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Abstract: Humic substances (HSs) are chromogenic organic assemblies that are widespread in the
environment, including soils, oceans, rivers, and coal-related resources. HSs are known to directly
and indirectly stimulate plants based on their versatile organic structures. Their beneficial activities
have led to the rapid market growth of agronomical HSs. However, there are still several technical
issues and concerns to be addressed to advance sustainable agronomical practices for HSs and allow
growers to use HSs reliably. First, it is necessary to elucidate the evident structure (component)–
function relationship of HSs. Specifically, the core structural features of HSs corresponding to crop
species, treatment method (i.e., soil, foliar, or immersion applications), and soil type-dependent plant
stimulatory actions as well as specific plant responses (e.g., root genesis and stress resistance) should
be detailed to identify practical crop treatment methodologies. These trials must then be accompanied
by means to upgrade crop marketability to help the growers. Second, structural differences of HSs
depending on extraction sources should be compared to develop quality control and assurance
measures for agronomical uses of HSs. In particular, coal-related HSs obtainable in bulk amounts
for large farmland applications should be structurally and functionally distinguishable from other
natural HSs. The diversity of organic structures and components in coal-based HSs must thus be
examined thoroughly to provide practical information to growers. Overall, there is a consensus
amongst researchers that HSs have the potential to enhance soil quality and crop productivity, but
appropriate research directions should be explored for growers’ needs and farmland applications.

Keywords: humic substance bioactivity; sustainable agriculture; plant stimulants; structure-property-
function relationship

1. Humic Substances for Agronomical Uses

Humic substances (HSs) are chromogenic and structurally irregular organic assem-
blies that are widespread in soils, rivers, oceans, and coal-related natural resources (i.e.,
peat, leonardite, and lignite) [1,2]. HSs are believed to be derived from dead living or-
ganisms of mainly plant origin [1,3]. Once the organic substances are released into the
environment, the recalcitrant components can be maintained via their structural irregu-
larities and mineral complexations [4]. Since several organic moieties found in HSs are
involved in redox mediating, electron donating/accepting, adhesion, and acidity [4], HSs
directly induce several biotic and abiotic reactions contributing to microbial respiration,
soil fertility, xenobiotic transformation, and metal bioavailability [4,5]. In particular, use of
HSs to enhance crop productivity and soil quality is of great interest owing to the recent
need for eco-friendly organic fertilizers over traditional NPK (nitrogen, phosphorus, and
potassium)-based chemical fertilizers [6]. Although HSs hardly contain plant-available
NPK nutrients [1,4], their roles as soil amendments and plant stimulants are supported
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by enhanced plant growth [4,6]. This trend is also associated with the continuous loss of
soil organic carbon in farmlands, thereby requiring artificial addition of organic carbons to
obtain organically rich soils. [7]. HSs’ ability to increase soil organic carbon sequestration
indicates that artificially supplied HSs contribute to hampering the loss of organics in
soils [8].

HS treatments have been shown to have beneficial effects on crop productivity as
they contain a variety of oxygen-based functional groups, which render soil environments
relatively acidic [4,5]. Macronutrients such as phosphorous become more available to
plants because of the higher solubility of phosphorous-containing particles to acidic condi-
tions [9,10]. The polymeric features of HSs and the inherent adhesive actions attributable
to the oxygen-based functional groups allow soil particle aggregation, which is relevant to
crop productivity [11,12]. Indeed, soil-type- and HS extraction source-dependent aggrega-
tion patterns have been observed [11]. Interestingly, HSs are capable of directly stimulating
plants by modulating their gene and functional protein expressions [4,5]. Scientific clues
proving penetration of HS components in plant roots have been demonstrated with mi-
croautoradiography [13]. Although detailed mechanisms of how HSs overcome the plant
rhizoplane remain to be elucidated, they seem to be dependent on the molecular size
distributions of HS components [5]; once penetrated, the transportation from roots to shoot
was proven feasible via transpiration [13]. Some functional protein activities, including
high-affinity K+ transporter 1, phospholipase A2, and H+-ATPase, are known to be modu-
lated by HSs [4,14]. More research is needed to identify how HS components affect such
enzymes’ activities; however, two plausible mechanisms may be considered here. First,
oxygen-based functional groups in the HS induce pH changes in the cell surroundings,
thereby causing changes in membrane protein activities. Specifically, alkalization of root
cell membranes by the action of H+/NO3

− symporter could be counteracted with HS
acidity [4,5]. Second, the non-specific adhesive properties of HSs are likely to interact with
functional proteins, which may either be activated or deactivated. This hypothesis was also
substantiated by the experimental evidence showing HSs’ ability to physically encapsulate
proteins via electrostatic interactions in an in vitro manner [4].

Beneficial actions of HSs in the agricultural domain have mainly been evaluated by
academic researchers and linked to rapid growth of the commercial market for HSs. The
market size for humic acids is estimated to show over a 14% compound annual growth rate
(CAGR) from USD 510 million in 2018, while that for fulvic acids was approximately USD
228 million in 2019, with a 3.5% CAGR [15,16]. The major market areas for HSs include
agriculture and horticulture. Nevertheless, there is still a certain skepticism among growers
regarding the effectiveness of HSs on crop productivity and marketability. To this end,
several academic studies have reported meager enhancements or even adverse effects of
HS. Hartz and Bottoms showed that fruit yields and biomass weights were not enhanced
in response to HS addition to soils [17]. Suddarth et al. also suggested that combined
treatment of a HS with irrigation might increase the salt content of soils [18]. Therefore,
imminent discussions are necessary to direct HS research and development toward more
practical and reliable agronomic recommendations. We thus suggest two points of view
regarding crop growers and HS types. It was here discussed which aspects of HS modes of
action and application are further investigated to satisfy crop growers and which types of
HS among those from different extraction sources should be preferred for their agronomical
application research.

2. Plant Multi-Stimulatory Actions of HS: Need for Satisfying Crop Growers

It has been demonstrated that HSs regulate several plant physiological processes
including seed germination, root genesis, and abiotic stress resistance [4,5,14,19]. Herein,
we summarize the structural features of HSs that are required for their specific plant
stimulatory actions.

HSs play critical roles in seed germination acceleration. Seed germination of several
plant species such as maize [20], Arabidopsis thaliana [10,21], and rice [22] was proven to be
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facilitated in the presence of an HS. Phenolic moieties of the HS structures are regarded
as the main factor contributing to seed germination acceleration [20]. Interestingly, low-
molecular-weight phenolics, such as p-coumaric acid and p-hydroxybenzoic acid, which are
widespread in soils, exhibit strong inhibitory actions on seed germination by hampering the
glycolysis and oxidative pentose phosphate pathways [23], while polymerized phenolics
that are structurally similar to HSs stimulate seed germination [21]. These contrasting
properties are dependent on the extent of polymerization and suggest that HS molecular
weights critically affect the extent of phenol-based enzyme inhibition. This opinion is
further evidenced by the fact that HS treatments over specific concentrations inhibit seed
germination [21].

Root development is likely to be enhanced in HS-treated plants. Particularly, lateral
root proliferation appears to be strongly enhanced [21,24,25]. There are three mecha-
nisms that explain root stimulation. Firstly, hormone-like organic structures such as auxin
activate specific hormone pathways in plants; the auxin structure was identified with
organic moieties of HS isolated from earthworm compost [24], but experiments using HS
analogs synthesized by polymerization of known small phenols deficient in detailed auxin
structures still suggest that the overall distribution of specific organic functional groups,
including phenols and carboxylic acids, of HSs are more important [21]. More specifically,
the structural characteristics between root genesis and growth are distinguishable. As
reported in Garcia et al., labile and functional organic groups are more involved in root
genesis, while recalcitrant and less functionalized ones induce root elongation [26]. Struc-
tural features stimulating only root elongation have recently been reported. The aliphatic
OH of lignin was proven to be crucial for inducing maize seedling development while
leaving the germination rate unaffected [27]. Secondly, nitric oxide is produced in the
presence of HS, followed by lateral root development. The fact that nitric oxide scavengers,
rather than auxin inhibitors, effectively hamper HS-driven root development indicates
that auxin-independent pathways are activated by HSs [25]. Thirdly, energy metabolism
is enhanced with increased expression of the related proteins [28]. Facilitation of energy
acquisition may thus be linked to root cell proliferation. The latter two modes of action
suggest that the key biological factors (i.e., nitric oxide and energy-metabolism-related
proteins) are required to change root genesis, though the identification of the key structural
moieties of HSs to activate such factors has not yet been investigated.

HS treatments are believed to allow plants to resist abiotic stresses such as excessive
heat and salts in the growth media more efficiently. Economically important vegetables
such as pepper, tomato, and watermelon were tested regarding HS effectiveness against
heat stress [29,30]. The results showing enhancement of crop productivity support that HSs
stimulate heat defense mechanisms at the molecular level. Cha et al. recently showed that a
class of heat shock protein transcripts are upregulated with HS treatment and this activation
coincides with enhancement of plant survival rates, suggesting that the transcripts are
translated into functional proteins followed by plant phenotypic changes [31]. However,
HS organic structures for heat stress-related plant priming have not yet been evaluated. It
is also questionable whether HS-driven molecular activation pathways for heat resistance
are distinct from those of root stimulations.

HS-driven alleviation of salt stress also has similar research patterns to heat stress,
except for the use of artificially synthesized polymers. Plants including cress, maize, and
A. thaliana have been shown to be activated by HSs, thus coping with salt stress [21,32].
In general, the stress-induced hampering of seed germination, chlorophyll maintenance,
and plant biomass increase are found to be mitigated. It is observed that similar organic
moieties such as phenols and carboxylic acids found in seed germination are also applicable
to improve plant resistance to salt stress [21]. This indicates that the activation pathways
of seed germination and salt resistance are shared. Specific molecular targets are also
suggested; for instance, high-affinity K+ transporter 1, involved in sodium influx, is thought
to be stabilized in the presence of HSs [14].
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Another aspect to consider in HS-induced plant stimulations is the HS modes of
application, because addition to soil, root immersions, and use of foliar sprays are the
options available to treat plants with HSs. Hita et al. reported the possibility to elicit
different cucumber responses regarding the treatment methods (i.e., root immersions in
hydroponic solutions and foliar applications) [33]. Both treatments induced shoot and
root growth, but the root plasma membrane H+-ATPase activity was enhanced only with
root applications, while jasmonic acid production in the shoot was enhanced only with
foliar applications. Immersion of plant tissues also shows different HS stimulations. Lilium
cultivation treated with HSs in immersion solutions resulted in increased plant nutrient
accumulation and sugar synthesis [34]. On the contrary, anthocyanin accumulation was
likely to be induced with the spray method [34]. These results suggest that crop productivity
could be significantly affected according to the modes of HS application.

It has been proven that mineral and organic matter contents differ across soil types [35,36].
Owing to this versatility, HS soil applications may induce different types of plant stimu-
lations. Naturally occurring soil minerals non-covalently interact with HS fractions [37],
which would result in the modulation of HS activities for plant stimulations. For instance,
apatites present in some soils could be surface-engineered by HSs, thus accelerating phos-
phate release, which improves plant nutrition [10]. The current authors indeed found that
a simple dipping of apatite particles in HS solutions allows for their surface modification,
which is linked to accelerated phosphate release [10].

Soil organic matter qualities and quantities are versatile across soil types and land
uses [36]. There is a possibility that soils rich in organic matter show less effectiveness
with exogenous HSs because the stimulatory action could be already assured by the native
soil HSs. This was evidenced by the findings that the microbial activity of low organic
matter soils is more enhanced with HSs than that of high organic matter soils [17]. In
addition, different soils induce different HS behaviors because the self-assembly of HS
components and their solubility are dependent on the pH, ions, and oxidative potentials of
the surroundings. Specifically, Celik et al. proved the HS function in the enhancement of
weight increase and uptake of several nutrients for plants grown in calcareous soils [38].
Hartz et al. also showed that plant dry weight increase with HSs depends on specific soil
textures [17]. Accordingly, the prevailing soil conditions determine the effective actions of
HS on plants.

As described before, it is possible to anticipate that HS stimuli on plants occur in
multifunctional ways, but the current results, primarily obtained in lab conditions, are
far from being translated to crop field recommendations, so they hardly fulfill the needs
of farmers. Herein, we suggest three methods to facilitate HS applications in farmlands
by growers.

Artificial structure engineering in a bottom-up manner may provide the synthesis
of humic-like substances in which specific organic functional moieties are present or
absent [21]. The extent of plant stimulation by artificial HS analogs with different struc-
tural characteristics will shed light on the key HS structures capable of inducing specific
plant physiological changes. Such trials may accelerate the discovery of alternative and
renewable natural resources to produce humic-like substances containing crucial plant-
stimulating organic moieties. Moreover, natural or semi-synthesized HS analogs showing
superior plant stimulatory actions than natural HSs could be suggested. In fact, plant lignin
and hydrochar were found to be valuable materials for obtaining humic-like substances
capable of stimulating plants [20,39]. Composting using vegetable, plant residues and
animal manures was also proven to lead to the production of HSs [40]. When both times
for complete reaction/extraction and costs of raw materials and reaction/extraction agents
become minimized, these approaches decrease HS consumer prices, thus allowing growers
to utilize HSs at technically higher rates. Most HSs for agronomical purposes are currently
from coal-related materials [2], which are biased to specific and a few territory regions.
This situation may increase local or domestic HS prices for their on-site uses. Indeed, the
current authors identified, through personal discussion with domestic HS vendors, that
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the most limiting factor to the large-scale use of HSs in the Republic of Korea is their high
price to farmers.

Further studies should focus on elucidating whether crop characteristics relevant
to the market values change with HS treatments because most studies have dealt with
several physiological changes of plants that are not clearly expected to enhance crop
marketability and farmer profitability. For instance, several reports indicate that plant seed
germination is accelerated in the presence of HSs [20–22], but little is known about whether
this enhancement results in better food yield and quality. Plant root stimulations, including
omics-based action mechanisms of HS, are frequently handled by researchers [28], but
it still remains to be elucidated whether such stimulations are generally connected to
enhanced crop productivity that allows growers to derive more profits. It will engage
more attention from growers to the use of HSs if the treatments are tightly associated with
crop marketability. It is also necessary to confirm whether HS experimental conditions
to enhance crop marketability at a lab scale are applicable and reproducible in a field
test, where farmers are engaged. In fact, optimal HS treatment concentrations between
laboratory and greenhouse plant stimulation assays were found to be different [41].

Although soil environments are likely to dramatically affect HS effectiveness, com-
parative studies in terms of soil types and textures are lacking. Soil factors such as pH,
pre-existing organic matter content, porosity, electrical conductivity, and availability of
nutrients could, thus, be assessed together. This allows growers to compare their own soil
types with a data pool of scientifically collected and validated HS effectiveness information.
Moreover, such soil characteristics of fields could be a critical factor for the reproduction
of HS lab-scale performances in farmland fields. Figuring out the relationship between
soil characteristics and plant stimulatory actions of artificially added HSs will accelerate
HS uses by farmers while achieving enhancement of crop marketability at the field scale.
Likewise, comparative research using different crops and modes of HS application should
be more intensively conducted to allow growers to select proper treatment methods for
their large farmlands. Research and development directions to attend to farmers’ needs are
summarized in Figure 1.
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3. HSs for Agronomical Use: Elucidating Coal-Derived HS Properties and Functions

HSs are irregular organic structures whose molecular formulas are hard to define.
Rather, specific HS extraction methods from the environment such as soils, rivers, and
oceans determine detailed HS compositions, and it is thus likely that organic characteris-
tics and their deposition history in the environment where HSs are extracted are the most
important factor affecting the detailed humic components extracted [1,4]. Hence, HSs’ struc-
tural differences are necessarily observed with HS extraction sources and use of different
extraction methods. For example, detailed elemental composition and aliphatic/aromatic
ratios of HS are found to significantly vary depending on the HS extraction protocols
and sources. In particular, HSs from soils and rivers exhibit different structural features
than coal-related commercial HSs, considering that a strong 13C NMR shift near 170 ppm
and a higher O/C ratio of element analysis are observed in HSs from soils and rivers
compared with coal HSs [42]. These results suggest that crop stimulations and soil quality
improvements by coal-related and soil-/river-extracted HSs should be evaluated in terms
of different structural views. In particular, a systemic structural comparison between coal-
and other environment-derived HSs seems to be urgently investigated.

Many research studies have investigated soil-derived, vermicomposted, or plant-derived
HSs to evaluate HS structure–function relationships for plant stimulations [20,24–28,39]. How-
ever, in reality, it is difficult to use soil-extracted HSs for large-scale applications because
the extractable HS quantity is relatively small and limited. Vermicomposted (or composted)
and plant-derived substances are also based on chemical (or biological) transformation
and extraction of raw materials, which still appear to be time-consuming and economically
non-viable [24,27,39,40]. Indeed, most commercial products currently available for agro-
nomical purposes are obtained from non-renewable coal matrices, such as peat, leonardite,
and lignite [2,4], which raises questions as to whether key structural aspects associated
with plant stimulations are also identifiable in coal-related HSs. Moreover, it is plausible
that geological differences may result in detailed component variations of coal materials,
thereby affecting action modes of HS components. Comparative studies to visualize com-
position variations of diverse coal HSs should thus be conducted to encourage growers
to utilize coal HSs for crop cultivation reliably. Contrary results of crop productivity by
coal-derived HSs (i.e., enhancement or meager effects) [17,18] can be re-interpreted in terms
of the structural views of such materials.

Coal-related HSs are known to contain more than organic substances. Particularly, the
inherent presence of Fe species seem to be significant [39] and thus considerable because
they are able to perform dual functions. First, Fe can be used as a plant macronutrient.
Second, Fe species are capable of interacting with HS components, thus changing the HS
component-involved supramolecular structures. This conformational change is likely to
tune the plant Fe nutrition and HS ability to penetrate plant roots [43]. Owing to these
reasons, artificial Fe was even added to coal HSs to boost plant stimulation and Fe nutrition
in alkaline soils [44]. Therefore, inherent metallic substances beneficial for plant nutrition
should be assessed to differentiate coal-derived HSs from other types of HS.

Another aspect that should be considered is the inherent presence of microbes in
coal-related HSs. Various microbes are present in peat, leonardite, and lignite. Coal-
related HSs could, thus, contain microbes [2], which, in turn, spontaneously extend to
co-treatments of HS organic components and the microbes to crops and farmlands. In
fact, plant-stimulating endophytic microbial communities can be induced with coal-related
HSs in hydroponic systems, suggesting that different microbial communities of plants
result from HS treatments [45]. More direct evidence was obtained by a direct isolation of
plant-stimulating microbes from some commercial coal-related HS powders [2]. Therefore,
it is worth quantitatively estimating the microbial activities in HSs that are relevant to crop
stimulations. These inorganic and biological factors could be exploited to promote more
reliability for the use of coal-related HSs by crop growers.

It is believed that soil fertility depends heavily on the organic content in the soil,
which is vital for the maintenance of plant inorganic nutrients and soil fertility [7]. Soil
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organic matter decomposition has been reported owing to agriculture involving tillage
and irrigation [46,47]. It is generally accepted that the solution to this problem is the
artificial addition of plant-derived organics into soil-based environments [7,8]. To this end,
coal-related HSs capable of treating large areas of soil farms with significant amounts of
addition could be key to replenishing organic matters in arid soils. HSs’ supramolecular
assembly recalcitrance to microbial catabolism allows them to persist in soils for long
periods of time [4,8]. Moreover, versatile oxygen-based functional groups in HSs act as
chelating sites to prevent leaching of several plant metallic nutrients [1,4]. Managing
greenhouse gas emission (GHE) from agriculture domain is recently of interest. HS ability
to accept electrons involved in methanogenesis results in methane gas emission mitigation
in peats [48]. Agronomical value of HSs will be higher when HS treatments in farmlands
such as paddy fields result in GHE mitigation which is further subjected to the GHE
trading. Accordingly, coal HS performances should be assessed in terms of the soil organic
functionalities compared with those of HSs derived from other sources. Positive coal-
derived HS effects as soil organics in long-term use could, thus, attract attention from
growers to facilitate continuous use of HSs in farmlands. Research and development
directions for coal HS are depicted in Figure 2.
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4. Concluding Remarks

Many researchers have demonstrated that HSs are effective for enhancing both soil
fertility and plant nutrition and growth. Despite the use of advanced analytical tools to
unveil HS modes of action on plants, there are still concerns from growers on whether HSs
are truly effective for increasing crop yield. New research and development directions are
thus necessary to enable HSs as eco-friendly and irreplaceable materials for sustainable
agricultural practices while transferring technologies and improving profitability to crop
growers. Therefore, crop species, treatment methods (i.e., roots, foliar, or immersion
applications), and soil type-dependent HS plant-stimulatory actions should be detailed,
and the related core organic structures should be unraveled. Moreover, HS-based solutions
to induce changes in crop physiological processes connected to marketability and food
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quality need to be provided to crop growers. Additionally, studying coal-derived HSs that
can be used on a large scale in crop fields should be intensified. Other components such as
microbes and metals identifiable in coal-related HSs could be considered in terms of their
benefits to improve soil quality and crop productivity. These research directions will pave
the way for boosting HS applications in sustainable agriculture while offering credibility to
the growers.
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