonal (CuCl)LaNb2O7, where the La atoms at the 12 coordinate sites formed by
eight corner-sharing NbO6 octahedra are not shown for simplicity. (b) Perspective and (c) projection views of a CuCl4O2

octahedron with 4-fold rotational symmetry around the O–Cu–O axis aligned along the c-direction. (d) A projection view of
a CuClO2 layer of tetragonal (CuCl)LaNb2O7 in which every Cl site is split into four positions. (e,f) Projection views of the
Jahn–Teller distorted CuCl4O2 octahedron, where the axially elongated Cu–Cl bonds are shown in (e), but are not shown in
(f) for simplicity.

Figure 17. The structures of the CuClO2 layer with cooperative Jahn–Teller distortion in (a) the
tetragonal and (b) orthorhombic phases of (CuCl)LaNb2O7. The Cl–Cu–Cl unit is linear in the
tetragonal structure, but is slightly bent in the orthorhombic structure. The latter has an important
consequence on the spin exchanges.

Namely, it is dominated by the (z2–x2) character. This is consistent with the NMR/NQR
study of (CuCl)LaNb2O7, which showed that the d-state of the Cu2+ ion is mostly charac-
terized by 3z2–r2 with some contribution of x2–y2 [48].

We note that the CuCl2O2 rhombuses of each Cu–Cl–Cu–Cl zigzag chain make
Cu–Cl . . . Cl–Cu contacts of Cl . . . Cl = 4.03 Å with its adjacent zigzag chains (Figure 17a).
The Cl p-orbitals of the (z2–x2) magnetic orbital (Figure 18a) are pointed approximately
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along the Cl . . . Cl contact, so their overlap is substantial. In all other spin exchange paths,
the Cl p-orbitals in their magnetic orbitals are not arranged to overlap well. Thus, only the
exchange along the Cu–Cl . . . Cl–Cu direction is expected to be substantially AFM. Then
the spin lattice of the CuClO2 layer would be 1D Heisenberg uniform AFM chains running
along the Cu–Cl . . . Cl–Cu directions, e.g., the (a + 2b)- and (a − 2b)-directions (Figure 17a).
Uniform AFM chains do not have a spin gap, but the magnetic properties of (CuCl)LaNb2O7
reveal a spin gap behavior [49]. Thus, the tetragonal structure of (CuCl)LaNb2O7 is in-
consistent with experiment. If one discards the possibility of cooperative Jahn-Teller
distortions, one can generate several nonuniform clusters made up of distorted CuCl4O2
octahedra [50]. However, the latter would lead to several different spin gaps rather than
that observed by Kageyama et al. [49], who showed that the magnetic susceptibility of
(CuCl)LaNb2O7 can be approximated by an isolated spin dimer model with the intradimer
distance of approximately 8.8 Å, which corresponds to the fourth-nearest-neighbor Cu . . .
Cu distance. The spin-gap behavior of (CuCl)LaNb2O7 was surprising, given the belief of
the square lattice arrangement of Cu2+ ions is spin-frustrated [49,51,52]. This led to several
DFT studies designed to find the precise crystal structure of (CuCl)LaNb2O7 [53–55], lead-
ing to the conclusion that an orthorhombic structure of space group Pbam is correct for
(CuCl)LaNb2O7 [54,55].

Figure 18. (a) The magnetic orbital lying in the CuCl2O2 rhombus plane, which is best described as
the x2–z2 state. (b–d) Three different types of the magnetic orbital arrangements found in the CuClO2

layers of orthorhombic CuCl(LaV2O7). In this idealized representation of the CuCl2O2 rhombus, the
slight bending of the Cl–Cu–Cl linkage is neglected for clarity.

The cause for the spin gap behavior of (CuCl)LaNb2O7 is found from its orthorhombic
structure (SG, Pbam) (Figure 17b) [56,57], in which the arrangement of the Cu2+ ions are
no longer tetragonal so that adjacent Cu–Cl–Cu–Cl zigzag chains have two kinds of Cl
. . . Cl contacts (i.e., 3.83 and 4.23 Å), and the Cu–Cl . . . Cl–Cu chains become alternating
with shorter and longer Cl . . . Cl contacts. Furthermore, although the Cl–Cu–Cl unit of
each CuCl2O2 rhombus is slightly bent in the orthorhombic structure, the latter has an
important consequence on the spin exchanges (see below).

The six spin exchange paths J1–J6 of the CuClO2 layer are depicted in Figure 19a. In
the spin exchanges J1 and J2, the Cl p-orbital tails are approximately pointed toward each
other (Figure 18b). J3 is a Cu–Cl–Cu exchange with ∠Cu–Cl–Cu angle somewhat greater
than 90◦ (namely, 109.0◦). In J4 and J5, the Cl p-orbital tails are approximately orthogonal
to each other (Figure 18c), but they differ due to the bending in the Cl–Cu–Cl units. In the
J6 path, the Cl p-orbital tails are not pointed toward to each other but are approximately
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parallel to each other (Figure 18d). In the exchange paths J1 and J2, the Cu–Cl . . . Cl linkage
is more linear and the Cl . . . Cl contact is shorter in J1. This suggests that J1 is more strongly
AFM than J2, thus the spin lattice of the CuClO2 layer is an alternating AFM chain. In
agreement with this argument, the energy-mapping analysis based on DFT+U calculations
shows that J1 = 87.5 K and J2/J1 = 0.18. In addition, this analysis reveals that J3–J6 are all
FM with J3/J1 = −0.39, J4/J1 = −0.38, J5/J1 = −0.14 and J5/J1 = −0.04 [56]. It is of interest
to note that the strongest AFM exchange J1 is the fourth-nearest-neighbor spin exchange,
with a Cu . . . Cu distance of 8.53 Å [49]. As shown in Figure 19b, the spins of the CuClO2
layer form alternating AFM chains. Chemically, the Cu–Cl zigzag chains run along the
a-direction. In terms of magnetic bonding, however, the spins of the CuClO2 layer consist
of J1-J2 alternating AFM chains not only along the (a + 2b)-direction but also along the (−a
+ 2b)-direction. This explains why the magnetic susceptibility of (CuCl)LaNb2O7 exhibits a
spin gap behavior. Due to the bending of the Cl–Cu–Cl units, the Cl p-orbital tail of one
CuCl2O2 rhombus is pointed toward one Cl atom (away from both Cl atoms) of the other
rhombus in the J4 (J5) path. This makes J4 more strongly FM than J5 is. J3 is strongly FM
despite the fact that the ∠Cu–Cl–Cu angle is somewhat greater than 90◦, probably because
the Cl 3p orbital tails are more diffuse than the 2p-orbital tails of the second-row ligand
(e.g., O). If the spin lattice of the CuClO2 layer is described by using the three strongest
spin exchanges, namely, the AFM exchange J1 as well as the FM exchanges J3 and J4, then
the resulting spin lattice is topologically equivalent to the Shastry–Sutherland spin lattice
(Figure 19c) [56,58].
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5.4. Two Dimensional Magnetic Character of Azurite Cu3(CO3)2(OH)2

Early interests in the magnetic properties of the mineral Azurite, Cu3(CO3)2(OH)2,
in which Cu2+ ions are coordinated with molecular anions CO3

2− and OH−, focused
mainly on the paramagnetic AFM ordering transition of the Cu2+ moments that occurs
at about 1.86 K [59–63]. Renewed interests in the properties of Cu3(CO3)2(OH)2 arose
from low-temperature high-field magnetization measurements by Kikuchi et al. [64], who
detected a magnetization plateau extending over a wide field interval between 16 and 26 T
or 11 and 30 T, depending on the crystal orientation. Only one-third of the Cu magnetic
moments saturate in these field ranges whereas complete saturation of all Cu moments
occurs above 32.5 T [64]. In Cu3(CO3)2(OH)2, the Cu2+ ions form CuO4 square planar units
with the CO3

2− and OH− ions. In each CuO4 unit, two O atoms come from two CO3
2−

ions, and the remaining two O atoms from two OH− ions. These CuO4 units form Cu2O6
edge-sharing dimers, which alternate with CuO4 monomers by corner-sharing to make a
diamond chain (Figure 20a,b). Guided by the crystal structure, Kikuchi et al. [64] explained
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their results on Cu3(CO3)2(OH)2 by considering spin frustration in the diamond chains
(Figure 20b), to conclude that all spin exchange constants (J1, J2 and J3) in the diamond
chains are AFM with J2 being the dominant exchange, and that the moment of the Cu2+ ion
of the monomer is susceptible to external magnetic fields because its spin exchanges with
the two adjacent dimers (i.e., 2J1 + 2J3) are nearly canceled. In questioning this scenario,
Gu et al. and Rule et al. suggested that one of the monomer–dimer spin exchanges is FM,
implying the absence of spin frustration [65–67]. The diamond chain picture had to be
revised when the spin exchanges of Cu3(CO3)2(OH)2, evaluated using the energy-mapping
analysis [68], showed that, although Kikuchi et al.’s description of the diamond chain was
correct, Cu3(CO3)2(OH)2 is a 2D spin lattice made up of inter-linked diamond chains.
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In the three-dimensional (3D) structure of Cu3(CO3)2(OH)2, the diamond chains are
interconnected by the CO3

2− ions. Using the projection view of the diamond chain along
the chain direction (Figure 20c), the 3D structure of Cu3(CO3)2(OH)2 can be represented as
in Figure 20d, which shows that each CO3

2− ion bridges three different diamond chains.
The spin exchange paths of interest for Cu3(CO3)2(OH)2 are J1–J3 in each diamond chain
(Figure 20b), as well as J4–J6 between diamond chains (Figure 20e). In the diamond unit
of Azurite (Figure 21a), the two bridging O atoms of the edge-sharing dimer Cu2O6 form
O–H bonds. Thus, the spin exchange J2 (Figure 20b) between the two Cu2+ ions in the edge-
sharing dimer Cu2O6 are expected to be strongly AFM, as discussed in Section 4.2. The
spin exchanges J1 and J3 of the diamond (Figure 20b) would be similar in strength because
their two Cu–O–Cu exchange paths are nearly equivalent due to the near perpendicular
arrangement the CuO4 monomer plane to the Cu2O6 dimer plane (Figure 21a). Due to the
perpendicular arrangement of the two planes, J1 and J3 are expected to be weakly AFM
and smaller than J2. What is difficult to predict without quantitative calculations is the
relative strengths of the inter-chain exchanges J4–J6 (Figure 20e). For example, we consider
the J4 exchange path shown in Figure 21b. The O pπ and O pσ orbitals of the CO3

2− ion
interact with the p-orbital tail of the Cu2+ ion magnetic orbital (Figure 21c), which depend
not only on the ∠C–O–Cu bond angle, but also on the dihedral angles associated with
the spin exchange path (e.g., ∠O–C–O–Cu dihedral angle). It is necessary to resort to the
energy-mapping analysis based on DFT+U calculations to find the relative strengths of the
spin exchanges J1–J6. The arrangement of these spin exchange paths in Azurite is presented
in Figure 22a. Results of our analysis for J1–J4 are summarized in Table 1.
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Table 1. Values of the spin exchanges J1–J6 determined by DFT+U calculations with Ueff = 4 and 5 eV.

Ueff = 4 Ueff = 5

J2 241.5 K 194.6 K

J3/J2 0.28 0.27

J1/J2 0.21 0.19

J4/J2 0.17 0.16

J5/J2 −0.01 −0.02

J6/J2 0.04 0.03

Our energy-mapping analysis shows that J5 and J6 are negligibly weak compared
with J1–J4. The latter four exchanges are all AFM; J2 is the strongest while J1, J3 and J4 are
comparable in magnitude, which is in support of Kikuchi et al.’s deduction of the spin
exchanges J1–J3 for the diamond chain. The values of J1–J4 are smaller from the DFT+U
calculations with Ueff = 5 eV than from those with Ueff = 4 eV. This is understandable be-
cause the JAF component decreases with increasing the on-site repulsion U (Equation (19)).
The strengths of the exchanges J1–J4 decrease in the order, J2 >> J3 ≈ J1 > J4. Thus, in the
spin lattice of Azurite, the diamond chains defined by the intrachain exchanges J2, J3 and J1
interact by the interchain exchange J4 (Figure 22b). Therefore, the spin lattice of Azurite
is a 2D spin lattice described by the exchanges J1–J4 depicted in Figure 22c. J3 and J1 are
practically equal in strength; therefore, use of a symmetrical diamond chain (i.e., with
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the approximation J3 ≈ J1) would be a good approximation. In any event, it is crucial
not to neglect the interchain exchange J4 because it is comparable in magnitude to J3 and
J1. Alternatively, the spin lattice can be described in terms of the alternating AFM chains
defined by J2 and J4. The 2D spin lattice consists of these alternating AFM chains that are
spin-frustrated by the interchain exchanges J1 and J3.

The importance of interchain exchange indicating that the correct spin lattice of Azurite
is not a diamond chain but a 2D net in which the diamond chains are interconnected by
the spin exchange spin J4 was recognized by Kang et al. in 2009 [68]. This finding, though
controversial and vigorously disputed in the beginning, is now accepted as a prerequisite
for correctly describing Azurite [69]. The presence of an interchain exchange naturally
allows one to understand a long-range AFM order and explain gapped modes in the spin
dynamics along the diamond chains [70], and the magnetic contribution to the thermal
conductivity [71].

6. Concluding Remarks

In this review, we discussed the theoretical foundations of the concept of spin ex-
changes and analyzed which electronic factors affect their signs and strengths. Noting that
a spin exchange between two magnetic ions is mediated by the ligand p-orbital tails, we
derived several qualitative rules for predicting whether a given M–L . . . L–M or M–L . . .
A . . . L–M exchange would be AFM or FM by inspecting the arrangement of their ligand
p-orbital tails in the exchange paths. As long as the L . . . L distance is in the vicinity of
the van der Waals distance, the M–L . . . L–M or M–L . . . A . . . L–M spin exchange can
be strong and often stronger than the M–L–M exchanges. In searching for the spin lattice
relevant for a given magnetic solid, therefore, it is crucial not to omit the M–L . . . L–M
and M–L . . . A . . . L–M spin exchanges when present. The qualitative rules on the M–L
. . . L–M and M–L . . . A . . . L–M exchanges, described in Section 4.3, can be used together
with the Goodenough–Kanamori rules on M–L–M spin exchanges in selecting a proper set
of spin exchanges to evaluate using the energy-mapping analysis.

The important aspect emerging from our discussions is that the nature of a spin
exchange is determined by the interactions between the magnetic orbitals. These are
governed by the ligand p-orbitals, not by the metal d-orbitals. The essential role that the
metal d-orbitals play in any spin exchange is rather indirect. In a magnetic orbital of an
MLn polyhedron, the metal d-orbital selects with which ligand p-orbitals it combines and
hence determines the nature of the p-orbital tails in the magnetic orbital. The spin exchange
between magnetic ions, namely, the interaction between their magnetic orbitals, rests upon
the interaction between their p-orbital tails.
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