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Abstract: The Kabachnik–Fields reaction, comprising the condensation of an amine, oxo compound
and a P-reagent (generally a >P(O)H species or trialkyl phosphite), still attracts interest due to the chal-
lenging synthetic procedures and the potential biological activity of the resulting α-aminophosphonic
derivatives. Following the success of the first part (Molecules 2012, 17, 12821), here we summarize
the synthetic developments in this field accumulated in the last decade. The procedures compiled
include catalytic accomplishments as well as catalyst-free and/or solvent-free “greener” protocols.
The products embrace α-aminophosphonates, α-aminophosphinates, and α-aminophosphine ox-
ides along with different bis derivatives from the double phospha-Mannich approach. The newer
developments of the aza-Pudovik reactions are also included.

Keywords: Kabachnik–Fields reaction; phospha-Mannich reaction; α-aminophosphonates;
α-aminophosphine oxides; bis derivatives; catalysts; green methods; aza-Pudovik reaction

1. Introduction

The Kabachnik–Fields reaction involves the condensation of a primary or secondary
amine, an oxo compound such as an aldehyde or ketone, and a >P(O)H-containing reagent,
which is in most cases a dialkyl phosphite, but may also be an alkyl-H-phosphinate
or a secondary phosphine oxide, to result in the formation of α-aminophosphonates,
α-aminophosphinates, and α-aminophosphine oxides, respectively [1–5]. The classical
version of the “phospha-Mannich” reaction was discovered independently by Kabachnik
and Fields more than sixty years ago [6,7].

The α-aminophosphonic and α-aminophosphinic derivatives incorporating an N–C–P
moiety are still a focus due to their real or potential biological activity. The acid derivatives
of the species under discussion may be regarded as the analogues of their natural counter-
parts, carboxylic acids. As such, as a consequence of their different properties (tetrahedral
P vs. planar C, different acidity, and steric bulk) they are recognized by receptors and
enzymes as false substrates/inhibitors [8–12]. The bioactivity realized in this way may be
manifested in applications as agrochemicals and medicines.

The mechanism of the phospha-Mannich reaction depends on the nature of the substrates
applied. It has been said that the condensation may proceed via an imine (Schiff base) or
α-hydroxyphosphonate intermediate (Scheme 1/route “A” and “B” respectively) [13–15].

The number of publications describing different variations of the Kabachnik–Fields
reaction exceeds 450 papers. The usual phospha-Mannich protocol includes the conden-
sation of equimolar quantities of the three components in organic solvents and the use of
various catalysts, comprising in most cases Lewis and Brönsted acids. A wide range of
catalysts have been described, such as metal perchlorates; Amberlysts; succinic-, sulfonic-,
and oxalic- acids; zinc, iron, and niobium salt; lanthanide triflates; boron trifluoride ether-
ate; titanium dioxide; etc. [16]. However, it has been found that catalyst-free methods
may also be appropriate, especially under solvent-free and/or microwave-assisted condi-
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tions [17–23]. The latter protocols represent green chemical approaches that are the focus
of this article.
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tert-buthylphthalocyaninato)aluminum chloride, a series of amines, acetophenone, and 
diethyl phosphite were condensed to afford the corresponding α-aminophosphonates (1) 
in acceptable yields (Scheme 2(1)). The reaction of benzylamine, indanone (2), and ethyl 
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Scheme 2. tBu4PcAlCl-catalyzed Kabachnik–Fields reactions. DCM—Dichloromethane. 

The three-component condensation of aniline and benzaldehyde derivatives with di-
alkyl phosphite (or with diphenyl phosphite) was performed in the presence of a cyclo-
pentadienyl ruthenium(II) complex at 80 °C in a solvent-free manner. The α-aminophos-
phonates (4) were obtained in good to excellent yields (Scheme 3) [25]. 

Scheme 1. The general mechanism of the phospha-Mannich reaction.

In this review, we summarize the new developments of the Kabachnik–Fields reaction
accumulated in the last decade.

2. Kabachnik–Fields Reactions with Dialkyl Phosphites, Alkyl H-Phosphinates, and
Secondary Phosphine Oxides
2.1. Metal-Catalyzed Kabachnik–Fields Reactions

In the first block, metal-catalyzed condensations are summarized. Applying (tetra-
tert-buthylphthalocyaninato)aluminum chloride, a series of amines, acetophenone, and
diethyl phosphite were condensed to afford the corresponding α-aminophosphonates (1)
in acceptable yields (Scheme 2(1)). The reaction of benzylamine, indanone (2), and ethyl
phenyl-H-phosphinate led to the respective phosphinate (3) (Scheme 2(2)) [24].
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The three-component condensation of aniline and benzaldehyde derivatives with di-
alkyl phosphite (or with diphenyl phosphite) was performed in the presence of a cyclopenta-
dienyl ruthenium(II) complex at 80 ◦C in a solvent-free manner. The α-aminophosphonates
(4) were obtained in good to excellent yields (Scheme 3) [25].
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Scheme 3. Ruthenium(II)-complex-catalyzed Kabachnik–Fields reactions.

Potentially biologically active α-aminophosphonates (6) were synthesized from
quinazolinone-based hydrazides (5), aromatic aldehydes, and diphenyl phosphite us-
ing ZnCl2/PPh3 as the catalyst at room temperature (Scheme 4) [26]. The yields fell in the
range of 75–84%.
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Scheme 4. Phospha-Mannich reactions applying quinazolinone-based hydrazides as the amine component.

A similar ZnCl2·choline-chloride-catalyzed transformation of mostly aromatic amines,
benzaldehyde derivatives, and diethyl phosphite led to α-amino-benzylphosphonates (7)
in yields of 70–96% (Scheme 5) [27].
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Zn di[bis(trifluoromethylsulfonyl)imide] (11) was also described as a catalyst in a
similar condensation, and the product (8) was dearylated, suprisingly, by NBS; the inter-
mediate (9) so formed was hydrolyzed (10) (Scheme 6) [28,29]. Application of an optically
active additive (12, pybim) allowed an enantioselective synthesis.
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Zinc triflate and iron triflate also proved to be efficient catalysts in the three-component
condensation when different substituted amines or an oxadiazole-related acid hydrazide
(14) were reacted with benzaldehyde and diethyl phosphite. These reactions took place
under mild conditions, mostly in good yields (Schemes 7 and 8) [30,31].
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Nickel chloride and niobium chloride were efficient catalysts in the reaction of aniline 
derivatives, substituted benzaldehydes, and diethyl phosphite at a temperature of 82 °C 
(Schemes 10 and 11) [33,34]. The use of these catalysts gave the corresponding products 
(19 and 4) in similar yields.  

Scheme 8. Oxadiazole-related (14) acid hydrazide as the amine component in the phospha-Mannich reaction. DCE—1,2-
dichloroethane.

The indium(III)-complex-catalyzed (17, 18) methods allowed the efficient condensa-
tion of various aldehydes, amines, and >P(O)H reagents under neat conditions at room
temperature to give the corresponding α-aminophosphonates or α-aminophosphine oxides
(16) (Scheme 9) [32]. Theyields were 86–98%. The need for special indium catalysts presents
a disadvantage.
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Scheme 9. In(III)-complex-catalyzed three-component condensation. Dipp—2,6-diisopropylphenyl; Mes—2,4,6-trimethylphenyl.

Nickel chloride and niobium chloride were efficient catalysts in the reaction of aniline
derivatives, substituted benzaldehydes, and diethyl phosphite at a temperature of 82 ◦C
(Schemes 10 and 11) [33,34]. The use of these catalysts gave the corresponding products
(19 and 4) in similar yields.
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Scheme 11. Niobium-chloride-catalyzed phospha-Mannich reaction.

A series of α-aminophosphonate derivatives (21) incorporating an uracil moiety
was synthesized using Mg(ClO4)2 as the catalyst and acetonitrile as the solvent at 80 ◦C
(Scheme 12) [35]. The products showed potential herbicidal activity.
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A series of substituted diethyl α-phenylamino-benzylphosphonates (4 (R3 = Et))
was prepared using cerium chloride or cerium oxide from aniline derivatives, substi-
tuted benzaldehydes, and diethyl phosphite under mild and solvent-free conditions
(Schemes 13 and 14) [36,37]. The yields were 87–95%.
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Cu/Au and Gd oxide nanocatalysts allowed the efficient condensation of different
amines, benzaldehyde derivatives, and dimethyl phosphite under conventional heating or
under microwave (MW) irradiation (Schemes 15 and 16) [38,39]. The use of these catalysts
gave the corresponding products (22 and 24) in similar yields.
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Scheme 16. Gadolinium oxide as a nanocatalyst in the phospha-Mannich reaction.

Dehydroascorbic acid (DHAA)-capped magnetite nanoparticles were successfully
applied in the phospha-Mannich condensation of aromatic amines and aldehydes with
dimethyl phosphite (Scheme 17) [40].
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Scheme 17. Dehydroascorbic-acid-catalyzed Kabachnik–Fields reactions.

A deep eutectic solvent (DES) comprising ZrOCl2·8H2O and urea in a 1:5 ratio made
possible the efficient condensation of aryl-(heteroaryl)aldehydes, aniline derivatives and
dimethyl phosphite at room temperature. The role of the DES was to serve as a reaction
medium and as a catalyst (Scheme 18) [41].

In the above discussion, metal-catalyzed reactions are summarized. The application
of metal catalysts makes possible efficient condensations, most of which occur at room
temperature; however, these methods, especially the ones applying Zn or Ni promoters,
cannot be considered environmentally friendly. At the same time, MW-assisted and solvent-
free approaches may be considered as green techniques.
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Scheme 18. Kabachnik–Fields reaction with a DES as the solvent and the catalyst.

2.2. Acid-Catalyzed Kabachnik–Fields Reactions

The Kabachnik–Fields condensations outlined in the next section are promoted by acidic
catalysts. The reaction of aniline derivatives, substituted benzaldehydes, and dimethyl
phosphite was performed using a bifunctional acid–base catalyst (IRMOF-3, where MOF is a
metal organic framework: Zn4O(H2N-TA)3 prepared from 2-aminoterephthalic acid (H2ATA)
and Zn(NO3)2·6H2O) (Scheme 19) [42]. The other option was to use a sulfated polyborate
as the catalyst (Scheme 20) [43]. When applying IRMOF-3 and sulfated polyborate as the
catalyst, the corresponding products were formed in similar yields.
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An efficient method was developed for the preparation of α-aminophosphonates (26),
which involved applying phenylboronic acid as the catalyst under solvent-free conditions
at 50 ◦C (Scheme 21) [44].
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Phenylphosphonic acid was found to be an efficient reusable heterogeneous catalyst
in the three-component phospha-Mannich reaction of benzylamine, aldehydes/ketones,
and dimethyl phosphite (Scheme 22) [45].
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The condensation of aminophenols, benzaldehyde derivatives, and dimethyl phos-
phite was performed in an aqueous medium containing oxalic acid as the catalyst at 90 ◦C.
No yields were achieved (Scheme 23) [46].
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The latter approach provided the α-aminophosphonates in almost quantitative yields.
In another, more general example, a highly efficient biodegradable supramolecu-

lar polymer-supported catalyst was applied (Scheme 24) [47]. The catalyst represents a
green component.
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PTSA was also used in the condensation of different amines, formaldehyde, and
secondary phosphine oxides in toluene at the boiling point (Scheme 26) [49]. The yields of
products 29 and 30 were ≥90%.
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New α-aminophosphine oxides and α-aminophosphonates (32/33) were made available
by the PTSA-catalyzed reaction of amines containing an acetal group (31), paraformaldehyde,
and >P(O)H reagents (Schemes 27 and 28) [50,51]. No yields were achieved for the second
series of reactions.
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Solvent-free realizations may be typically associated with MW irradiation. This was
the case with the polystyrene-supported PTSA-catalyzed condensation of 2-aminofluorene
(34), a number of aldehydes, and dimethyl phosphite (Scheme 29) [52].
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β-Cyclodextrin-supported sulfonic acid was also used as an efficient and reusable
heterogeneous catalyst in the preparation of thiazolylaryl α-aminophosphonates (37)
(Scheme 30) [53].
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6-Amino-1,3-dimethyluracil (38) was found to be a good starting material in conden-
sation with benzaldehyde derivatives and diethyl phosphite. Phosphorus pentoxide in
methanesulfonic acid (1:10), known as Eaton’s reagent, was the catalyst (Scheme 31) [54].
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Potassium hydrogen sulfate also proved to be a powerful catalyst in the above type of
reaction (Scheme 33) [56].
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2-Cyclopropylpyridimidine-4-carbaldehyde (40) was also used as the starting material
in three-component condensations. In one case, phosphomolybdic acid was applied as the
catalyst (Scheme 34) [57]; in another, camphor-derived thiourea organocatalysts (42, 43)
were utilized (Scheme 35) [58]. The yields of products (41) were mostly high.
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Zeolite derivatives such as H-β zeolite and MCM-41 were applied as green
catalysts in different kinds of three-component condensations under discussion
(Schemes 36 and 37) [59,60]. In the second series, quinoline-4-carbaldehyde (44) was the
oxo component.
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Scheme 37. MCM-41 as a catalyst in the Kabachnik–Fields reaction.

Regarding the acid-catalyzed Kabachnik–Fields reactions, those applying water as
the solvent or a biodegradable catalyst, or those that may be performed under solvent-
free conditions, can be considered “green”. PTSA has been used in various Kabachnik–
Fields reactions as an efficient catalyst. The application of other acidic catalysts (camphor-
derived thiourea catalysts, H-β zeolite, MCM-41) gave the corresponding products in
variable yields.

The phospha-Mannich reaction of 5-hydroxymethyl-furan-1-carbaldehyde (46) with
aniline and diethyl phosphite was catalyzed by elemental iodine, allowing the condensation
under mild conditions (Scheme 38) [61]. It is noteworthy that 2-methyltetrahydrofuran
was used as a green solvent. The yields of the α-aminophosphonates (47) were variable.
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Scheme 38. 5-Hydroxymethyl-furan-1-carbaldehyde applied as the oxo component in the Kabachnik–Fields reaction.

It was proven that the reaction proceeds via the imine pathway, which is followed by
the nucleophilic attack of the diethyl phosphite to furnish the α-aminophosphonate. The
role of iodine is to activate the imine(s) in the nucleophilic addition. Iodine may act as a
Lewis acid [61].

α-(Furfurylamino)-alkylphosphonates (49) were synthesized by the Kabachnik– Fields
reaction of furfurylamine (48), aromatic aldehydes, and dialkyl phosphites under MW irra-
diation. Silica-gel-supported iodine was used as the catalyst under solvent-free conditions.
The plant growth regulatory activity of the products was investigated (Scheme 39) [62].
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25–96%. There were no data provided on the recycling of the ionic liquids. 
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2.3. Catalyst-Free Kabachnik–Fields Reactions

Having discussed the catalyst-promoted Kabachnik–Fields condensations, let us focus
instead on the catalyst-free variations, which represent an environmentally friendly ap-
proach. The application of ionic liquids (50 or 51) as the solvent allowed the condensation
of the three-components at room temperature (Scheme 41(1) and (2)) [64]. Both mono- (4)
and bis products (52) were identified. The yields were variable, and fell in the range of
25–96%. There were no data provided on the recycling of the ionic liquids.
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Scheme 41. Catalyst-free approaches towards α-aminophosphonates. (Li)TFSI—lithium bis(trifluoromethanesulfonyl)imide.

The expected reaction of alkylamines, 2-hydroxy-4-methoxyacetophenone (53), and a
series of phosphites in boiling toluene followed an intramolecular cyclization to furnish
heterocyclic α-aminophosphonates (54) (Scheme 42) [65].

In a somewhat analogous reaction, Bálint et al. reacted 2-formylbenzoic acid, primary
amines, and dialkyl phosphites to afford, eventually, after an intramolecular cyclization,
isoindolin-1-one-3-phosphonates [66].

The catalyst-free conversion of pyrene-1-carboxaldehyde (56) to the corresponding α-
aminophosphonate (57) in reaction with amines (55) and dibenzyl phosphite is noteworthy
(Scheme 43) [67]. It was observed that the corresponding α hydroxyphosphonate (58) was
also present in the mixture formed as an intermediate in the Pudovik reaction.
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A series of new α-aminophosphonates (58) was prepared applying aryl- or heteroary-
laldehydes, aryl- or heteroarylamines, and diphenyl phosphite in three-component con-
densations using polyethylene glycol (PEG) as the solvent (Scheme 44) [68].

Molecules 2021, 26, x  19 of 46 
 

 

 
R1 a a a b b b c c c c 
R2 f f g d f g d e f g 

Scheme 44. Catalyst-free Kabachnik–Fields reactions using polyethylene glycol (PEG) as the solvent. 

A phenothiazine carbaldehyde (59) was converted to different α-aminophosphonates 
(60) in a similar way (Scheme 45) [69]. 

 
Scheme 45. Further examples of catalyst-free condensations performed using PEG as the solvent. 

Glycerol could also be used as the solvent in the catalyst-free condensation of amines, 
arylaldehydes, and phosphites (Scheme 46) [70]. 

 
R1 4-NO2C6H5 4-NO2C6H5 4-ClC6H5 4-BrC6H5 4-MeC6H5 4-MeC6H5 C6H5 
R2 2-ClC6H5 C6H5 C6H5 C6H5 4-ClC6H5 C6H5 4-ClC6H5 
R3 C6H5 Me Me Me Me Me Me 
R1 C6H5 C6H5 C6H5 C6H5 C6H5 Bu  

R2 4-MeOC6H5 4-MeOC6H5 C6H5 C6H5 C6H5 C6H5  

R3 Me Me Et Me C6H5 Me  

Scheme 46. Catalyst-free accomplishment of the phospha-Mannich condensation applying glyc-
erol as the solvent. 

A series of new α-sulfamidophosphonates and cyclosulfamidophosphonates incor-
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A phenothiazine carbaldehyde (59) was converted to different α-aminophosphonates
(60) in a similar way (Scheme 45) [69].
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Glycerol could also be used as the solvent in the catalyst-free condensation of amines,
arylaldehydes, and phosphites (Scheme 46) [70].
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Scheme 46. Catalyst-free accomplishment of the phospha-Mannich condensation applying glycerol as the solvent.

A series of new α-sulfamidophosphonates and cyclosulfamidophosphonates incorpo-
rating quinoline or a quinolone moiety was synthesized by the Kabachnik–Fields reaction
in the presence of a suitable ionic liquid under ultrasound irradiation [71].

A series of catalyst-free and MW-assisted Kabachnik–Fields reactions were elabo-
rated by the Keglevich group. The first observation was that MW irradiation may substi-
tute for the catalysts [17,72]. Among other examples, phospha-Mannich reactions with
paraformaldehyde and ethyl phenyl-H-phosphinate were elaborated using primary and
secondary amines (Scheme 47(1) and (2), respectively). Moreover, bis derivatives (63) were
also prepared (Scheme 47(3)) [73]. The yields were variable.
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Scheme 47. Variations of the MW-assisted Kabachnik–Fields reactions.

A series of α-aminophosphonates (64, 66, 68 and 70) with sterically demanding α-aryl
substituents was synthesized using a MW-assisted catalyst-free and solvent-free protocol
(Scheme 48) [74].

A similar method was applied to the preparation of 6-methyl-2H-pyran-2-on (71)-
based α-aminophosphonates and an α-aminophosphine oxide (72) (Scheme 49) [75].

Functionalized amines may also be used in the Kabachnik–Fields reaction. Amines
with hydroxyalkyl substituents were condensed with paraformaldehyde and dialkyl phos-
phites or ethyl phenyl-H-phosphinate under MW irradiation (Scheme 50(1)). After mea-
suring in the >P(O)H reagents and formaldehyde in a double amount, bis derivatives (74)
were formed (Scheme 50(2)) [76].
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als for the respective bis(phosphonoylmethyl)amines (Scheme 52) [78]. 

Scheme 50. The application of ethanolamines in Kabachnik–Fields condensation.

The esters of glycine were converted to the corresponding bis(phosphonoylmethyl)
amines (75) by MW-promoted reaction with two equivalents of paraformaldehyde and
dialkyl phosphites (Scheme 51(1)). The application of diphenylphosphine oxide resulted in
bis(phosphinoylmethyl)amine derivatives (76) (Scheme 51(2)) [77].
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Scheme 51. Double Kabachnik–Fields reactions applying glycine esters as the amine component.

In a similar way, β-aminophosphonic derivatives (77) also served as starting materials
for the respective bis(phosphonoylmethyl)amines (Scheme 52) [78].
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A series of amines was utilized in a tandem Kabachnik–Fields reaction to afford the 
corresponding nonsymmetric bis(phosphinoylmethyl)amines (79) after a two-step trans-
formation (Scheme 53(1)). Subsequently, after debenzylation of intermediate 79 (R = Bn) 
to species 80 (the details were not reported), valuable tris derivatives (81) were prepared 
(Scheme 53(2)) [79]. 
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A dialkyl phosphite with an octyl and ethyl group was also utilized in the phospha-
Mannich reaction, to give species 82 and the bis variation (83) (Scheme 54(1) and (2)) [80]. 

Scheme 52. Bis(phosphonoylmethyl)amines produced via the double Kabachnik–Fields reaction of β-aminoacid esters.

A series of amines was utilized in a tandem Kabachnik–Fields reaction to afford
the corresponding nonsymmetric bis(phosphinoylmethyl)amines (79) after a two-step
transformation (Scheme 53(1)). Subsequently, after debenzylation of intermediate 79
(R = Bn) to species 80 (the details were not reported), valuable tris derivatives (81) were
prepared (Scheme 53(2)) [79].
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A dialkyl phosphite with an octyl and ethyl group was also utilized in the phospha-
Mannich reaction, to give species 82 and the bis variation (83) (Scheme 54(1) and (2)) [80].
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bis derivatives (89) utilized in the synthesis of the corresponding ring Pt complex (90) 
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Scheme 54. The application of a phosphite with different alkyl groups in the phospha-Mannich reaction.

The results of the Keglevich group were summarized as conference proceedings [81]. The
bis(phosphinoylmethyl)amine derivatives (84) were excellent precursors of the corresponding
bisphosphines (85) and could be converted to ring Pt complexes (86) (Scheme 55) [82–84].
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Scheme 55. Utilization of bis(phosphine oxides) in the synthesis of ring Pt complexes.

Optically active α-phenylethylamine (87/1) was applied in the preparation of chiral
α-aminophosphonates (88, Y1 and Y2 = alkoxy), an α-aminophosphine oxide (88, Y1 and
Y2 = Ph), and an α-aminophosphinate (88, Y1 = EtO Y2 = Ph), along with the corresponding
bis derivatives (89) utilized in the synthesis of the corresponding ring Pt complex (90)
(Scheme 56) [85].
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It was rather surprising that carboxylic acid amides could also be utilized as starting 
materials in the Kabachnik–Fields reaction. However, the amides had to be applied in a 
10-fold excess under practically solvolytic and forcing conditions (Scheme 57) [87]. 
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Scheme 57. Carboxylic acid amides as the amine component in the phospha-Mannich reaction. 

Another series of bis(phosphine oxides) (84) was prepared via the double Kabachnik–
Fields reaction (Scheme 58(1)). The precursors were converted to ring Pt complexes (93) 
(Scheme 58(2)). A few bisphosphines (92) were stabilized as bis(phosphine boranes) (94) 
(Scheme 58(3)). The catalytic activity of the Pt(II) complexes 93 was investigated in the 
hydroformylation of styrene. The advantages of applying Pt(II) complexes (93) include 
their high chemo- and regioselectivity at low temperatures [88]. 

  

Scheme 56. Optically active α-phenylethylamine used as the amine component in the Kabachnik–Fields reaction; conversion
of the product to a ring Pt complex.

α-Aminophosphines may be special ligands in platinum, palladium, and rhodium
complexes [86].

It was rather surprising that carboxylic acid amides could also be utilized as starting
materials in the Kabachnik–Fields reaction. However, the amides had to be applied in a
10-fold excess under practically solvolytic and forcing conditions (Scheme 57) [87].
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Scheme 57. Carboxylic acid amides as the amine component in the phospha-Mannich reaction.

Another series of bis(phosphine oxides) (84) was prepared via the double Kabachnik–
Fields reaction (Scheme 58(1)). The precursors were converted to ring Pt complexes (93)
(Scheme 58(2)). A few bisphosphines (92) were stabilized as bis(phosphine boranes) (94)
(Scheme 58(3)). The catalytic activity of the Pt(II) complexes 93 was investigated in the
hydroformylation of styrene. The advantages of applying Pt(II) complexes (93) include
their high chemo- and regioselectivity at low temperatures [88].
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α-Hydroxyphosphonates formed reversibly from suitable ketones and dialkyl phos-
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amines. This reaction is enhanced by an adjacent group effect [90,91]. 
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sation of secondary or primary amines, triethyl orthoformate, and the corresponding 
>P(O)H reagent (Scheme 59(1) and (2)) [92]. 

  

Scheme 58. Synthesis and derivatization of bis(phosphine oxides).

α-Hydroxyphosphonates formed reversibly from suitable ketones and dialkyl phos-
phites [89] may also be converted to α-aminophosphonates by substitution reaction with
amines. This reaction is enhanced by an adjacent group effect [90,91].

Somewhat analogous compounds, (aminomethylene)bisphosphine oxides and
(aminomethylene)bisphosphonates (95/96), were prepared via the three-component con-
densation of secondary or primary amines, triethyl orthoformate, and the corresponding
>P(O)H reagent (Scheme 59(1) and (2)) [92].

In the third part of the first section, green methods utilizing MW irradiation were
summarized. These solvent- and catalyst-free protocols produce α-aminophosphonates,
α-aminophosphinates, and phosphine oxides, along with their bis and tris derivatives
in good yields. The advantages of applying MW irradiation include the mild reaction
conditions, selectivity, and high yields. To compare the methods described, it goes without
saying that MW-assisted accomplishment is the most suitable method to synthesize α-
aminophosphonates and their derivatives.



Molecules 2021, 26, 2511 28 of 46
Molecules 2021, 26, x  27 of 46 
 

 

 
R1 Et Bu Bu cHex Bn C6H5 Et Bu Bu cHex Bn C6H5 
R2 Et Bu Me Me Me Me Et Bu Me Me Me Me 
R3 C6H5 C6H5 C6H5 C6H5 C6H5 C6H5 EtO EtO EtO EtO EtO EtO 

 
Scheme 59. Synthesis of (aminomethylene)bisphosphonates and bis(phosphinic oxides) via a 
three-component reaction.. 

In the third part of the first section, green methods utilizing MW irradiation were 
summarized. These solvent- and catalyst-free protocols produce α-aminophosphonates, 
α-aminophosphinates, and phosphine oxides, along with their bis and tris derivatives in 
good yields. The advantages of applying MW irradiation include the mild reaction condi-
tions, selectivity, and high yields. To compare the methods described, it goes without say-
ing that MW-assisted accomplishment is the most suitable method to synthesize α-ami-
nophosphonates and their derivatives. 

2.4. Kabachnik–Fields Reactions Leading to Optically Active α-Aminophosphonates 
Optically active α-aminophosphine oxides (98) were synthesized from the ethyl ester 

of proline (97), benzaldehyde derivatives, and diphenylphosphine oxide in toluene at re-
flux (Scheme 60) [93]. The chiral center in the proline derivative influenced the enantiose-
lectivity.  

 
Scheme 60. Synthesis of optically active α-aminophosphine oxides. 

Starting from the optically active forms of α-phenylethylamines (87/2), benzalde-
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diastereoselective manner under MW-assisted solvent-free and catalyst-free conditions 
(Scheme 61) [94]. 

Scheme 59. Synthesis of (aminomethylene)bisphosphonates and bis(phosphinic oxides) via a three-component reaction..

2.4. Kabachnik–Fields Reactions Leading to Optically Active α-Aminophosphonates

Optically active α-aminophosphine oxides (98) were synthesized from the ethyl ester
of proline (97), benzaldehyde derivatives, and diphenylphosphine oxide in toluene at reflux
(Scheme 60) [93]. The chiral center in the proline derivative influenced the enantioselectivity.
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Scheme 60. Synthesis of optically active α-aminophosphine oxides.

Starting from the optically active forms of α-phenylethylamines (87/2), benzalde-
hyde, and dimethyl phosphite, the corresponding products (99/1, 99/2) were formed in a
diastereoselective manner under MW-assisted solvent-free and catalyst-free conditions
(Scheme 61) [94].
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Scheme 61. MW-assisted catalyst-free diastereoselective synthesis of α-aminophosphonates.

In the above examples, the application of optically active amines as the starting
materials allowed a diastereoselectivity of 74–92%.

3. Kabachnik–Fields Reactions Applying Trialkyl Phosphites or Related Derivatives
as the P Reagent

In the next section, Kabachnik–Fields condensations applying trialkyl phosphites and
related derivatives are discussed. Primary amines, 4-(4′-pyridyl)benzaldehyde (100), and
triethyl phosphite were condensed in the presence of PEG–SO3H in toluene at 40–50 ◦C to
give the corresponding aminophosphonates (101) (Scheme 62) [95].
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Scheme 62. The condensation of 4-(4′-pyridyl)benzaldehyde, triethyl phosphite and different ani-
line derivatives.

The reaction of substituted anilines, benzaldehyde derivatives, and triethyl phos-
phite was carried out in the presence of the HCl salt of DABCO at 26 ◦C in MeOH
(Scheme 63) [96].
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Aniline derivatives and benzaldehyde, or aniline and benzaldehyde derivatives, 
were reacted in combination with triethyl phosphite in the presence of the T3P® reagent 
at 26° C in ethyl acetate. It is a disadvantage that 1 equivalent of the reagent is needed in 
these condensations. The products (4) were obtained in 80–96% yields (Scheme 64(1) and 
(2)) [97]. 
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A possible mechanism is demonstrated via the reaction of benzaldehyde, aniline, and 
triethyl phosphite (Scheme 65). In the first stage, the corresponding imine (102) is formed 
along with P, P’, P”-tripropyl triphosphonic acid (“T3P∙H2O”) as the byproduct. The imine 
then reacts with triethyl phosphite, and, after protonation with “T3P∙H2O”, the phospho-
nium salt (104) so formed is converted to the final α-aminophosphonate (4 (R3 = Et)) via 
an Arbuzov fission. In this step T3P∙EtOH is the byproduct [97]. 

Scheme 63. The HCl salt of 1,4-diazabicyclo[2.2.2]octane (DABCO) as a catalyst in the three-component reaction.

Aniline derivatives and benzaldehyde, or aniline and benzaldehyde derivatives, were
reacted in combination with triethyl phosphite in the presence of the T3P® reagent at 26◦ C
in ethyl acetate. It is a disadvantage that 1 equivalent of the reagent is needed in these con-
densations. The products (4) were obtained in 80–96% yields (Scheme 64(1) and (2)) [97].
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Scheme 64. T3P®-promoted Kabachnik–Fields reactions.

A possible mechanism is demonstrated via the reaction of benzaldehyde, aniline,
and triethyl phosphite (Scheme 65). In the first stage, the corresponding imine (102) is
formed along with P, P′, P”-tripropyl triphosphonic acid (“T3P·H2O”) as the byproduct.
The imine then reacts with triethyl phosphite, and, after protonation with “T3P·H2O”,
the phosphonium salt (104) so formed is converted to the final α-aminophosphonate (4
(R3 = Et)) via an Arbuzov fission. In this step T3P·EtOH is the byproduct [97].
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formed in water, applying the salts of dodecyl sulfonic acid or dodecylbenzene sulfonic 
acid (Scheme 67) [99]. 

Scheme 65. The mechanism of the T3P-promoted Kabachnik–Fields reaction applying triethyl phosphite.

Although the triesters of phosphorous acid are hydrolyzable in water, still water was
used as the medium in a few cases. The interaction of primary amines, salicylaldehydes,
and triphenyl phosphite using p-toluenesulfonic acid (PTSA) as the catalyst in water at
room temperature afforded the corresponding aminophosphonates (105) in good yields
(Scheme 66) [98].
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The condensation of aniline and benzaldehyde with triethyl phosphite was also
performed in water, applying the salts of dodecyl sulfonic acid or dodecylbenzene sulfonic
acid (Scheme 67) [99].



Molecules 2021, 26, 2511 32 of 46Molecules 2021, 26, x  31 of 46 
 

 

 
Scheme 67. The use of magnesium salts of dodecyl sulfonic or dodecylbenzene sulfonic acid as a catalyst. 

Hafnium(IV) chloride was found to be an efficient catalyst in the condensation of 
amines/diamines, aldehydes, and trialkyl phosphites using ethanol as the solvent at 60 °C 
(Scheme 68) [100].  

 
R1 C6H5 C6H5 C6H5 4-MeOC6H4 4-MeOC6H4 
R2 C6H5 C6H5 C6H5 C6H5 4-NCC6H5 
R3 Me Et Ph Me Et 
R1 4-MeC6H4 4-MeC6H4 C6H5 C6H5 C6H5 
R2 C6H5 4-MeOC6H4 4-NCC6H4 4-MeOC6H4 Bn 
R3 Et Et Et Et Et 
R1 C6H5 2-MeC6H4 2-MeOC6H4 cHex Pr 
R2 cHex cHex cHex cHex C6H5 
R3 Me Me Me Et Me 
R1 cHex cHex cHex furyl furyl 
R2 C6H5 4-NCC6H4 4-MeOC6H4 C6H5 CH2C6H5 
R3 Me Me Me Et Et 

 
n 2 3 2 3 
R1 C6H5 C6H5 cHex iBu 
R3 Me Me Me Et 
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The following example for condensation in water involves the reaction of aniline and 
benzaldehyde derivatives with triethyl phosphite, utilizing a SO3H-functionalized ionic 
liquid as the catalyst (Scheme 69) [101]. 

Scheme 67. The use of magnesium salts of dodecyl sulfonic or dodecylbenzene sulfonic acid as a catalyst.

Hafnium(IV) chloride was found to be an efficient catalyst in the condensation of
amines/diamines, aldehydes, and trialkyl phosphites using ethanol as the solvent at 60 ◦C
(Scheme 68) [100].
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The following example for condensation in water involves the reaction of aniline and
benzaldehyde derivatives with triethyl phosphite, utilizing a SO3H-functionalized ionic
liquid as the catalyst (Scheme 69) [101].
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Scheme 69. The use of a SO3H-functionalized ionic liquid as a catalyst. [psmim]—propylsulfonyl-methyl-imidazolyl.

The three-component reactions were also realized under ultrasonic irradiation at
26 ◦C in an ethyl lactate–water mixture (Scheme 70) [102]. Under these conditions, the
corresponding products were obtained in good yields.
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Ultrasound activation allowed a solvent- and catalyst-free condensation of aniline and
benzaldehyde derivatives with triethyl phosphite (Scheme 71) [103].
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We now consider further solvent-free methods. [Emim][Br] was found to be an
efficient catalyst in the neat condensation of different amines, aldehydes, and phosphites,
allowing the use of temperatures as low as 26 ◦C (Scheme 72) [104].
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A solvent-free sonochemical transformation utilized a magnetically recoverable com-
posite catalyst (Scheme 73) [105].
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Scheme 73. The use of a magnetically recoverable catalyst in the Kabachnik–Fields reaction. PMA—phosphor molybdic acid.

Boric acid was a suitable catalyst for the condensation of amines, benzaldehyde
derivatives, and trimethyl phosphite (Scheme 74) [106].

Molecules 2021, 26, x  34 of 46 
 

 

Scheme 73. The use of a magnetically recoverable catalyst in the Kabachnik–Fields reaction. 
PMA—phosphor molybdic acid. 

Boric acid was a suitable catalyst for the condensation of amines, benzaldehyde de-
rivatives, and trimethyl phosphite (Scheme 74) [106]. 

 
R1 C6H5 4-NO2C6H5 4-CNC6H4 4-ClC6H5 4-MeC6H4 
R2 C6H5 C6H5 C6H5 C6H5 C6H5 
R1 4-HOC6H4 2-MeOC6H4 C6H5 4-HOC6H4   
R2 C6H5 C6H5 4-ClC6H5 4-ClC6H5   

Scheme 74. Boric acid as the catalyst in a solvent-free reaction. 

Dicationic ionic liquids were used as recyclable catalysts in the solvent-free synthesis 
of aminophosphonates starting from primary amines, benzaldehyde derivatives, and tri-
methyl phosphite (Scheme 75) [107]. 

 
Ar1 C6H5 4-NO2C6H4 2,6-Cl2C6H3 4-ClC6H4 4-MeC6H4 
Ar2 C6H5 C6H5 C6H5 C6H5 C6H5 
Ar1 4-MeOC6H4 2,5-(MeO)2C6H3 3,4,5-(MeO)3C6H2 2-thiazolyl C6H5 
Ar2 C6H5 C6H5 C6H5 C6H5 4-FC6H5 
Ar1 4-MeC6H4 4-MeOC6H4 4-MeOC6H4   

Ar2 4-NO2C6H4 C6H5CH2 2-pyridyl   

Scheme 75. A dicationic ionic liquid as the catalyst in the three-component Kabachnik–Fields reac-
tion. [TMEDAPS]—N,N,N’,N’-tetramethyl-N,N’-di(sulfonylpropyl)-1,3-propanediammonium 
bis(hydrogen sulfate). 

When an ortho-ethoxycarbonylmethyl-benzaldehyde derivative (107) was the oxo 
component, the condensation was followed by an intramolecular cyclization to furnish 
the corresponding isoquinolone derivative (108) (Scheme 76) [108]. 

Scheme 74. Boric acid as the catalyst in a solvent-free reaction.

Dicationic ionic liquids were used as recyclable catalysts in the solvent-free synthesis
of aminophosphonates starting from primary amines, benzaldehyde derivatives, and
trimethyl phosphite (Scheme 75) [107].



Molecules 2021, 26, 2511 36 of 46

Molecules 2021, 26, x  34 of 46 
 

 

Scheme 73. The use of a magnetically recoverable catalyst in the Kabachnik–Fields reaction. 
PMA—phosphor molybdic acid. 

Boric acid was a suitable catalyst for the condensation of amines, benzaldehyde de-
rivatives, and trimethyl phosphite (Scheme 74) [106]. 

 
R1 C6H5 4-NO2C6H5 4-CNC6H4 4-ClC6H5 4-MeC6H4 
R2 C6H5 C6H5 C6H5 C6H5 C6H5 
R1 4-HOC6H4 2-MeOC6H4 C6H5 4-HOC6H4   
R2 C6H5 C6H5 4-ClC6H5 4-ClC6H5   

Scheme 74. Boric acid as the catalyst in a solvent-free reaction. 

Dicationic ionic liquids were used as recyclable catalysts in the solvent-free synthesis 
of aminophosphonates starting from primary amines, benzaldehyde derivatives, and tri-
methyl phosphite (Scheme 75) [107]. 

 
Ar1 C6H5 4-NO2C6H4 2,6-Cl2C6H3 4-ClC6H4 4-MeC6H4 
Ar2 C6H5 C6H5 C6H5 C6H5 C6H5 
Ar1 4-MeOC6H4 2,5-(MeO)2C6H3 3,4,5-(MeO)3C6H2 2-thiazolyl C6H5 
Ar2 C6H5 C6H5 C6H5 C6H5 4-FC6H5 
Ar1 4-MeC6H4 4-MeOC6H4 4-MeOC6H4   

Ar2 4-NO2C6H4 C6H5CH2 2-pyridyl   

Scheme 75. A dicationic ionic liquid as the catalyst in the three-component Kabachnik–Fields reac-
tion. [TMEDAPS]—N,N,N’,N’-tetramethyl-N,N’-di(sulfonylpropyl)-1,3-propanediammonium 
bis(hydrogen sulfate). 

When an ortho-ethoxycarbonylmethyl-benzaldehyde derivative (107) was the oxo 
component, the condensation was followed by an intramolecular cyclization to furnish 
the corresponding isoquinolone derivative (108) (Scheme 76) [108]. 

Scheme 75. A dicationic ionic liquid as the catalyst in the three-component Kabachnik–Fields reaction. [TMEDAPS]—
N,N,N′,N′-tetramethyl-N,N′-di(sulfonylpropyl)-1,3-propanediammonium bis(hydrogen sulfate).

When an ortho-ethoxycarbonylmethyl-benzaldehyde derivative (107) was the oxo
component, the condensation was followed by an intramolecular cyclization to furnish the
corresponding isoquinolone derivative (108) (Scheme 76) [108].
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A few other Kabachnik–Fields reactions followed by intramolecular cyclization have
also been described. Ordóñez et al. elaborated the MW-assisted condensation of 2-
formylbenzoic acid, aromatic amines (including optically active ones), and dimethyl
phosphite [109–111] or triethyl phosphite [112] to afford the corresponding isoindolin-
1-one-phosphonates after a ring closure in the final step.

To compare the methods with each other, a few studies have been performed in
solvents, like the protocol using T3P, which gives the products in good yields. On the other
hand, a few other methods applying Fe3O4@SiO2-imid PMA and H3BO3 as the catalysts
in a solvent-free manner have been to give the corresponding products in good yields.
The advantage of using dicationic ionic liquids is that the catalysts are recyclable. These
issues are of importance from the point of view of green chemistry. These methods play
an important role in allowing mild conditions, reducing the reaction times, and giving
the products in high yields. However, if the Kabachnik–Fields reactions utilizing dialkyl
phosphites and trialkyl phosphites are compared, the protocol applying dialkyl phosphites
(see subchapter 3) is unambiguously the method of choice due to its atomic efficiency.
Moreover, trialkyl phosphites have an unpleasant smell.
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4. The aza-Pudovik Reaction

The aza-Pudovik reaction involving the addition of a dialkyl phosphite to an imine
is another approach to synthesize α-aminophosphonates. A carbazole-related imine (109)
was reacted with dialkyl phosphites and diphenylphosphine oxide in the presence of
tetramethylguanidine as the catalyst in toluene to give the corresponding adducts (110) in
good yields (Scheme 77) [113].
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In another case, the simple starting materials benzylideneimines were reacted with sec-
ondary phosphine oxides, where a guanidium salt (112) served as the catalyst (Scheme 78) [114].
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A cinchona-derived thiourea (117–122) was applied in the addition of diphenyl phos-
phite to ketimines (Scheme 79) [115]. The yields of products 114 and 116 varied within the
range of 48–88%.
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The aza-Pudovik approach was also useful in the synthesis of (5-nitrofuranoyl)-
substituted esters of a phosphonoglycine derivative (124). In these cases, BF3·OEt2 was the
catalyst (Scheme 80) [116,117].
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In a variation, the imines generated in the reaction of aniline and benzaldehyde deriva-
tives were reacted with diethyl phosphite in boiling ethanol to furnish the corresponding
α-aminophosphonates (129) in medium yields (Scheme 82) [119].
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The imines (130) obtained from benzaldehyde were reacted with diethyl phosphite in
the presence of MoO2Cl2 as the catalyst under solvent-free conditions. (Scheme 83) [120].
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α-Aryl-α-aminophosphonates and α-aryl-α-aminophosphine oxides (132) were pre-
pared by the MW-assisted Pudovik reaction of benzylideneimines and >P(O)H reagents
(Scheme 84) [121].
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Poly-(4-vinylbenzaldehyde) (134) was prepared by the polymerization of
4-vinylbenzaldehyde (133) in DMSO. Postpolymerization modification reactions com-
prised imine formation (which is not shown here), and the addition of dialkyl phosphite
to afford functional polymers. The α-aminophosphonate (135) scaffold was a side group
(Scheme 85) [122].
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In another approach, poly(aminophosphonates) were prepared in a one-pot manner
including Kabachnik–Fields condensation and polymerization [123]. Functional polymers
with bis(phosphonomethyl)amine moieties were also prepared. In this case, phosphorous
acid was the P component [124].

Theoretical calculations predicted that the aza-Pudovik reaction under discussion
takes place in a single concerted step involving transition state (136) formed from the triva-
lent tautomeric form of dimethyl phosphite and N-benzylideneaniline (Scheme 86) [121].
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Scheme 86. Mechanism for the aza-Pudovik reaction of dimethyl phosphite and N-benzylideneaniline.

It was shown that the aza-Pudovik reaction involving the addition of >P(O)H reagents
into the unsaturation of imines is a good and atomically efficient route for the preparation
of α-aminophosphonic derivatives. As a matter of fact, as was shown in the Introduction,
imines are intermediates of the Kabachnik–Fields reactions that may be formed from the
oxo component and the amine.

5. Conclusions

In conclusion, various methods for the synthesis of α-aminophosphonic derivatives
utilizing the Kabachnik–Fields reaction are summarized herein. In this review, different
approaches utilizing a wide range of catalysts are summarized, encompassing the results
of the last decade. We focused on environmentally friendly points of view. The solvent-free
MW-assisted methods are of special importance. The Kabachnik–Fields reaction is also
suitable for the synthesis of bis derivatives. Beside >P(O)H reagents, trialkyl phosphites
may also be used as the starting materials of the phospha-Mannich condensation. The
aza-Pudovik reaction is a special variation for the preparation of α-aminophosphonic
derivatives and related compounds.
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