

Communication Synthesis of trans-Mono(silyl)palladium(II) Bromide Complexes

Melvyn B. Ansell¹, George E. Kostakis¹, Oscar Navarro^{1,2,*} and John Spencer^{1,*}

- ¹ Department of Chemistry, School of Life Sciences, University of Sussex, Brighton BN1 9QJ, UK; mbansell25@gmail.com (M.B.A.); G.Kostakis@sussex.ac.uk (G.E.K.)
- ² AMPAC Fine Chemicals, Highway 50 and Hazel Avenue, Building 05-019,
- Rancho Cordova, CA 95741-1718, USA
- * Correspondence: oscar.navarro@apfc.com (O.N.); j.spencer@sussex.ac.uk (J.S.); Tel.: +1-916-357-6928 (O.N.); +44-1273-877-374 (J.S.)

Abstract: The stoichiometric reaction of *cis*-[Pd(ITMe)₂(SiR₃)₂], where (SiR₃ = SiMe₃ and SiMe₂Ph and ITMe = 1,3,4,5-tetramethylimidazol-2-ylidene) with allyl bromide affords the corresponding allylsilanes along with complexes of the type *trans*-[Pd(ITMe)₂(SiR₃)(Br)]. The structure of *trans*-[Pd(ITMe)₂(SiMe₂Ph)Br] **2b** has been determined in the solid state and displays a slightly distorted square-planar geometry with the two N-heterocyclic carbene ligands in a *trans*-configuration.

Keywords: palladium; silicon; N-heterocyclic carbene; allylsilane

1. Introduction

Mono(silyl)palladium(II) halide species are purported intermediates in a number of catalytic routes towards allylsilanes [1,2]. Palladium pincer chemistry accounts of such complexes are rather numerous, although examples of their isolation in this catalytic cycle are rare [3–7]. *Trans*-[PdCl(SiF₂Ph)(L)₂] (L = PMe₃, PMe₂Ph or PMePh₂) and allyl bromide were shown to react to afford *trans*-[Pd(L)₂(SiF₂Ph)(Br)] and the corresponding allylsilane [1], and [(^tBuPAr₂)Pd(SiMe₃)(I)] (Ar = 3,5-Me₂-4-OMe-C₆H₂) was synthesized from stoichiometric quantities of [(cod)Pd(CH₂SiMe₃)₂] (cod = 1,5-cyclooctadiene), ^tBuPAr₂ and Me₃SiI [2]. Analogues have been used in silyl-Negishi couplings [8]. We wish to report here our preliminary findings on the reaction of (ITMe)₂Pd(silyl)₂ complexes with allyl bromide (ITMe = 1,3,4,5-tetramethylimidazol-2-ylidene) [9–12].

2. Results and Discussion

The bis(silyl)palladium complexes, *cis*-[Pd(ITMe)₂(SiR₃)₂] (**1a**: SiR₃ = SiMe₃ and **1b**: SiMe₂Ph [13,14] were reacted with excess allylbromide at room temperature under an nitrogen atmosphere to yield *trans*-[Pd(ITMe)₂(SiMe₃)(Br)] **2a** and *trans*-[Pd(ITMe)₂(SiMe₂Ph)Br] **2b** in 92 and 93% yield, respectively (Scheme 1). Reaction progress was monitored by ¹H NMR spectroscopy. Characteristic resonances corresponding to silanes **3a** and **3b** were observed (in a 1:1 stoichiometry with **2a/2b**, respectively, upon examination of the crude mixtures).

Scheme 1. Stoichiometric synthesis of mono(silyl)palladium bromide complexes.

Citation: Ansell, M.B.; Kostakis, G.E.; Navarro, O.; Spencer, J. Synthesis of *trans*-Mono(silyl)palladium(II) Bromide Complexes. *Molecules* **2021**, 26, 2460. https://doi.org/10.3390/ molecules26092460

Academic Editor: Vincent Ritleng

Received: 13 April 2021 Accepted: 21 April 2021 Published: 23 April 2021

Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Copyright: © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/). In order to further characterize the organometallic complexes, single crystals of **2b** suitable for X-ray analysis were grown by slow evaporation of a saturated deuterated benzene solution at room temperature. X-ray analysis revealed that **2b** displays a marginally distorted square-planar geometry with the two NHCs in a *trans*-configuration and orthogonal to the Br-Pd-Si plane (Figure 1, Table 1).

Figure 1. Molecular structure of **2b**. Hydrogen atoms are omitted for clarity. Selected bond lengths [Å] and angles [°]: Pd1-Br1 2.6333(7), Pd-Si1 2.2948(18), Pd1-C1 2.028(5), Pd1-C8 2.025(5); C1-Pd1-Br1 94.97(16), C1-Pd1-Si1 89.15(17), C8-Pd1-Br1 87.62(16), C8-Pd1-Si1 88.60(17), C1-Pd1-C8 177.2(2).

Table 1. Crystal data and structure refinement for 2b.

Empirical formula	$C_{22}H_{35}BrN_4PdSi$
Formula weight	569.94
Temperature/K	173
Crystal system	orthorhombic
Space group	$P2_12_12_1$
a/Å	10.5467(4)
b/Å	14.3455(3)
c/Å	16.7301(4)
$\alpha/^{\circ}$	90
β/°	90
$\gamma/^{\circ}$	90
Volume/Å ³	2531.23(13)
Z	4
$\rho_{calc}g/cm^3$	1.496
μ/mm^{-1}	2.374
F(000)	1160.0
Crystal size/mm ³	0.22 imes 0.2 imes 0.15
Radiation	MoK α ($\lambda = 0.71073$)
2θ range for data collection/°	6.836 to 52.744
Index ranges	$-13 \le h \le 8, -17 \le k \le 11, -14 \le l \le 20$
Reflections collected	7612
Independent reflections	4799 [R _{int} = 0.0320, R _{sigma} = 0.0568]
Data/restraints/parameters	4799/0/272
Goodness-of-fit on F ²	1.018
Final R indexes $[I \ge 2\sigma (I)]$	$R_1 = 0.0322$, $wR_2 = 0.0614$
Final R indexes [all data]	$R_1 = 0.0376$, $wR_2 = 0.0640$
Largest diff. peak/hole/e Å ^{-3}	0.51/-0.34
Flack parameter	0.004(8)
CCDC deposition number	2076437

The carbenic carbon-Pd bond lengths in **2b** [2.028(5) and 2.025(5) Å] are significantly shorter than in *cis*-[Pd(ITMe)₂(SiMe₂Ph)₂] [2.105(3) and 2.123(3) Å], suggesting SiMe₂Ph exhibits a stronger *trans*-influence than ITMe [15]. The decreased length of the Pd-Si bond in **2b** [2.2948(18) Å] versus *cis*-[Pd(ITMe)₂(SiMe₂Ph)₂] [2.3445(8) and 2.3346(8) Å] infers a stronger Pd-Si bond in **2b** and demonstrates the weak *trans*-influence of Br. Based on these data, the intensity of the *trans*-influence in these two structures follows the sequence: Br < ITMe < SiMe₂Ph. Thus, the preference for the trans-configuration observed in **2b** may be attributed to the high trans-influence of SiMe₂Ph and the large steric size of Br.

A possible mechanism for the formation of **2** includes either a σ -bond metathesis between a Pd-Si, in *cis*-[Pd(ITMe)₂(SiR₃)₂], and Br-C bond, in allylbromide, or an S_N2/S_N2' by the nucleophilic Pd-Si bond at the electrophilic sites in the allyl halide, leading to a *trans* complex. As we have previously suggested using computational studies on related bis-ITMe complexes, an NHC would then dissociate from the palladium center followed by a *cis* to *trans* isomerization of the Br and Si moieties (Scheme 2) [11]. Finally, the dissociated NHC would re-coordinate, constrained by the bulk of the other ligands, in a *cis*-configuration [16,17].

Scheme 2. Possible mechanistic routes for the formation of 2.

3. Experimental

The handling of air-sensitive compounds and their spectroscopic measurements were undertaken using standard Schlenk line techniques using pre-dried Ar (using a BASF R3-11(G) catalyst and 4 Å molecular sieves), or in a MBraun glovebox under N₂ (O₂ < 10.0 ppm). All glassware was dried in a 160 °C oven prior to use. Celite was predried in a 200 °C oven and then dried with a heat gun under a dynamic vacuum prior to use. Filter cannulae equipped with microfiber filters were dried in an oven at 160 °C prior to use. Solvents employed in air-sensitive reactions were dried using vacuum distillation, followed by distillation over potassium or stored over activated 4 Å molecular sieves under an Ar atmosphere. NMR spectra were recorded on a Varian VNMRS 400 (Palo Alto, CA, USA) (¹H 399.5 MHz; ¹³C{1H} 100.5 MHz; ¹¹B{1H} 128.2 MHz; ¹⁹F 375.9 MHz; ²⁹Si{¹H}

79.4 MHz), or 500 (¹H 499.9 MHz; ¹³C{¹H} 125.7 MHz). Chemical shifts are reported in ppm. All other experimental details are outlined elsewhere [10].

Synthesis of trans-[Pd(ITMe)₂(SiMe₃)(Br)] (2a) and Allyltrimethylsilane (3a)

Allylbromide (0.032 g, 0.26 mmol) was added to a solution of cis-[Pd(ITMe)₂(SiMe₃)₂] (0.043 g, 0.09 mmol) in C₆D₆ or toluene (3.0 mL) and the resulting reaction mixture was stirred at room temperature for 1.5 h. At this stage, the volatiles were removed in vacuo and the off-white powder was washed with hexane (3 × 4.0 mL).

2a, Yield: 0.040 g, 92%. ¹H NMR (399.5 MHz, C_6D_6): $\delta_H = 3.68$ [s, 12H, N(1,3)-CH₃], 1.42 [s, 12H, C(4,5)-CH₃], 0.12 [s, 9H, SiMe₃]. ¹³C{¹H} NMR (100.5 MHz, C_6D_6): $\delta_C = 184.9$ [NCN], 124.0 [C(4,5)-CH₃], 35.1 [N(1,3)-CH₃], 8.5 [C(4,5)-CH₃], 6.9 [SiMe₃]. ²⁹Si{¹H} NMR (79.4 MHz, C_6D_6): $\delta_{Si} = 7.68$. Elem. Anal. Calcd. for $C_{17}H_{33}N_4SiBrPd$: C, 40.20%; H, 6.55%; N, 11.03%. Found: C, 40.15%; H, 6.54%; N, 10.95%. **3a** (from crude reaction solution), ¹H NMR (399.5 MHz, C_6D_6): $\delta_H = 5.77$ [m, 1H, CH=], 4.92 [m, 1H, CH=], 4.89 [m, 1H, CH=], 1.44 [m, 2H, CH₂], -0.03 [s, 9H, SiMe₃]. [Agrees with an independently taken ¹H NMR sample of commercially available allyltrimethylsilane].

Synthesis of trans-[Pd(ITMe)2(SiMe2Ph)(Br)] (2b)

Allybromide (6.0 µL, 0.07 mmol) and *cis*-[Pd(ITMe)₂(SiMe₂Ph)] (0.021 g, 0.03 mmol) were dissolved in C₆D₆ or toluene (1.0 mL). The resulting reaction mixture was stirred at room temperature for 2 h under an N₂ atmosphere. At this stage, all volatiles were removed in vacuo and the resulting white solid was washed with hexane (3 × 2.0 mL). Yield: 0.018 g, 93%. ¹H NMR (399.5 MHz, C₆D₆): $\delta_{\rm H}$ = 7.20 [m, 2H, SiMe₂Ph], 7.07 [m, 3H, SiMe₂Ph], 3.51 [s, 12H, N(1,3)-CH₃], 1.42 [s, 12H, C(4,5)-CH₃], 0.31 [s, 6H, SiMe₂Ph]. ¹³C{¹H} NMR (100.5 MHz, C₆D₆): $\delta_{\rm C}$ = 183.4 [NCN], 149.6 [SiMe₂*i*-Ph], 133.1 [SiMe₂Ph], 127.0 [SiMe₂Ph], 126.5 [SiMe₂*p*-Ph], 124.2 [C(4,5)-CH₃], 34.9 [N(1,3)-CH₃], 8.5 [C(4,5)-CH₃], 4.2 [SiMe₂Ph]. ²⁹Si{¹H} NMR (79.4 MHz, C₆D₆): $\delta_{\rm Si}$ = 2.44. (It was not possible to obtain elemental analysis for **2b** – every attempt resulted in numbers that were inconsistent with calculated values. A possible reason for this is decomposition of **2b** by exposure to air or moisture on transit to data collection).

Crystal data for **2b**: C₂₂H₃₅N₄SiBrPd, $M_r = 569.94 \text{ g mol}^{-1}$, orthorhombic, space group P2 = 2₁2₁, a = 10.5467(4) Å, b = 14.3455(3) Å, c = 16.7301(4) Å, $\alpha = 90^{\circ}$, $\beta = 90^{\circ}$, $\gamma = 90^{\circ}$, V = 2531.23(13) Å³, Z = 4, T = 173 K, $\lambda \text{Mo}(\text{K}\alpha) = 0.71073$, $R_1 [I > 2\sigma(I)] = 0.0345$, wR_2 (all data) = 0.0677, GooF = 1.011.

Crude ¹H NMR data are consistent with the formation of allyldimethylphenylsilane (**3b**) as a product of this reaction. However, this was not isolated in this instance [18].

4. Conclusions

Under mild conditions, non-pincer bis(NHC)(silyl)palladium halide complexes of the type *trans*-[Pd(ITMe)₂(SiR₃)(Br)] (SiR₃ = SiMe₂Ph (**2a**), and SiMe₃ (**2b**)) were synthesized, by the reaction of allylbromide with the corresponding complexes *cis*-[Pd(ITMe)₂(SiR₃)₂], **1a** or **1b**, respectively. A possible mechanistic route for the formation of **2** involves either a σ -bond metathesis or an S_N2/S_N2' reaction between allybromide and **1**. This would necessitate a *cis-trans* isomerization via dissociation of an NHC ligand-[19]. The reactivity of *trans*-[Pd(ITMe)₂(SiR₃)(Br)] is unexplored but will soon be carried out. The facile formation and apparent stability of *trans*-**2** may indeed hinder the catalytic silylation of ally halides mediated by ITMe₂Pd-based complexes since the adoption of a *cis*-configuration is a prerequisite for reductive elimination and involvement in a catalytic cycle. Solutions to these unexplored questions are currently being sought, e.g., the potential for halide abstraction, and will be reported in due course.

Author Contributions: Conceptualization, M.B.A., O.N., J.S. Writing—original draft preparation, all authors; writing—review and editing, all authors. X-ray data acquisition and refinement: M.B.A. and G.E.K. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by an EPSRC Standard Research Studentship (DTG, Grant # EP/L505109/1), to M.B.A.

Institutional Review Board Statement: Not applicable.

Acknowledgments: Dedicated to Michel Pfeffer for his contributions to C-H activation, palladium, and ruthenium chemistry. A gentleman and a scholar.

Conflicts of Interest: The authors declare no conflict of interest.

Sample Availability: No samples of the compounds are available from the authors.

Disclosure: This work has been previously presented as part of a thesis available at: Ansell, Melvyn B (2017) *Novel (N-heterocyclic carbene)-palladium(0) complexes as catalysts in element-element bond additions to unsaturated moieties.* Doctoral thesis (PhD), University of Sussex, Brighton BN1 9QJ, UK; http://sro.sussex.ac.uk/id/eprint/68072/, accessed on 12 May 2017).

References

- Ozawa, F.; Sugawara, M.; Hasebe, K.; Hayashi, T. Reactions of bis(silyl)palladium(II) complexes with allyl halides. Synthesis of mono(silyl)palladium(II) halides and X-ray structure of trans-PdCl(SiF2Ph)(PMe2Ph)2. *Inorg. Chim. Acta* 1999, 296, 19–25. [CrossRef]
- McAtee, J.R.; Yap, G.P.A.; Watson, D.A. Rational design of a second generation catalyst for preparation of allylsilanes using the silyl-Heck reaction. J. Am. Chem. Soc. 2014, 136, 10166–10172. [CrossRef] [PubMed]
- MacInnis, M.C.; MacLean, D.F.; Lundgren, R.J.; Mcdonald, R.; Turculet, L. Synthesis and reactivity of platinum group metal complexes featuring the new pincer-like bis (phosphino) silyl ligand [K3-(2-Ph 2PC6H4)2SiMe]-([PSiP]): Application in the ruthenium-mediated transfer hydrogenation of ketones. *Organometallics* 2007, 26, 6522–6525. [CrossRef]
- 4. Takaya, J.; Nakamura, S.; Iwasawa, N. Synthesis, structure, and catalytic activity of palladium complexes bearing a tridentate pxp-pincer ligand of heavier group 14 element (X. = Ge, Sn). *Chem. Lett.* **2012**, *41*, 967–969. [CrossRef]
- Ruddy, A.J.; Mitton, S.J.; Mcdonald, R.; Turculet, L. Hemilabile' silyl pincer ligation: Platinum group PSiN complexes and triple C-H activation to form a (PSiC)Ru carbene complex. *Chem. Commun.* 2012, *48*, 1159–1161. [CrossRef]
- Wahlicht, S.; Brendler, E.; Heine, T.; Zhechkov, L.; Wagler, J. 7-Azaindol-1-yl(organo)silanes and Their PdCl₂ Complexes: Pd-Capped Tetrahedral Silicon Coordination Spheres and Paddlewheels with a Pd–Si Axis. *Organometallics* 2014, 33, 2479–2488.
 [CrossRef]
- Suh, H.W.; Balcells, D.; Edwards, A.J.; Guard, L.M.; Hazari, N.; Mader, E.A.; Mercado, B.Q.; Repisky, M. Understanding the Solution and Solid-State Structures of Pd and Pt PSiP Pincer-Supported Hydrides. *Inorg. Chem.* 2015, 54, 11411–11422. [CrossRef] [PubMed]
- Cinderella, A.P.; Vulovic, B.; Watson, D.A. Palladium-Catalyzed Cross-Coupling of Silyl Electrophiles with Alkylzinc Halides: A Silyl-Negishi Reaction. J. Am. Chem. Soc. 2017, 139, 7741–7744. [CrossRef] [PubMed]
- Ansell, M.B.; Furfari, S.K.; Cloke, F.G.N.; Roe, S.M.; Spencer, J.; Navarro, O. Comparison of the Reactivity of the Low Buried-Volume Carbene Complexes (ITMe)2Pd(PhC≡CPh) and (ITMe)2Pd(PhN=NPh). Organometallics 2018, 37, 1214–1218. [CrossRef]
- 10. Ansell, M.B.; Menezes Da Silva, V.H.; Heerdt, G.; Braga, A.A.C.; Spencer, J.; Navarro, O. An experimental and theoretical study into the facile, homogenous (N-heterocyclic carbene)2-Pd(0) catalyzed diboration of internal and terminal alkynes. *Catal. Sci. Technol.* **2016**, *6*, 7461–7467. [CrossRef]
- Ansell, M.B.; Kostakis, G.E.; Braunschweig, H.; Navarro, O.; Spencer, J. Synthesis of Functionalized Hydrazines: Facile Homogeneous (N-Heterocyclic Carbene)-Palladium(0)-Catalyzed Diboration and Silaboration of Azobenzenes. *Adv. Synth. Catal.* 2016, *358*. [CrossRef] [PubMed]
- 12. Ansell, M.B.; Navarro, O.; Spencer, J. Transition metal catalyzed element–element' additions to alkynes. *Coord. Chem. Rev.* **2017**, 336. [CrossRef]
- 13. Ansell, M.B.; Roberts, D.E.; Cloke, F.G.N.; Navarro, O.; Spencer, J. Synthesis of an [(NHC)2Pd(SiMe3)2] complex and catalytic cis-bis(silyl)ations of alkynes with unactivated disilanes. *Angew. Chem. Int. Ed.* **2015**, *54*, 5579–5582. [CrossRef] [PubMed]
- 14. Ansell, M.B.; Spencer, J.; Navarro, O. (N-Heterocyclic Carbene)2-Pd(0)-Catalyzed Silaboration of Internal and Terminal Alkynes: Scope and Mechanistic Studies. *ACS Catal.* **2016**, *6*, 2192–2196. [CrossRef]
- 15. Mo, Z.; Liu, Y.; Deng, L. Anchoring of silyl donors on a N-heterocyclic carbene through the cobalt-mediated silylation of benzylic C-H bonds. *Angew. Chem. Int. Ed.* **2013**, *52*, 10845–10849. [CrossRef] [PubMed]
- De, K.; Lewis, A.K.; Caddick, S.; Cloke, F.G.N.; Billingham, N.C.; Hitchcock, P.B.; Leonard, J. Synthetic, structural, and mechanistic studies on the oxidative addition of aromatic chlorides to a palladium (N-heterocyclic carbene) complex: Relevance to catalytic amination. *J. Am. Chem. Soc.* 2003, 125, 10066–10073.
- 17. De, K.; Lewis, A.K.; Caddick, S.; Esposito, O.; Cloke, F.G.N.; Hitchcock, P.B. Synthetic and structural studies on amine coordination to Pd-N-heterocyclic carbene complexes. *Dalt. Trans.* **2009**, *35*, 7094–7098.

- 18. Godineau, E.; Schenk, K.; Landais, Y. Synthesis of fused piperidinones through free-radical-ionic cascade. *J. Org. Chem.* **2008**, *73*, 6983–6993. [CrossRef] [PubMed]
- 19. Suarez, A.G.; Nelson, D.J.; Nolan, S.P. Quantifying and understanding the steric properties of N-heterocyclic carbens. *Chem. Commun.* **2017**, *53*, 2650–2660. [CrossRef] [PubMed]