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Abstract: Mycobacterium tuberculosis (Mtb) is a deadly tuberculosis (TB)-causing pathogen. The
proteasome is vital to the survival of Mtb and is therefore validated as a potential target for anti-
TB therapy. Mtb resistance to existing antibacterial agents has enhanced drastically, becoming a
worldwide health issue. Therefore, new potential therapeutic agents need to be developed that can
overcome the complications of TB. With this purpose, in the present study, 224,205 natural compounds
from the ZINC database have been screened against the catalytic site of Mtb proteasome by the
computational approach. The best scoring hits, ZINC3875469, ZINC4076131, and ZINC1883067,
demonstrated robust interaction with Mtb proteasome with binding energy values of −7.19, −7.95,
and −7.21 kcal/mol for the monomer (K-chain) and −8.05, −9.10, and −7.07 kcal/mol for the dimer
(both K and L chains) of the beta subunit, which is relatively higher than that of reference compound
HT1171 (−5.83 kcal/mol (monomer) and −5.97 kcal/mol (dimer)). In-depth molecular docking of
top-scoring compounds with Mtb proteasome reveals that amino acid residues Thr1, Arg19, Ser20,
Thr21, Gln22, Gly23, Asn24, Lys33, Gly47, Asp124, Ala126, Trp129, and Ala180 are crucial in binding.
Furthermore, a molecular dynamics study showed steady-state interaction of hit compounds with
Mtb proteasome. Computational prediction of physicochemical property assessment showed that
these hits are non-toxic and possess good drug-likeness properties. This study proposed that these
compounds could be utilized as potential inhibitors of Mtb proteasome to combat TB infection.
However, there is a need for further bench work experiments for their validation as inhibitors of
Mtb proteasome.
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1. Introduction

Mycobacterium tuberculosis (Mtb) is a deadly tuberculosis (TB)-causing pathogen. TB is
a communicable disease that ranks in the world’s top 10 causes of death. Besides, it is the
leading cause of single infectious agent fatality (higher than HIV/AIDS), and approximately
10 million people fell ill with TB in 2019 [1]. A person with a weakened immune system is
highly susceptible to TB infection; thus, their involvement with HIV is the major cause of
fatality for these patients [2]. Mtb resistance to existing antibacterial agents has enhanced
drastically as well as multidrug-resistant and extensively drug-resistant Mtb strains. These
strains are becoming a worldwide health issue [3,4] and are involved in the host immune
system’s resistance to nitric oxide stress.

Proteasomes are multi-subunit proteolytic complexes that have a vital role in various
cellular functions. Proteasome inhibition has appeared as a prevailing approach for the
management of various infectious diseases [5]. Mtb proteasome is vital for the bacterium
pathogenesis; hence, it is regarded as an attractive target for the development of new agents
that may inhibit Mtb. The Mtb mutans lacking the proteasome (proteasome subunits
silencing) are viable in vitro, but the infection cannot be maintained in the TB mouse
model [6,7]. Hence, it seems that Mtb proteasomes are vital for their propagation in
mammalian hosts and are involved in the host immune system’s resistance to nitric oxide
stress [8].

The proteasome is a heap-shaped protein made up of four rings of heptamers. Its
length and width are 150 and 115 Å, respectively [9,10]. Inner beta rings are formed by
seven identical prcB subunits, and outer alpha rings are formed by seven identical prcA
subunits, which give a path to inner beta rings with active sites when they are open. As
a result, it provides the overall organization of α7β7β7α7. The active site of the bacterial
proteasome is identical to that of the archaeal and eukaryotic proteasomes and is found
primarily in β subunits [9,11].

In the literature, several effective Mtb proteasome inhibitors have been documented.
Among them, HT1171, GL5, MLN273, and fellutamide-B are the most potent Mtb protea-
some inhibitors [9,12,13]. The Mtb proteasome was revealed to be inhibited by 15 psoralens
from a library of 92 analogs, and compounds 8, 11, 13, and 15 exhibited potent inhibition in
a fluorescence-based enzymatic assay [14]. Several plant-derived natural products were
discovered to inhibit Mtb proteasome with IC50 values ranging from 25 to 120 M using
the chymotrypsin substrate Suc-LLVY-AMC [15]. Various bortezomib analogs have been
developed, with the phenol- and halogen-substituted analogs being more specific for the
Mtb proteasome than the human proteasome [16].

Drug development requires the identification of some potential hits from a huge
library of chemical components. Screening such a huge compounds library using wet-
lab assays can be a difficult task. Protein-ligand docking is a powerful tool in drug
development because it aids in the identification of active or lead compounds from a
library of compounds [17,18]. This method is also capable of accurately identifying inhibitor
binding modes to the target proteins [17,19]. Computational screening before laboratory
testing is a successful approach in decreasing the number of candidate inhibitors for
benchwork-based screening [20–22]. The present study aimed to identify new possible
hits from the natural compounds databases using in silico, state-of-the-art techniques that
could serve as Mtb proteasome inhibitors to combat TB infection.

2. Methodology
2.1. Protein Structure Preparation

Mtb proteasome 3D structure (PDB ID: 5TRG) was retrieved from the protein data
bank and prepared in monomer form by Discovery Studio (DS) 2020. Since the Mtb
proteasome core particle has 14 chains in the beta subunit, all of which have the same
active sites, the present study focused on chain K as a monomer, and the K and L chains as
a dimer.
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2.2. Database Collection and Refinement

Natural compounds were accessed from the ZINC database (https://zinc.docking.org
accessed on 29 January 2021), limiting the outcomes by choosing “natural products” as
a subset, resulting in a total of 224,205 compounds and was then downloaded in SDF
format. Furthermore, these compounds were processed for minimization and preparation
for screening using the “ligand preparation” tool in DS 2020.

2.3. Receptor-Based Virtual Screening

In order to identify possible leads, the prepared librarian was screened against the
Mtb proteasome active site using AutoDock vina (version 1.1.2). Then, the top-scored hits
were further processed for in-depth molecular docking studies.

2.4. Molecular Docking

Lead hits were docked with Mtb proteasome (monomer; K-chain) by Autodock4.2 to
determine the ligand–protein interaction and their binding affinities [23]. All input files
were prepared using AutoDock Tools, adding polar hydrogen in protein, and assigning the
charges with the Kollman charges method. The grid center points X, Y, and Z were kept as
36.731, −11.255, and 43.313, respectively. Grid points were fixed as 60 × 60 × 60 Å with
the spacing of 0.375 Å. Additionally, these hits were also docked with the dimer form (K
and L chains) of the beta subunit of the Mtb proteasome, keeping the grid center points X,
Y, and Z as 41.22, 0.60, and 32.31, respectively. All docking calculation parameters were
kept as a default value. The highest negative binding energy (BE) value was ranked as the
most promising binding pose.

2.5. LIGPLOT+ Analysis

The H-bond and hydrophobic interactions between “hit compounds–Mtb proteasome”
complexes were determined by the LIGPLOT+ Version v.2.1. The 3-D structures of the
“compound–Mtb proteasome” interaction produced were transformed into 2-D figures
using the LIGPLOT algorithm.

2.6. Drug-Likeness

Top-scoring molecules (ZINC3875469, ZINC4076131, and ZINC1883067) were further
used to estimate drug-likeness, toxicity, and pharmacokinetic properties using the pkCSM
and SwissADME tools [24]. SMILE IDs of the molecules retrieved from the ZINC database
were entered into the pkCSM tool to evaluate drug-likeness [25].

2.7. Molecular Dynamics (MD) Simulations

To study the dynamic behavior of the protein–ligand complex in simulated phys-
iological conditions, MD simulations were performed using Gromacs Ver. 2020.4. The
protein–ligand complexes were solvated in a 10 × 10 × 10 Å orthorhombic periodic box
built with TIP3P water molecules. By adding a sufficient number of 9 Na counterions, the
entire system was neutralized. This solvated system was energy-minimized and position-
restrained with CHARMM 36 as a force-field [26]. Further, 20 ns of MD run was carried out
at 1 atm pressure and 300 K temperature implementing NPT ensemble with a recording
interval of 100 ps. This resulted in a total of 1000 reading frames. In the end, various
parameters of MD simulation study such as ligand binding site analysis, root-mean-square
deviation (RMSD), root-mean-square fluctuation (RMSF), radius of gyration, Mindistance,
H-bond analysis, etc., were analyzed for the stability, compactness, structural variations,
and protein–ligand interactions in the solvated system.

https://zinc.docking.org
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3. Results and Discussion
3.1. Virtual Screening, Molecular Docking, and LIGPLOT

Mtb is the only known bacterial pathogen that has proteasome activity [6]. The
increase in drug-resistant TB is a major public health concern and requires the development
of new agents that can evade the resistance and effectively control TB. With this purpose,
we conducted the computational screening of 224,205 natural compounds from the ZINC
database targeting the Mtb proteasome. Among them, the selected hits ZINC3875469,
ZINC4076131, and ZINC1883067 showed strong binding with the Mtb proteasome. Two-
dimensional structures of hit compounds are shown in Figure 1. ZINC3875469 interacted
with proteasome through 10 amino acid residues: Thr1, Ser20, Thr21, Gln22, Gly23, Ala46,
Gly47, Thr48, Gly140, and Ser141 (Figure 2a); while Thr1, Arg19, Ser20, Asn24, Thr21,
Gln22, Gly23, Asn24, Lys33, Gly47, Ala49, and Ala180 residues of the proteasome were
observed to bind with ZINC4076131 (Figure 2b). In a similar way, ZINC1883067 was found
to interact with Thr1, Arg19, Ser20, Thr21, Lys33, Ala46, Gly47, Gly140, Ser141, and Ala180
residues of the proteasome (Figure 2c).
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Figure 1. 2D structures of hit compounds. Figure 1. 2D structures of hit compounds.

The active site pocket residues of Mtb proteasome were determined as Ser20, Thr21,
Gln22, Val31, Ile45, Ala46, Thr48, Ala49, Val53, Asp124, Asp128, and Asp130 [27]. Interest-
ingly, ZINC3875469, ZINC4076131, and ZINC1883067 were also found to bind with these
residues of Mtb proteasome. In a study, small molecules were reported to interact with
Thr1, Arg19, Ser20, Thr21, Gln22, Lys33, Gly47, Ala49, Gly140, and Ser141 residues of Mtb
proteasome [27]. Consistent with this, in the present study, the selected hits were observed
to bind with the similar residues of Mtb proteasome.

Oxathiazol-2-one compounds altered the Mtb proteasome by interacting with the Thr1
residues of the core complex beta-subunit. Consequently, Thr1 is cyclocarbonylated, which
greatly alters the active site environment and causes an alternative protein conformation in
which the substrate-binding pocket is disrupted. As a result, Mtb proteasome substrates
were unable to obtain access to the proteasome, causing toxic proteins and peptides to accu-
mulate within mycobacterial cells. Notably, the oxathiazol-2-one compounds were thought
to have no effect on the substrate-binding pocket of human proteasomal beta-subunits. It
was proposed that this was due to the fact that the residues involved in preserving the
altered conformation were largely non-conserved and thus not susceptible to cyclocar-
bonylation inactivation. This provided highly selective inhibition of Mtb proteasomes
while leaving host proteasomal activity unaffected [13]. Interestingly, in this study, the
selected hits ZINC3875469, ZINC4076131, and ZINC1883067 were found to interact with
Thr1 residues of the Mtb proteasome.
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ZINC1883067 (c), and HT1171 (d).

We also performed the molecular docking of selected hits with the dimer model (K
and L chains) of the Mtb proteasome to determine possible interactions with the adjacent
chain (L-chain). Asp124 of the adjacent chain of the Mtb proteasome has been reported as
an important residue for inhibitor interaction [28]. Interestingly, in addition to interacting
with K-chain residues, ZINC3875469 and ZINC4076131 interacted with several other Mtb
proteasome L-chain residues including the Asp124 (Figure 3a,c). Despite the fact that
ZINC1883067 did not interact with the Asp124 residue of the L- chain, it did interact with
several other residues of both chains of the Mtb proteasome (Figure 3b).

The BE values for hits ZINC3875469, ZINC4076131, and ZINC1883067 with the Mtb
proteasome were found to be −7.19, −7.95, and −7.21 kcal/mol, respectively, for the
monomer, and −8.05, −9.10, and −7.07 kcal/mol, respectively, for the dimer (Table 1).

HT1171 is a well-characterized inhibitor of the Mtb proteasome [13], which was used
as the control compound in this study. HT1171 has been reported to bind with Thr1, Thr21,
Arg19, Ser20, Val31, and Ala49 residues of Mtb proteasome [27]. Interestingly, Thr1, Ser20,
and Thr21 are the common interacting residues of the Mtb proteasome with HT1171 and
the selected hit compounds in this study (Figure 2a–d). BE of HT1171 against the Mtb
proteasome was noted as −5.83 kcal/mol for the monomer and -5.97 kcal/mol for the
dimer (Table 1).
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Table 1. Binding energy of hit compounds with Mtb proteasome (monomer and dimer).

Compound Binding Energy (kcal/mol) Inhibition Constant (µM)

Monomer Dimer Monomer Dimer

ZINC3875469 −7.19 −8.05 28.9 26.54
ZINC4076131 −7.95 −9.10 43.24 0.213
ZINC1883067 −7.21 −7.07 27.92 23.96

HT1171 * −5.83 −5.97 45.36 47.01
* Positive control for Mtb proteasome.

The hydrophobic interaction and H-bond help to elucidate the potency of inhibitors
to the target protein and contribute an important role in “inhibitor–protein” complex sta-
bility [29,30]. The Mtb proteasome residues involved in H-bond (Table 2) and hydrophobic
interaction with selected compounds are shown in Figure 4.

Table 2. H-bond interactions between compounds and the Mtb proteasome (monomer; K-chain).

S.No. Target Compound H-Bond H-Bond Length (Å)

1.

Mtb proteasome

ZINC1883067

THR1:HN3-UNK0:O8 2.78
THR1:HG1-UNK0:O14 2.68
THR21:HN-UNK0:O15 3.06
SER141:HN-UNK0:O8 2.83

2. ZINC4076131
THR1:HT3-UNK0:O2 3.17
ALA49:HN-UNK0:O8 2.95

3. ZINC3875469
THR21:HN-UNK0:O13 2.15
GLY47:HN-UNK0:O3 2.49

4. HT1171 GLY23:HN-UNK0:O6 2.71
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In the docking study, more negative BE corresponded to the strong binding of hits to
the target protein. Furthermore, it is a fact that weaker binding will ultimately have a rapid
dissociation rate [31]. Accordingly, in this study, the hits (ZINC3875469, ZINC4076131,
and ZINC1883067) exhibited lower BE (strong binding) with the Mtb proteasome than
the control compound (HT1171), suggesting that these compounds could be utilized as an
inhibitor of the Mtb proteasome to combat TB. The results of the pkCSM and SwissADME
tool show that top-scored compounds (ZINC3875469, ZINC4076131, and ZINC1883067)
retained an acceptable range of ADMET and drug-likeness (Lipinski) (Table 3).
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Table 3. Pharmacokinetic properties of top-scoring ligands.

Property Model Name
Predicted Value

Unit
ZINC1883067 ZINC4076131 ZINC3875469

Absorption

Water solubility −3.67 −5.213 −4.624 log mol/L

Caco2 permeability −0.275 1.432 1.569 log Papp in 10–6 cm/s

Intestinal absorption (human) 81.583 97.413 96.726 % Absorbed

Skin Permeability −2.786 −2.629 −2.985 log Kp

Distribution

VDss (human) −0.44 0.315 0.397 log L/kg

Fraction unbound (human) 0.173 0.118 0.105 Fu

BBB permeability −1.036 0.099 0.2 log BB

CNS permeability −2.744 −1.483 −2.42 log PS

Metabolism

CYP2D6 substrate No No No

Yes/No

CYP3A4 substrate No Yes Yes

inhibitor

CYP1A2 Yes Yes No

CYP2C19 No Yes No

CYP2C9 No Yes No

CYP2D6 No No No

CYP3A4 No No No

Excretion
Total Clearance 0.587 0.742 0.636 log mL/min/kg

Renal OCT2 substrate No No Yes
Yes/No

Toxicity

AMES toxicity Yes No No

Max. tolerated dose (human) −0.58 0.547 −0.423 log mg/kg/day

hERG I inhibitor No No No Yes/No

Oral Rat Acute Toxicity (LD50) 2.321 2.347 1.837 mol/kg

Oral Rat Chronic Toxicity (LOAEL) 1.35 1.913 1.708 log mg/kg_bw/day

Hepatotoxicity No No No
Yes/No

Skin Sensitisation Yes No No

T. pyriformis toxicity 0.804 0.569 1.054
(log µg/L)

Minnow toxicity 0.644 −2.307 0.712

Druglikeness Lipinski Yes Yes Yes (Yes/No)

3.2. MD Simulation

MD simulations of the protein–ligand complex were performed using Gromacs 2020.4
on the Linux platform. MD simulation provides information about the receptor–ligand
complex with time, so we performed the MD simulation for 20 ns on the three complexes
(hit compounds). After the simulation, we analyzed the trajectory files for RMSD, RMSF,
protein–ligand interactions, etc.

3.2.1. RMSD

The RMSD value determines the mean deviation of the complex at a specific time. It
is an indicator that defines the average change in an atom’s displacement in the specific
molecular conformation of the reference conformation. In trajectory analysis, the complex
RMSD was found within the range of 0.25 Å. The initial RMSD value of the complex was
0.1 Å. The backbone atoms were monitored, and the stability, compactness, structural
fluctuations, and protein–ligand interactions in a solvated system were examined. RMSD
of the backbone was also noted to 0.2 Å (Figure 5). RMSD was found to be constant at 0.2 Å
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after 10 ns. The low RMSD value suggests that complexes are more stable. Moreover, it
was noted that among the three complexes, complex ZINC3875469 had the lowest RMSD
values. On the other hand, complex ZINC3873067 had a comparatively larger RMSD value.
This suggests that complex ZINC3875469 has more stability.
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3.2.2. RMSF

The RMSF is useful for characterizing local protein mobility in the protein–ligand
complex, which is calculated throughout the simulation. It relates to the root-mean-square
displacement of each frame conformation residue relative to the average conformation
used to determine the flexibility of a protein region. In an RMSF plot, the peak shows
the protein area fluctuates more throughout the simulation, while the lower RMSF values
reflect the less conformational transition. The atomic profile fluctuations were found to be
almost similar in all three complexes. The analysis revealed that the RMSF plot (Figure 6)
displayed minimal fluctuations in the protein structures for complex ZINC3875469. The
protein–ligand complex displayed lower flexibility, and the RMSF plot revealed variations
in certain regions of protein residues. It is suggested that the ligand binding site remained
approximately rigid throughout the simulation.
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3.2.3. Radius of Gyration (Rg)

Rg is used to assess a characterization parameter that evaluates changes in protein
structures. For the measurement of the transition in Rg of the protein backbone atoms,
the gmx gyrate software was used. Figure 7 shows that the Rg values of complexes
ZINC1883067, ZINC3875469, and ZINC4076131 did not change significantly throughout
the simulation and continued to fluctuate at 1.73 and 1.69 nm, respectively, indicating that
the ligand had little influence on protein structures. It was observed that the Rg value
of complex ZINC3875469 was lower and had little fluctuation comparatively throughout
the 20 ns of simulation. This suggests that the ligand–protein interaction in complex
ZINC3875469 is very high, which makes its structure more compact.
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3.2.4. Minimum Distance

The minimum distance between protein and ligand is given in Figure 8. The average
value was found to be 1.5 nm. Interestingly, complex ZINC3875469 had the comparatively
lowest minimum distance of 0.25 nm during the entire simulation, indicating more com-
pactness and stability of complex ZINC3875469. This suggests that complex ZINC3875469
is more stable than other complexes comparatively.
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3.2.5. Number of Hydrogen Bonds (H-Bond Number)

The number of H-bonds was measured to find out the robustness of the complex using
a cut-off value 0.35 nm. It was noticed that complexes ZINC1883067 and ZINC3875469
had the most H-bonds, but the complex ZINC3875469 H-bonds were more stable over the
entire simulation and thus play a significant role in stabilizing protein–ligand interactions
(Figure 9).
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It should be noted that the BE values and MD simulations obtained can only show the
binding effectiveness and stability of inhibitors with the target protein. However, further
bench work studies are required to validate these hits (ZINC3875469, ZINC4076131, and
ZINC1883067) as Mtb proteasome inhibitors.

4. Conclusions

In summary, natural compounds from the ZINC database were screened against the
Mtb proteasome. The top hit compounds (ZINC3875469, ZINC4076131, and ZINC1883067)
demonstrated robust binding with the monomer as well as dimer Mtb proteasome. Molec-
ular docking of these selected hits with the Mtb proteasome dimer model revealed that,
in addition to interacting with K-chain residues, they also interacted with many other
residues of the L-chain. These results open the way for further experimental confirmation
in the quest for a novel Mtb proteasome inhibitor to combat TB.
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