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Abstract: The stoichiometric reaction of cis-[Pd(ITMe)2(SiR3)2], where (SiR3 = SiMe3 and SiMe2Ph
and ITMe = 1,3,4,5-tetramethylimidazol-2-ylidene) with allyl bromide affords the corresponding
allylsilanes along with complexes of the type trans-[Pd(ITMe)2(SiR3)(Br)]. The structure of trans-
[Pd(ITMe)2(SiMe2Ph)Br] 2b has been determined in the solid state and displays a slightly distorted
square-planar geometry with the two N-heterocyclic carbene ligands in a trans-configuration.
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1. Introduction

Mono(silyl)palladium(II) halide species are purported intermediates in a number of
catalytic routes towards allylsilanes [1,2]. Palladium pincer chemistry accounts of such
complexes are rather numerous, although examples of their isolation in this catalytic
cycle are rare [3–7]. Trans-[PdCl(SiF2Ph)(L)2] (L = PMe3, PMe2Ph or PMePh2) and allyl
bromide were shown to react to afford trans-[Pd(L)2(SiF2Ph)(Br)] and the corresponding
allylsilane [1], and [(tBuPAr2)Pd(SiMe3)(I)] (Ar = 3,5-Me2-4-OMe-C6H2) was synthesized
from stoichiometric quantities of [(cod)Pd(CH2SiMe3)2] (cod = 1,5-cyclooctadiene), tBuPAr2
and Me3SiI [2]. Analogues have been used in silyl-Negishi couplings [8]. We wish to report
here our preliminary findings on the reaction of (ITMe)2Pd(silyl)2 complexes with allyl
bromide (ITMe = 1,3,4,5-tetramethylimidazol-2-ylidene) [9–12].

2. Results and Discussion

The bis(silyl)palladium complexes, cis-[Pd(ITMe)2(SiR3)2] (1a: SiR3 = SiMe3 and 1b:
SiMe2Ph [13,14] were reacted with excess allylbromide at room temperature under an nitro-
gen atmosphere to yield trans-[Pd(ITMe)2(SiMe3)(Br)] 2a and trans-[Pd(ITMe)2(SiMe2Ph)Br]
2b in 92 and 93% yield, respectively (Scheme 1). Reaction progress was monitored by
1H NMR spectroscopy. Characteristic resonances corresponding to silanes 3a and 3b
were observed (in a 1:1 stoichiometry with 2a/2b, respectively, upon examination of the
crude mixtures).
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Scheme 1. Stoichiometric synthesis of mono(silyl)palladium bromide complexes. 
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In order to further characterize the organometallic complexes, single crystals of 2b suit-
able for X-ray analysis were grown by slow evaporation of a saturated deuterated benzene
solution at room temperature. X-ray analysis revealed that 2b displays a marginally dis-
torted square-planar geometry with the two NHCs in a trans-configuration and orthogonal
to the Br-Pd-Si plane (Figure 1, Table 1).
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the nucleophilic Pd-Si bond at the electrophilic sites in the allyl halide, leading to a trans 
complex. As we have previously suggested using computational studies on related bis-
ITMe complexes, an NHC would then dissociate from the palladium center followed by a 
cis to trans isomerization of the Br and Si moieties (Scheme 2) [11]. Finally, the dissociated 
NHC would re-coordinate, constrained by the bulk of the other ligands, in a cis-configu-
ration [16,17]. 

Table 1. Crystal data and structure refinement for 2b. 

Empirical formula  C22H35BrN4PdSi  
Formula weight  569.94  
Temperature/K  173  
Crystal system  orthorhombic  

Space group  P212121  
a/Å  10.5467(4)  
b/Å  14.3455(3)  

Figure 1. Molecular structure of 2b. Hydrogen atoms are omitted for clarity. Selected bond lengths
[Å] and angles [o]: Pd1-Br1 2.6333(7), Pd-Si1 2.2948(18), Pd1-C1 2.028(5), Pd1-C8 2.025(5); C1-Pd1-Br1
94.97(16), C1-Pd1-Si1 89.15(17), C8-Pd1-Br1 87.62(16), C8-Pd1-Si1 88.60(17), C1-Pd1-C8 177.2(2).

Table 1. Crystal data and structure refinement for 2b.

Empirical formula C22H35BrN4PdSi
Formula weight 569.94
Temperature/K 173
Crystal system orthorhombic

Space group P212121
a/Å 10.5467(4)
b/Å 14.3455(3)
c/Å 16.7301(4)
α/◦ 90
β/◦ 90
γ/◦ 90

Volume/Å3 2531.23(13)
Z 4

ρcalcg/cm3 1.496
µ/mm−1 2.374

F(000) 1160.0
Crystal size/mm3 0.22 × 0.2 × 0.15

Radiation MoKα (λ = 0.71073)
2θ range for data collection/◦ 6.836 to 52.744

Index ranges −13 ≤ h ≤ 8, −17 ≤ k ≤ 11, −14 ≤ l ≤ 20
Reflections collected 7612

Independent reflections 4799 [Rint = 0.0320, Rsigma = 0.0568]
Data/restraints/parameters 4799/0/272

Goodness-of-fit on F2 1.018
Final R indexes [I >= 2σ (I)] R1 = 0.0322, wR2 = 0.0614

Final R indexes [all data] R1 = 0.0376, wR2 = 0.0640
Largest diff. peak/hole/e Å−3 0.51/−0.34

Flack parameter 0.004(8)
CCDC deposition number 2076437
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The carbenic carbon-Pd bond lengths in 2b [2.028(5) and 2.025(5) Å] are significantly
shorter than in cis-[Pd(ITMe)2(SiMe2Ph)2] [2.105(3) and 2.123(3) Å], suggesting SiMe2Ph
exhibits a stronger trans-influence than ITMe [15]. The decreased length of the Pd-Si bond
in 2b [2.2948(18) Å] versus cis-[Pd(ITMe)2(SiMe2Ph)2] [2.3445(8) and 2.3346(8) Å] infers a
stronger Pd-Si bond in 2b and demonstrates the weak trans-influence of Br. Based on these
data, the intensity of the trans-influence in these two structures follows the sequence: Br <
ITMe < SiMe2Ph. Thus, the preference for the trans-configuration observed in 2b may be
attributed to the high trans-influence of SiMe2Ph and the large steric size of Br.

A possible mechanism for the formation of 2 includes either a σ-bond metathesis
between a Pd-Si, in cis-[Pd(ITMe)2(SiR3)2], and Br-C bond, in allylbromide, or an SN2/SN2′

by the nucleophilic Pd-Si bond at the electrophilic sites in the allyl halide, leading to a
trans complex. As we have previously suggested using computational studies on related
bis-ITMe complexes, an NHC would then dissociate from the palladium center followed
by a cis to trans isomerization of the Br and Si moieties (Scheme 2) [11]. Finally, the
dissociated NHC would re-coordinate, constrained by the bulk of the other ligands, in a
cis-configuration [16,17].
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Scheme 2. Possible mechanistic routes for the formation of 2.

3. Experimental

The handling of air-sensitive compounds and their spectroscopic measurements
were undertaken using standard Schlenk line techniques using pre-dried Ar (using a
BASF R3-11(G) catalyst and 4 Å molecular sieves), or in a MBraun glovebox under N2
(O2 < 10.0 ppm). All glassware was dried in a 160 ◦C oven prior to use. Celite was predried
in a 200 ◦C oven and then dried with a heat gun under a dynamic vacuum prior to use.
Filter cannulae equipped with microfiber filters were dried in an oven at 160 ◦C prior to
use. Solvents employed in air-sensitive reactions were dried using vacuum distillation,
followed by distillation over potassium or stored over activated 4 Å molecular sieves under
an Ar atmosphere. NMR spectra were recorded on a Varian VNMRS 400 (Palo Alto, CA,
USA) (1H 399.5 MHz; 13C{1H} 100.5 MHz; 11B{1H} 128.2 MHz; 19F 375.9 MHz; 29Si{1H}
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79.4 MHz), or 500 (1H 499.9 MHz; 13C{1H} 125.7 MHz). Chemical shifts are reported in
ppm. All other experimental details are outlined elsewhere [10].

Synthesis of trans-[Pd(ITMe)2(SiMe3)(Br)] (2a) and Allyltrimethylsilane (3a)

Allylbromide (0.032 g, 0.26 mmol) was added to a solution of cis-[Pd(ITMe)2(SiMe3)2]
(0.043 g, 0.09 mmol) in C6D6 or toluene (3.0 mL) and the resulting reaction mixture was
stirred at room temperature for 1.5 h. At this stage, the volatiles were removed in vacuo
and the off-white powder was washed with hexane (3 × 4.0 mL).

2a, Yield: 0.040 g, 92%. 1H NMR (399.5 MHz, C6D6): δH = 3.68 [s, 12H, N(1,3)-CH3],
1.42 [s, 12H, C(4,5)-CH3], 0.12 [s, 9H, SiMe3]. 13C{1H} NMR (100.5 MHz, C6D6): δC = 184.9
[NCN], 124.0 [C(4,5)-CH3], 35.1 [N(1,3)-CH3], 8.5 [C(4,5)-CH3], 6.9 [SiMe3]. 29Si{1H} NMR
(79.4 MHz, C6D6): δSi = 7.68. Elem. Anal. Calcd. for C17H33N4SiBrPd: C, 40.20%; H, 6.55%;
N, 11.03%. Found: C, 40.15%; H, 6.54%; N, 10.95%. 3a (from crude reaction solution), 1H
NMR (399.5 MHz, C6D6): δH = 5.77 [m, 1H, CH=], 4.92 [m, 1H, CH=], 4.89 [m, 1H, CH=],
1.44 [m, 2H, CH2], −0.03 [s, 9H, SiMe3]. [Agrees with an independently taken 1H NMR
sample of commercially available allyltrimethylsilane].

Synthesis of trans-[Pd(ITMe)2(SiMe2Ph)(Br)] (2b)

Allybromide (6.0 µL, 0.07 mmol) and cis-[Pd(ITMe)2(SiMe2Ph)] (0.021 g, 0.03 mmol)
were dissolved in C6D6 or toluene (1.0 mL). The resulting reaction mixture was stirred
at room temperature for 2 h under an N2 atmosphere. At this stage, all volatiles were
removed in vacuo and the resulting white solid was washed with hexane (3 × 2.0 mL).
Yield: 0.018 g, 93%. 1H NMR (399.5 MHz, C6D6): δH = 7.20 [m, 2H, SiMe2Ph], 7.07 [m,
3H, SiMe2Ph], 3.51 [s, 12H, N(1,3)-CH3], 1.42 [s, 12H, C(4,5)-CH3], 0.31 [s, 6H, SiMe2Ph].
13C{1H} NMR (100.5 MHz, C6D6): δC = 183.4 [NCN], 149.6 [SiMe2i-Ph], 133.1 [SiMe2Ph],
127.0 [SiMe2Ph], 126.5 [SiMe2p-Ph], 124.2 [C(4,5)-CH3], 34.9 [N(1,3)-CH3], 8.5 [C(4,5)-CH3],
4.2 [SiMe2Ph]. 29Si{1H} NMR (79.4 MHz, C6D6): δSi = 2.44. (It was not possible to obtain
elemental analysis for 2b– every attempt resulted in numbers that were inconsistent with
calculated values. A possible reason for this is decomposition of 2b by exposure to air or
moisture on transit to data collection).

Crystal data for 2b: C22H35N4SiBrPd, Mr = 569.94 g mol−1, orthorhombic, space group
P2 = 2121, a = 10.5467(4) Å, b = 14.3455(3) Å, c = 16.7301(4) Å, α = 90◦, β = 90◦, γ = 90◦,
V = 2531.23(13) Å3, Z = 4, T = 173 K, λMo(Kα) = 0.71073, R1 [I > 2σ(I)] = 0.0345, wR2 (all
data) = 0.0677, GooF = 1.011.

Crude 1H NMR data are consistent with the formation of allyldimethylphenylsilane
(3b) as a product of this reaction. However, this was not isolated in this instance [18].

4. Conclusions

Under mild conditions, non-pincer bis(NHC)(silyl)palladium halide complexes of the
type trans-[Pd(ITMe)2(SiR3)(Br)] (SiR3 = SiMe2Ph (2a), and SiMe3 (2b)) were synthesized,
by the reaction of allylbromide with the corresponding complexes cis-[Pd(ITMe)2(SiR3)2],
1a or 1b, respectively. A possible mechanistic route for the formation of 2 involves either
a σ-bond metathesis or an SN2/SN2′ reaction between allybromide and 1. This would
necessitate a cis-trans isomerization via dissociation of an NHC ligand-[19]. The reactivity of
trans-[Pd(ITMe)2(SiR3)(Br)] is unexplored but will soon be carried out. The facile formation
and apparent stability of trans-2 may indeed hinder the catalytic silylation of ally halides
mediated by ITMe2Pd-based complexes since the adoption of a cis-configuration is a
prerequisite for reductive elimination and involvement in a catalytic cycle. Solutions
to these unexplored questions are currently being sought, e.g., the potential for halide
abstraction, and will be reported in due course.
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