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Abstract: Nucleophilic aromatic substitution (SNAr) reactions can provide metal-free access to
synthesize monosubstituted aromatic compounds. We developed efficient SNAr conditions for p-
selective substitution of polyfluoroarenes with phenothiazine in the presence of a mild base to afford
the corresponding 10-phenylphenothiazine (PTH) derivatives. The resulting polyfluoroarene-bearing
PTH derivatives were subjected to a second SNAr reaction to generate highly functionalized PTH
derivatives with potential applicability as photocatalysts for the reduction of carbon–halogen bonds.

Keywords: polyfluoroarene; phenothiazine; nucleophilic aromatic substitution; amination;
photocatalyst

1. Introduction

Owing to the high electronegativity of fluorine atoms, polyfluoroarenes can un-
dergo nucleophilic aromatic substitution (SNAr) [1], wherein nucleophiles attack the
low-electron-density arene core, and the fluoride anion is eliminated as a fluoride salt.
Although transition-metal-catalyzed C-F and C-H bond functionalization of polyfluo-
roarenes have advanced considerably in recent years [2–6], SNAr of polyfluoroarenes offers
a transition-metal-free approach to substituted polyfluoroarenes. Polyfluoroarenes react
with organometallic compounds, such as organolithium or organomagnesium reagents,
to convert aromatic C-F bonds into C-C bonds without the use of transition metal cata-
lysts [7,8]. The combination of a fluoride salt and organosilane compounds as nucleophiles
has also been successful in the SNAr of polyfluoroarenes, wherein the reaction proceeds
with a catalytic amount of a fluoride anion [9–13]. The use of alcohols or amines as nucle-
ophiles enables C-O and C-N bond formation to produce the corresponding aryl ether and
aniline derivatives [8,14,15].

Functionalized arenes, such as arylamine derivatives, can be synthesized via transition-
metal-catalyzed cross-coupling reactions [16–21]. However, the high cost of organometallic
catalysts and contamination of the resulting products with metal traces represent major
drawbacks of such methods. Alternative methods for transition-metal-free synthesis of
arylamine derivatives have been achieved using hypervalent iodine reagents [22–27],
sulfonium reagents [28], nitorarenes [29–33], or electrochemical conditions [34]. The SNAr
reaction also offers an alternative method without the use of transition metals, which
is therefore potentially applicable in the facile synthesis of organic functional materials
containing substituted arenes. For instance, 1,2,3,5-tetrakis(carbazolyl)-4,6-dicyanobenzene
(4CzIPN), an organic photocatalyst, has been produced by multiple SNAr reactions using
carbazole and 1,3-dicyano-2,4,5,6-terafluorobenzene with NaH as the base [35]. In this
context, we focused on the application of a sequential and controllable SNAr reaction
for the synthesis of 10-phenylphenothiazine (PTH) derivatives, which serve as organic
photocatalysts that induce dehalogenative bond formation via processes such as atom
transfer radical polymerization [36–46].
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PTH derivatives are generally prepared via palladium- or copper-catalyzed coupling
reactions of phenothiazine with aryl halides or arylboronic acids (Scheme 1a) [36–52].
Transition-metal-free methods for the synthesis of PTH derivatives include oxidative C-
H amination in the presence of oxidants [53–57] or under electrolytic conditions [58,59],
although starting materials are limited to phenols and anilines (Scheme 1b). In addition,
SNAr of triphenylsulfonium salts, nitroarenes, and fluoroarenes with phenothiazine have
been demonstrated for the preparation of PTH derivatives (Scheme 1c) [28,60–67].

Scheme 1. Access to PTH derivatives under various conditions.

We envisioned that a reaction between phenothiazine and polyfluoroarenes would
afford the corresponding polyfluoroarene-bearing PTH derivatives, which would then
undergo a second SNAr reaction for the introduction of other nucleophiles to afford highly
functionalized PTH derivatives (Scheme 2). In addition to the synthetic utility of polyflu-
oroarenes, their introduction provides unique functionalities crucial in materials science,
such as improvement of oxidation resistance, lowering of both HOMO and LUMO energy
levels, and favorable stacking interactions with electron-rich aromatic rings [68–70]. How-
ever, SNAr of polyfluoroarenes often suffers from uncontrollable substitution, resulting
in a mixture of regioisomers and/or multisubstituted products. Therefore, it is neces-
sary to establish appropriate conditions that suppress unselective substitution events and
over-reactions, while being applicable to a wide range of polyfluoroarenes. Herein, we
demonstrate SNAr of various polyfluoroarenes resulting in mono-phenothiazination in
the presence of an appropriate base to afford PTH derivatives bearing polyfluoroarenes,
and further transformation of the resulting PTH derivatives to highly functionalized PTH
derivatives via a second SNAr reaction.

Scheme 2. Synthesis of highly functionalized PTH derivatives via sequential SNAr reactions.

2. Results and Discussion

The reaction of phenothiazine with octafluorotoluene in the presence of K2CO3 in
N,N-dimethylformamide (DMF) at 60 ◦C afforded the corresponding PTH derivative 3aa
as the sole product in 96% yield (Scheme 3). The fluorine atom at the p-position of the
trifluoromethyl group of octafluorotoluene was substituted by phenothiazine, without the
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formation of regioisomers or multisubstituted products. The observed regioselectivity was
in agreement with previously reported outcomes of octafluorotoluene SNAr [11,13], and it
is governed by the electron density at the reactive carbons (ortho- and para-positions) on
the aromatic ring and the steric repulsion between the trifluoromethyl group and bulky
phenothiazine. The K2CO3/DMF system was found to be an efficient combination for mono
SNAr between various phenothiazines and octafluorotoluene (Scheme 3). For example,
phenothiazine derivatives bearing electron-deficient and electron-donating groups (1b–1e)
were employed in the present reaction to give the corresponding PTH derivatives (3ba–3ea).
Moreover, phenoxazine derivative 3fa was synthesized under similar conditions. Next, we
examined various polyfluoroarenes for the SNAr reaction with phenothiazine.

Scheme 3. SNAr reaction of octafluorotoluene with phenothiazine derivatives or phenoxazine.

In contrast to octafluorotoluene, several other polyfluoroarenes exhibited decreased
selectivities with the combination of K2CO3 and DMF, due to their inherently high reactivi-
ties, and the reaction of pentafluorobenzonitrile yielded complex mixtures including p- and
o-substituted products, 3ab and 3ab’, respectively (Scheme 4). Pentafluoronitrobenzene
provided similar results, undergoing uncontrollable SNAr.

Scheme 4. Reaction of pentafluorobenzonitrile with phenothiazine using the K2CO3/DMF system.

Thus, optimization of the reaction conditions was performed for pentafluoroben-
zonitrile (2b) to suppress multiple substitution (Table 1). Using Li2CO3 or Na2CO3 in-
stead of K2CO3 afforded the desired product 3ab in low yield along with unreacted 2b
(entries 1 and 2). On the other hand, the use of Cs2CO3 led to high reactivity, and mul-
tiple substitutions occurred to give a complex mixture, containing 3ab in 13% (entry 3).
Inorganic phosphate salts, such as Li3PO4 and Na3PO4, exhibited comparable results to
those of carbonate salts (entries 4 and 5). On the other hand, the use of K3PO4 improved
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the reaction yield of 3ab to 48% (entry 6). The use of Na3PO4 or K3PO4 at an elevated
reaction temperature of 80 ◦C resulted in lower yields compared to those attained under
the conditions in entry 6 (entries 7 and 8). Next, we surveyed reaction solvents. In the
case of acetonitrile (MeCN) at 60 ◦C, the reaction yield improved to 76% (entry 9). N,N-
Dimethylacetoamide (DMA) and dimethyl sulfoxide (DMSO) were also suitable, albeit
providing slightly decreased yields (entries 10 and 11). Chloroform, tetrahydrofuran (THF),
and 1,4-dioxane were found to be inappropriate solvents (entries 12–14).

Table 1. Optimization of reaction conditions using pentafluorobenzonitrile a.

Entry Base Solvent Temperature 3ab Yield

1 Li2CO3 DMF 60 ◦C 0% b

2 Na2CO3 DMF 60 ◦C 7% b

3 Cs2CO3 DMF 60 ◦C 13% b,c

4 Li3PO4 DMF 60 ◦C 1% b

5 Na3PO4 DMF 60 ◦C 13% b

6 K3PO4 DMF 60 ◦C 48% d

7 Na3PO4 DMF 80 ◦C 32% d

8 K3PO4 DMF 80 ◦C 38% d

9 K3PO4 MeCN 60 ◦C 76% d

10 K3PO4 DMA 60 ◦C 43% d

11 K3PO4 DMSO 60 ◦C 38% d

12 K3PO4 CHCl3 60 ◦C 0%
13 K3PO4 THF 60 ◦C 0%
14 K3PO4 1,4-dioxane 60 ◦C 0%

a Reaction conditions: Phenothiazine 1a (0.50 mmol), pentafluorobenzonitrile 2b (1.0 mmol), and base (2.0 mmol)
in solvent (5.0 mL, 0.1 M). b Determined by 19F-NMR using 4-fluorotoluene as an internal standard. c With
multi-substitution products d Isolated yield.

Next, various polyfluoroarenes were subjected to SNAr with phenothiazine under
the optimum conditions of K3PO4 in MeCN at 60 ◦C, as summarized in Scheme 5. Un-
der these conditions, octafluorotoluene (2a) produced 3aa in 67% yield, which was lower
than that obtained with the use of K2CO3 and DMF. Pentafluoronitrobenzene (2c) also
underwent SNAr with high selectivity to afford p-substituted product 3ac in 78% yield.
Ester-bearing PTH derivative 3ad was synthesized from methyl pentafluorobenzoate (2d)
in 69% yield. Thus, the combination of K3PO4 and MeCN proved effective for achiev-
ing p-selective mono-substitution of a wide range of highly reactive polyfluoroarenes.
Chloropentafluorobenzene (2e) underwent SNAr using K2CO3 in DMSO at 85 ◦C to afford
the corresponding product 3ae, while the K3PO4/MeCN system resulted in low yield.
The use of DMSO improved the reactivity of substitution presumably due to the higher
solubility of the base. It should be noted that selective C–F bond functionalization occurred
and the chlorine atom remained intact under these SNAr conditions, allowing for further
product transformation via transition-metal-catalyzed cross-coupling reactions. In contrast
to results obtained with electron-deficient groups, methyl-substituted pentafluorobenzene
did not furnish the desired product even under K2CO3/DMSO conditions. When pentaflu-
oropyridine (2f) was employed as the substrate, the SNAr reaction proceeded smoothly
under K3PO4/MeCN conditions to produce fluorinated pyridylphenothiazine 3af in 92%
yield. Simple polyfluoroarenes lacking other functional groups were also tested in the
present SNAr protocol. The reaction of decafluorobiphenyl (2g) afforded the corresponding
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mono-substituted product 3ag in 51% yield, along with a trace amount of the disubstituted
compound (4aga). On the other hand, octafluoronaphthalene (2h) underwent double
substitution to give 4aha in 22% yield, even with 2 equivalents of 2h. Hexafluorobenzene
(2i) exhibited low reactivity under the K3PO4/MeCN system, as was the case with 2e. The
combination of K2CO3 and DMSO at 85 ◦C led to double substitution of 2i affording 4aia
in 64% yield. In this case, 2i exists in the vapor phase as a result of its low boiling point (bp:
ca. 80 ◦C); therefore, once the first SNAr reaction occurs, the second is favored due to the
monosubstituted product being in solution while the bulk of 2i remains in the vapor phase.

Scheme 5. SNAr reaction of phenothiazine with various polyfluoroarenes.

Next, further transformations of obtained PTH derivatives 3 were performed
(Scheme 6). Thus, SNAr of 3ab with p-methoxyphenol proceeded in the presence of K2CO3
to afford PTH derivative 4abb, bearing both cyano and phenoxy groups. Phthalimide,
commonly used as a protecting group and photosensitizer, was also introduced onto 3ac
via further SNAr to obtain multifunctionalized 4acc. Transition-metal-free carbon–carbon
bond formation was also examined using a combination of organosilanes and a catalytic
amount of Bu4NSiF2Ph3 (TBAT). Thiophene moieties, ubiquitous in functional organic
materials owing to their high electron density, can be introduced onto 3af via the reaction
with thienyl silane and TBAT to afford diheteroaromatic 4afd. Similarly, ethynylsilane
participated in the carbon–carbon bond forming reaction with 3ag to produce linear analog
4age. Hence, PTH derivatives bearing various functional groups, connected through C–O,
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C–N, and C–C bonds, were synthesized via sequential SNAr of polyfluoroarenes under
transition-metal-free conditions.

Scheme 6. Synthesis of highly functionalized PTH derivatives via SNAr.

3. Materials and Methods
3.1. General Information

1H, 13C, and 19F nuclear magnetic resonance (NMR) spectra were recorded on a JEOL
JMN-400 spectrometer at 25 ◦C unless otherwise noted. The data are reported as follows:
chemical shift in part per million (δ), multiplicity (s = singlet, d = doublet, t = triplet,
q = quartet, and m = multiplet), integration, and coupling constant (Hz). The chemical
shifts in the 1H NMR spectra were recorded relative to the residual solvent peaks (CDCl3:
δ 7.26). The chemical shifts in the 13C NMR spectrum were also recorded relative to the
residual solvent peaks (CDCl3: δ 77.0). The chemical shifts in the 19F NMR spectrum
were recorded relative to that of the internal standard (4-fluorotoluene: δ −121.0). High-
resolution mass spectra (HRMS) were obtained using a Thermo Scientific Exactive Plus
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Orbitrap (Thermo Fisher Scientific, Inc., Waltham, MA, USA). All commercially available
reagents were used as received unless otherwise noted.

3.2. SNAr Reaction of Phenothiazines with Polyfluoroarenes
3.2.1. General Procedure A for the Reaction of Phenothiazines with Polyfluoroarenes

Phenothiazine derivatives (1.0 mmol) and base (4.0 mmol, 4.0 eq) were placed in a
screw-capped test tube and dried under vacuum for 1 h. After backfilling with N2, solvent
(10 mL) and polyfluoroarenes (2.1 mmol, 2.1 eq) were added in this order. The reaction
mixture was stirred at 60 ◦C for 24 h. The reaction was quenched with water (50 mL),
and the mixture was transferred to a separatory funnel containing diethyl ether (50 mL).
The organic layer was separated, and the aqueous layer was extracted with diethyl ether
(2 × 20 mL). The combined organic fractions were washed with brine (50 mL), dried over
Na2SO4, and all volatiles were removed under vacuum. The residue was purified by flash
column chromatography (SiO2) to yield the corresponding 10-phenylphenothiazine (PTH)
derivatives.

3.2.2. 10-(2,3,5,6-Tetrafluoro-4-(trifluoromethyl)phenyl)-10H-phenothiazine (3aa)

The title compound was prepared according to General Procedure A with phenoth-
iazine (1a, 200 mg, 1.0 mmol), octafluorotoluene (2a, 300 µL, 2.1 mmol, 2.1 eq), and K2CO3
(554 mg, 4.0 mmol, 4.0 eq) in DMF (10 mL). 3aa was isolated by flash column chromatog-
raphy (SiO2, AcOEt/hexane = 1/100) in 96% yield (398 mg, 0.958 mmol) as a pale yellow
solid. 1H NMR (400 MHz, CDCl3, rt, δ/ppm): 7.12 (dd, J = 7.3, 2.0 Hz, 2H), 6.93–7.02 (m,
4H), 6.26 (dd, J = 7.8, 1.5 Hz, 2H). 19F NMR (376 MHz, CDCl3, rt, δ/ppm): −58.5 (t, J = 22.0
Hz, 3F), −140.5–(−140.6) (m, 2F), −142.0–(−142.1) (m, 2F). HRMS (DART) m/z: ([M + H]+)
Calcd for C19H9F7NS 416.0338; Found 416.0342.

3.2.3. 2-Chloro-10-(2,3,5,6-tetrafluoro-4-(trifluoromethyl)phenyl)-10H-phenothiazine (3ba)

The title compound was prepared according to General Procedure A with 2-chloro-
10H-phenothiazine (1b, 66.9 mg, 0.50 mmol), octafluorotoluene (2a, 150 µL, 1.05 mmol,
2.1 eq), and K2CO3 (277 mg, 2.0 mmol, 4.0 eq) in DMF (5 mL). 3ba was isolated by flash
column chromatography (SiO2, AcOEt/hexane = 1/200) in 67% yield (150 mg, 0.334 mmol)
as a pale yellow solid. 1H NMR (400 MHz, CDCl3, rt, δ/ppm): 7.11 (dd, J = 7.3, 2.0 Hz,
1H), 7.04–6.93 (m, 4H), 6.27–6.23 (m, 2H). 19F NMR (376 MHz, CDCl3, rt, δ/ppm): −58.5
(t, J = 22.0 Hz, 3F), −140.4–(−140.6) (m, 2F), −142.1–(−142.2) (m, 2F). HRMS (DART) m/z:
([M + H]+) Calcd for C19H8ClF7NS+ 449.9949; Found 449.9946.

3.2.4. 10-(2,3,5,6-Tetrafluoro-4-(trifluoromethyl)phenyl)-2-(trifluoromethyl)-
10H-phenothiazine (3ca)

The title compound was prepared according to General Procedure A with 2-
(trifluoromethyl)-10H-phenothiazine (1c, 133.6 mg, 0.50 mmol), octafluorotoluene (2a,
150 µL, 1.05 mmol, 2.1 eq), and K2CO3 (277 mg, 2.0 mmol, 4.0 eq) in DMF (5 mL). 3ca was
isolated by flash column chromatography (SiO2, AcOEt/hexane = 1/200) in 91% yield
(220 mg, 0.455 mmol) as a pale yellow solid. 1H NMR (400 MHz, CDCl3, rt, δ/ppm): 7.21
(s, 2H), 7.13–7.10 (m, 1H), 7.06–6.98 (m, 2H), 6.43 (s, 1H), 6.27 (d, J = 7.3 Hz, 1H). 19F NMR
(376 MHz, CDCl3, rt, δ/ppm): −58.5 (t, J = 22.0 Hz, 3F), −65.1 (s, 3F), −139.3–(−139.7)
(m, 2F), −142.1–(−142.2) (m, 2F). HRMS (DART) m/z: ([M + H]+) Calcd for C20H8F10NS+

484.0212; Found 484.0210.

3.2.5. 2-Methoxy-10-(2,3,5,6-tetrafluoro-4-(trifluoromethyl)phenyl)-10H-
phenothiazine (3da)

The title compound was prepared according to General Procedure A with 2-methoxy-
10H-phenothiazine (1d, 114.6 mg, 0.50 mmol), octafluorotoluene (2a, 150 µL, 1.05 mmol,
2.1 eq), and K2CO3 (277 mg, 2.0 mmol, 4.0 eq) in DMF (5 mL). 3da was isolated by flash
column chromatography (SiO2, AcOEt/hexane = 1/150) in 89% yield (200 mg, 0.449 mmol)
as a pale yellow solid. 1H NMR (400 MHz, CDCl3, rt, δ/ppm): 7.05 (dd, J = 7.8, 2.0 Hz,
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1H), 6.96 (d, J = 8.3 Hz, 1H), 6.93–6.87 (m, 2H), 6.46 (d, J = 7.3 Hz, 1H), 6.20–6.17 (m, 1H),
5.79–5.77 (m, 1H), 3.64 (s, 3H). 19F NMR (376 MHz, CDCl3, rt, δ/ppm): −58.5 (t, J = 22.0 Hz,
3F), −139.7–(−140.0) (m, 2F), −142.1–(−142.2) (m, 2F). HRMS (DART) m/z: ([M + H]+)
Calcd for C20H11F7NS+ 446.0444; Found 446.0447.

3.2.6. 2-(Ethylthio)-10-(2,3,5,6-tetrafluoro-4-(trifluoromethyl)phenyl)-10H-
phenothiazine (3ea)

The title compound was prepared according to General Procedure A with 2-ethylthio-
10H-phenothiazine (1e, 129.7 mg, 0.50 mmol), octafluorotoluene (2a, 150 µL, 1.05 mmol,
2.1 eq), and K2CO3 (277 mg, 2.0 mmol, 4.0 eq) in DMF (5 mL). 3ea was isolated by flash
column chromatography (SiO2, AcOEt/hexane = 1/100) in 55% yield (130 mg, 0.273 mmol)
as a yellow oil. 1H NMR (400 MHz, CDCl3, rt, δ/ppm): 7.10–7.08 (m, 1H), 7.03–6.91 (m,
4H), 6.25–6.21 (m, 2H), 2.81 (q, J = 7.3 Hz, 2H), 1.23 (t, J = 7.3 Hz, 3H). 19F NMR (376 MHz,
CDCl3, rt, δ/ppm): −58.5 (t, J = 19.5 Hz, 3F), −140.2–(−140.4) (m, 2F), −142.1–(−142.2) (m,
2F). HRMS (DART) m/z: ([M + H]+) Calcd for C21H13F7NS2

+ 476.0372; Found 476.0371.

3.2.7. 10-(2,3,5,6-Tetrafluoro-4-(trifluoromethyl)phenyl)-10H-phenoxazine (3fa)

The title compound was prepared according to General Procedure A with 10H-
phenoxazine (1f, 91.6 mg, 0.50 mmol), octafluorotoluene (2a, 150 µL, 1.05 mmol, 2.1 eq),
and K2CO3 (277 mg, 2.0 mmol, 4.0 eq) in DMF (5 mL). 3fa was isolated by flash column
chromatography (SiO2, AcOEt/hexane = 1/100) in 80% yield (160 mg, 0.400 mmol) as a
pale yellow solid. 1H NMR (400 MHz, CDCl3, rt, δ/ppm): 6.82–6.78 (m, 4H), 6.75–6.69
(m, 2H), 6.00 (dd, J = 7.3, 1.5 Hz, 2H). 19F NMR (376 MHz, CDCl3, rt, δ/ppm): −58.5 (t,
J = 22.0 Hz, 3F), −140.3–(−140.5) (m, 2F), −142.0–(−142.1) (m, 2F). HRMS (DART) m/z:
([M + H]+) Calcd for C19H9F7ON+ 400.0567; Found 400.0565.

3.2.8. 2,3,5,6-Tetrafluoro-4-(10H-phenothiazin-10-yl)benzonitrile (3ab)

The title compound was prepared according to General Procedure A with phenoth-
iazine (1a, 399 mg, 2.0 mmol), pentafluorobenzonitrile (2b, 512 µL, 4.0 mmol, 2.0 eq), and
K3PO4 (1.70 g, 8.0 mmol, 4.0 eq) in MeCN (20 mL). 3ab was isolated by flash column
chromatography (SiO2, AcOEt/hexane = 1/40) in 76% yield (568 mg, 1.53 mmol) as a
pale yellow solid. 1H NMR (400 MHz, CDCl3, rt, δ/ppm): 7.13 (dd, J = 7.3, 2.0 Hz, 2H),
7.08–6.95 (m, 4H), 6.27 (dd, J = 7.8, 1.5 Hz, 2H). 19F NMR (376 MHz, CDCl3, rt, δ/ppm):
−132.4–(−132.5) (m, 2F), −140.6–(−140.7) (m, 2F). HRMS (DART) m/z: ([M + H]+) Calcd
for C19H9F4N2S 373.0417; Found 373.0415.

3.2.9. 10-(2,3,5,6-Tetrafluoro-4-nitrophenyl)-10H-phenothiazine (3ac)

The title compound was prepared according to General Procedure A with phenoth-
iazine (1a, 399 mg, 2.0 mmol), pentafluoronitrobenzene (2c, 496 µL, 4.0 mmol, 2.0 eq),
and K3PO4 (1.70 g, 8.0 mmol, 4.0 eq) in MeCN (20 mL). 3ac was isolated by flash column
chromatography (SiO2, hexane) in 78% yield (613 mg, 1.56 mmol) as an orange solid. 1H
NMR (400 MHz, CDCl3, rt, δ/ppm): 7.11 (dd, J = 7.3, 1.5 Hz, 2H), 7.02–6.94 (m, 4H), 6.26
(dd, J = 7.3, 1.5 Hz, 2H). 19F NMR (376 MHz, CDCl3, rt, δ/ppm): −140.1–(−140.1) (m,
2F), −146.9–(−146.9) (m, 2F). HRMS (DART) m/z: ([M + H]+) Calcd for C18H9F4N2O2S+

393.0315; Found 393.0317.

3.2.10. Methyl 2,3,5,6-tetrafluoro-4-(10H-phenothiazin-10-yl)benzoate (3ad)

The title compound was prepared according to General Procedure A with phenoth-
iazine (1a, 100 mg, 0.50 mmol), methyl pentafluorobenzoate (2d, 146 µL, 1.0 mmol, 2.0 eq),
and K3PO4 (424.5 mg, 2.0 mmol, 4.0 eq) in MeCN (5 mL). 3ad was isolated by flash column
chromatography (SiO2, AcOEt/hexane = 1/200) in 69% yield (140 mg, 0.345 mmol) as a
pale yellow solid. 1H NMR (400 MHz, CDCl3, rt, δ/ppm): 7.10 (dd, J = 7.3, 1.5 Hz, 2H),
7.00–6.91 (m, 4H), 6.25 (dd, J = 7.8, 1.0 Hz, 2H), 4.05 (s, 3H). 19F NMR (376 MHz, CDCl3, rt,
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δ/ppm): −143.2–(−143.3) (m, 2F), −139.7–(−139.8) (m, 2F). HRMS (DART) m/z: ([M + H]+)
Calcd for C20H12F4NO2S+ 406.0519; Found 406.0520.

3.2.11. 10-(4-Chloro-2,3,5,6-tetrafluorophenyl)-10H-phenothiazine (3ae)

The title compound was prepared according to General Procedure A with phenoth-
iazine (1a, 100 mg, 0.50 mmol), chloropentafluorobenzene (2e, 129 µL, 1.0 mmol, 2.0 eq),
and K2CO3 (277 mg, 2.0 mmol, 4.0 eq) in DMSO (5 mL) at 80 ◦C. 3ae was isolated by flash
column chromatography (SiO2, AcOEt/hexane = 1/200) in 62% yield (118 mg, 0.309 mmol)
as a pale yellow solid. 1H NMR (400 MHz, CDCl3, rt, δ/ppm): 7.09 (dd, J = 7.3, 1.5 Hz, 2H),
7.00–6.91 (m, 4H), 6.26 (dd, J = 7.8, 1.5 Hz, 2H). 19F NMR (376 MHz, CDCl3, rt, δ/ppm):
−141.0–(−141.0) (m, 2F), −143.8–(−143.8) (m, 2F). HRMS (DART) m/z: ([M + H]+) Calcd
for C18H9ClF4NS+ 382.0075; Found 382.0075.

3.2.12. 10-(Perfluoropyridin-4-yl)-10H-phenothiazine (3af)

The title compound was prepared according to General Procedure A with phenoth-
iazine (1a, 399 mg, 2.0 mmol), pentafluoropyridine (2f, 430 µL, 4.0 mmol, 2.0 eq), and
K3PO4 (1.70 g, 8.0 mmol, 4.0 eq) in MeCN (20 mL). 3af was isolated by flash column
chromatography (SiO2, AcOEt/hexane = 1/50) in 92% yield (640 mg, 1.84 mmol) as a pale
yellow solid. 1H NMR (400 MHz, CDCl3, rt, δ/ppm): 7.06 (dd, J = 6.8, 1.5 Hz, 2H), 7.04–6.94
(m, 4H), 6.34 (d, J = 7.8 Hz, 2H). 19F NMR (376 MHz, CDCl3, rt, δ/ppm): −88.9–(−89.0)
(m, 2F), −144.5–(−144.7) (m, 2F). HRMS (DART) m/z: ([M + H]+) Calcd for C17H9F4N2S+

349.0417; Found 349.0420.

3.2.13. 10-(Perfluoro-[1,1’-biphenyl]-4-yl)-10H-phenothiazine (3ag)

The title compound was prepared according to General Procedure A with phenoth-
iazine (1a, 100 mg, 0.50 mmol), decafluorobiphenyl (2g, 334 mg, 1.0 mmol, 2.0 eq), and
K3PO4 (424.5 mg, 2.0 mmol, 4.0 eq) in MeCN (5 mL). 3ag was isolated by flash column
chromatography (SiO2, AcOEt/hexane = 1/100) in 51% yield (130 mg, 0.253 mmol) as a pale
yellow solid. 1H NMR (400 MHz, CDCl3, rt, δ/ppm): 7.10 (dd, J = 7.8, 1.5 Hz, 2H), 7.03–6.92
(m, 4H), 6.33 (d, J = 7.8 Hz, 2H). 19F NMR (376 MHz, CDCl3, rt, δ/ppm): −138.4–(−138.4)
(m, 2F), −139.1–(−139.2) (m, 2F), −143.4–(−143.5) (m, 1F), −151.4–(−151.6) (m, 2F), −162.2–
(−162.3) (m, 2F). HRMS (DART) m/z: ([M + H]+) Calcd for C24H9F9NS+ 514.0307; Found
514.0303.

3.2.14. 10,10’-(Perfluoronaphthalene-2,6-diyl)bis(10H-phenothiazine) (4aha)

The title compound was prepared according to General Procedure A with phenoth-
iazine (1a, 100 mg, 0.50 mmol), octafluoronaphthalene (2h, 270 mg, 1.0 mmol, 2.0 eq), and
K3PO4 (424.5 mg, 2.0 mmol, 4.0 eq) in MeCN (5 mL). 4aha was isolated by flash column
chromatography (SiO2, AcOEt/hexane = 1/10) in 22% yield (70 mg, 0.111 mmol) as a pale
yellow solid. 1H NMR (400 MHz, CDCl3, rt, δ/ppm): 7.12 (dd, J = 7.8, 1.5 Hz, 2H), 6.99–6.96
(m, 4H), 6.32 (d, J = 7.8 Hz, 2H). 19F NMR (376 MHz, CDCl3, rt, δ/ppm): −123.5–(−123.8)
(m, 2F), −140.9–(−140.9) (m, 2F), −144.5–(−144.8) (m, 2F). HRMS (DART) m/z: ([M + H]+)
Calcd for C34H17F6N2S2

+ 631.0732; Found 631.0733.

3.2.15. 10,10’-(Perfluoro-1,4-phenylene)bis(10H-phenothiazine) (4aia)

The title compound was prepared according to General Procedure A with phenoth-
iazine (1a, 100 mg, 0.50 mmol), hexafluorobenzene (2i, 177 µL, 1.0 mmol, 2.0 eq), and
K2CO3 (277 mg, 2.0 mmol, 4.0 eq) in DMSO (5 mL) at 80 ◦C. 4aia was isolated by flash
column chromatography (SiO2, AcOEt/hexane = 1/50) in 64% yield (174 mg, 0.320 mmol)
as a pale yellow solid. 1H NMR (400 MHz, CDCl3, rt, δ/ppm): 7.14 (dd, J = 7.3, 1.5 Hz, 2H),
7.06–6.98 (m, 4H), 6.39 (d, J = 8.3 Hz, 2H). 19F NMR (376 MHz, CDCl3, rt, δ/ppm): −143.0
(s, 2F). HRMS (DART) m/z: ([M + H]+) Calcd for C30H17F4N2S2

+ 545.0764; Found 545.0766.
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3.3. Sequential SNAr Reaction with 3ab, 3ac, 3af, and 3ag
3.3.1. 3,5-Difluoro-2,6-bis(4-methoxyphenoxy)-4-(10H-phenothiazin-10-yl)
benzonitrile (4abb)

Phenothiazine derivative 3ab (0.10 mmol), 4-methoxyphenol (0.40 mmol, 4.0 eq), and
K2CO3 (0.80 mmol, 8.0 eq) were placed in a screw-capped test tube and dried under vacuum
for 1 h. After backfilling with N2, DMF (1.5 mL) was added to the test tube. The reaction
mixture was stored at room temperature for 24 h. The reaction was quenched with water
(20 mL) and the mixture was transferred to a separatory funnel containing diethyl ether
(20 mL). The organic layer was separated, and the aqueous layer was extracted with diethyl
ether (2 × 20 mL). The combined organic fractions were washed with brine (20 mL), dried
over Na2SO4, and all volatiles were removed under vacuum. 4abb was isolated by flash
column chromatography (SiO2, AcOEt/hexane = 1/10) in 86% yield (50 mg, 0.0862 mmol)
as a pale yellow solid. 1H NMR (400 MHz, CDCl3, rt, δ/ppm): 7.06–7.03 (m, 2H), 6.99–6.83
(m, 12H), 6.20 (d, J = 6.8 Hz, 2H), 3.77 (s, 6H). 19F NMR (376 MHz, CDCl3, rt, δ/ppm):
−132.2 (s, 2F). HRMS (DART) m/z: ([M + H]+) Calcd for C33H23F2N2S+ 581.1341; Found
581.1342.

3.3.2. 2-(2,4,5-Trifluoro-6-nitro-3-(10H-phenothiazin-10-yl)phenyl)isoindoline-
1,3-dione (4acc)

In a well-dried screw-capped test tube, 3ac (78.5 mg, 0.20 mmol) was dissolved in
DMF. Phthalimide (40.7 mg, 0.22 mmol, 1.1 eq) was added to the mixture and the test tube
was sealed with a cap, and the reaction mixture was stirred at 60 ◦C for 20 h. The reaction
was quenched with water (20 mL) and the mixture was then transferred to a separatory
funnel with diethyl ether (20 mL). The organic layer was separated, and the aqueous layer
was extracted with diethyl ether (2 × 10 mL). The combined organic fractions were washed
with brine (20 mL) and then dried over Na2SO4, and all the volatiles were removed under
vacuum. 4acc was isolated by flash column chromatography (SiO2, AcOEt/hexane = 1/10)
in 69% yield (72.3 mg, 0.139 mmol) as a white solid. 1H NMR (400 MHz, CDCl3, rt, δ/ppm):
8.00 (dd, J = 5.4, 2.9 Hz, 2H), 7.87 (dd, 5.9, 2.9 Hz, 2H), 7.12 (dd, J = 7.3, 1.5 Hz, 2H). 7.06
(dt, J = 7.8, 1.5 Hz, 2H), 6.98 (t, J = 7.6 Hz, 2H), 6.39 (d, J = 7.3 Hz, 2H). 19F NMR (376 MHz,
CDCl3, rt, δ/ppm): −120.6–(−120.7) (m, 1F), −131.0–(−131.1) (m, 1F), −144.8–(−144.9) (m,
1F). HRMS (DART) m/z: ([M + H]+) Calcd for C26H13F3O4N3S+ 520.0573; Found 520.0572.

3.3.3. 10-(2-(Benzo[b]thiophen-2-yl)-3,5,6-trifluoropyridin-4-yl)-10H-phenothiazine (4afd)

In a well-dried screw-capped test tube, tetrabutylammonium difluorotriphenylsilicate
(TBAT, 5.4 mg, 0.01 mmol, 10 mol%) and 3af (34.8 mg, 0.10 mmol) were added and dried
under vacuum for 1 h. After backfilling with N2, THF (1.0 mL) and benzo[b]thiophen-
2-yltrimethylsilane (24.8 mg, 0.12 mmol, 1.2 eq) were added to the mixture in this order.
The test tube was sealed with a cap, and the reaction mixture was stirred at 60 ◦C for 20 h.
The reaction was quenched with water (20 mL) and the mixture was then transferred to a
separatory funnel with AcOEt (20 mL). The organic layer was separated, and the aqueous
layer was extracted with AcOEt (2 × 10 mL). The combined organic fractions were washed
with brine (20 mL) and then dried over Na2SO4, and all the volatiles were removed under
vacuum. 4afd was isolated by flash column chromatography (SiO2, AcOEt/hexane =
1/30) in 65% yield (30.0 mg, 0.0649 mmol) as a white solid. 1H NMR (400 MHz, CDCl3,
rt, δ/ppm): 8.07 (s, 1H), 7.95–7.82 (m, 2H), 7.43–7.37 (m, 2H),7.14 (dd, J = 7.3, 1.5 Hz,
2H), 7.03–6.95 (m, 4H), 6.39 (d, J = 7.8 Hz, 2H). 19F NMR (376 MHz, CDCl3, rt, δ/ppm):
−85.5–(−85.6) (m, 1F), −126.9–(−126.9) (m, 1F), −141.8–(−141.9) (m, 1F). HRMS (DART)
m/z: ([M + H]+) Calcd for C25H14F3N2S2

+ 463.0545; Found 463.0544.

3.3.4. 10-(2,2’,3,3’,5,5’,6,6’-octafluoro-4’-(phenylethynyl)-[1,1’-biphenyl]-4-yl)-10H-
phenothiazine (4age)

In a well-dried screw-capped test tube, tetrabutylammonium difluorotriphenylsilicate
(TBAT, 10.8 mg, 0.02 mmol, 20 mol%) and 3ag (51.3 mg, 0.10 mmol) were added and
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dried under vacuum for 1 h. After backfilling with N2, THF (1.0 mL) and 1-phenyl-2-
(trimethylsilyl)acetylene (24 µL, 0.12 mmol, 1.2 eq) were added to the mixture in this order.
The test tube was sealed with a cap, and the reaction mixture was stirred at 60 ◦C for 20 h.
The reaction was quenched with water (20 mL) and the mixture was then transferred to a
separatory funnel with AcOEt (20 mL). The organic layer was separated, and the aqueous
layer was extracted with AcOEt (2 × 10 mL). The combined organic fractions were washed
with brine (20 mL) and then dried over Na2SO4, and all the volatiles were removed under
vacuum. 4age was isolated by flash column chromatography (SiO2, AcOEt/hexane =
1/19) in 73% yield (43.3 mg, 0.0727 mmol) as a white solid. 1H NMR (400 MHz, CDCl3,
rt, δ/ppm): 7.64 (dd, J = 8.0, 1.7 Hz, 2H), 7.47–7.42 (m, 3H), 7.12 (dd, J = 7.3, 1.5 Hz, 2H).
7.04 (dt, J = 7.8, 1.4 Hz, 2H), 6.96 (dt, J = 7.3, 1.5 Hz, 2H), 6.35 (d, J = 7.8 Hz, 2H). 19F
NMR (376 MHz, CDCl3, rt, δ/ppm): −137.7–(−137.8) (m, 2F), −138.0–(−138.1) (m, 2F),
−140.4–(−140.5) (m, 2F), −143.6–(−143.7) (m, 2F). HRMS (DART) m/z: ([M + H]+) Calcd
for C32H14F8NS+ 596.0714; Found 596.0715.

4. Conclusions

In conclusion, we demonstrated a controllable SNAr reaction of polyfluoroaenes with
phenothiazine for the transition-metal-free synthesis of PTH derivatives. The combination
of K3PO4 as the base and MeCN as the solvent was found to be widely applicable for the
regioselective monosubstitution of highly reactive polyfluoroarenes, whereas the combina-
tion of K2CO3 and DMF resulted in multisubstitution. Various functional groups, including
cyano, nitro, ester, and chlorine atoms, tolerated to the present conditions, thus enabling
further transformations of the SNAr products. The obtained fluorine-containing PTH
derivatives were employed in a sequential SNAr reaction to afford highly functionalized
PTH derivatives. Further investigation of the optical characteristics of these compounds
and their photocatalytic capabilities is currently underway.
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