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Abstract: Background: Oxidative stress is a key factor in the pathophysiology of many diseases.
This study aimed to verify the antioxidant activity of selected plant phenolics in cell-based assays
and determine their direct or indirect effects. Methods: The cellular antioxidant assay (CAA) assay
was employed for direct scavenging assays. In the indirect approach, the influence of each test
substance on the gene and protein expression and activity of selected antioxidant enzymes was
observed. One assay also dealt with activation of the Nrf2-ARE pathway. The overall effect of each
compound was measured using a glucose oxidative stress protection assay. Results: Among the test
compounds, acteoside showed the highest direct scavenging activity and no effect on the expression
of antioxidant enzymes. It increased only the activity of catalase. Diplacone was less active in direct
antioxidant assays but positively affected enzyme expression and catalase activity. Morusin showed
no antioxidant activity in the CAA assay. Similarly, pomiferin had only mild antioxidant activity and
proved rather cytotoxic. Conclusions: Of the four selected phenolics, only acteoside and diplacone
demonstrated antioxidant effects in cell-based assays.

Keywords: antioxidants; CAA; catalase; glucose toxicity; plant phenolics; superoxide dismutase;
Nrf2-ARE

1. Introduction

Oxidative stress is a disturbance of the balance between pro-oxidant and antioxidant
states that favors the former. The essence of the pro-oxidant process is the production
of reactive oxygen (ROS) and nitrogen species (RNS). ROS include molecules of various
structures: for example, oxygen radicals (such as hydroxyl radical •OH or peroxyl radical
RO2

•) and strongly oxidizing non-radical substances (such as hydrogen peroxide, H2O2) [1,2].
ROS production, which leads to DNA damage, protein alteration, or lipid peroxidation,
is a known factor in developing various pathological conditions, such as cardiovascular
diseases, cancer, neurological disorders, diabetes mellitus, and aging [3].

In addition to these deleterious effects, there is also a positive side to producing
ROS. For example, they are produced by phagocytic NADPH oxidase (in oxidative burst),
and NO• regulates vascular tone [1,3]. Current understanding uses the concept of “eu-
stress”, a certain level of oxidative stress necessary for cellular life. For example, H2O2 at
nanomolar concentrations serves as a redox signaling molecule, but at supraphysiological
concentrations (>100 nM), it damages biomolecules [4].

Two basic groups of antioxidants are usually recognized as providing cellular pro-
tection against harmful oxidative stress: (i) direct antioxidants, which undergo redox
reactions and scavenge ROS or RNS, and (ii) indirect antioxidants, which may or may
not be redox-active and activate the nuclear factor erythroid 2 (NFE2)-related factor 2
(Nrf2) and antioxidant response element (ARE) pathway resulting in antioxidant enzyme
expression [4].
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Antioxidant activity assays follow the same division. The direct antioxidant effect
can be evaluated using a chemical-based assay, such as the 2,2-diphenyl-1-picrylhydrazyl
radical (DPPH•) scavenging assay or the ferric reducing antioxidant power (FRAP) assay.
In general, the mechanisms of these in vitro methods depend on scavenging stable free
radicals or reducing ferric ions, respectively. Another approach is to establish the antioxi-
dant capacity under more biologically relevant conditions. These assays are cellular-based
and focus on direct scavenging. An example of such a method is the cellular antioxidant
activity (CAA) assay, which identifies antioxidants able to prevent ROS (obtained from
the decomposition of 2,2′-azobis(2-methylpropionamidine) dihydrochloride (AAPH)) from
oxidizing dihydrodichlorofluorescein DCFH2 to fluorescent dichlorofluorescein DCF [5].

The indirect antioxidant activity reflects the removal of ROS by enzymes, such as
superoxide dismutase—SOD or catalase—CAT, and small thiol molecules, e.g., glutathione
(GSH). SOD converts superoxide anion (O2

•−), a byproduct of normal oxygen metabolism,
into H2O2, which CAT then decomposes into water and oxygen [6]. The expression of
both enzymes is regulated by ARE, which is activated by Nrf2 [7]. A member of the cap
‘n’ collar (CNC) subfamily of basic region leucine zipper (bZip) transcription factors, Nrf2
is found in an inactive form in the cytosol, bound to Kelch-like ECH-associated protein 1
(Keap1). Upon oxidative stress, Nrf2 dissociates from Keap1 and translocates into the
nucleus, activating the ARE [6,8].

The Nrf2 system was, therefore, found to be the target of various indirect antioxidants,
and this mode of action has been confirmed for various phenolics, e.g., epigallocatechin-
3-gallate [9] or 3-O-caffeoyl-1-methylquinic acid [10]. The proposed mechanism of Nrf2
activation is most likely the alteration of the structure of Keap1 because it contains several
cysteine thiol residues that function as sensors of cellular redox changes. Thus, oxidation
or covalent modification of some of these residues would release Nrf2 and facilitate its
accumulation in the nucleus [11].

The main difference between the two approaches is that the direct measurement is
quite rapid, whereas the indirect effect requires more time because it entails the biosynthesis
of new proteins [5]. A third approach combines direct antioxidant activity and indirect
antioxidant effects in a cellular-based assay, with a long incubation time (e.g., 24 h or
longer). In these settings, both direct scavenging and indirect activation of Nrf2/ARE
may concur to the final effect. An example of this type of method is the glucose oxidative
stress protection (GOSP) assay, which creates a condition of hyperglycemia to increase the
production of ROS [12,13].

Figure 1. The compounds selected for experiments: acteoside (A), diplacone (D), morusin (M), and
pomiferin (P).

Dietary phenolics of polyphenols occupy a special place among the antioxidants that
occur in plants [14]. The structures of these compounds contain an aromatic ring with one
or more hydroxyl groups. This group of natural products is very widely distributed in the
plant kingdom, with more than 8000 phenolic structures currently known [15]. Many of
these compounds possess direct or indirect antioxidant activity [6]. We selected four plant
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phenols that had shown some degree of in vitro antioxidant activity [16–19] for further
testing in cell-based assays (Figure 1). Acteoside (A) is a caffeoyl phenylethanoid glycoside
obtained from Paulownia tomentosa, as is the geranylated flavanone diplacone (D) [17,20].
Morusin (M) was selected as an example of the prenylated flavones obtained from Morus
alba, and pomiferin (P), a prenylated isoflavone, comes from Maclura pomifera [18,21]. Here,
we aimed our study at testing the direct scavenging or indirect modulation of expression
of some antioxidant enzymes by these typical representatives of natural phenolics.

2. Results and Discussion
2.1. Antiproliferative Activity

The direct scavenging effect and ability to modulate antiradical defense in a model
cellular system of the test compounds were analyzed. Before carrying out antioxidant
assays in cellular systems, it was necessary to determine the concentrations above which the
test compounds became cytotoxic. A model assay employing THP-1 monocytes was used.
Diplacone had previously been shown to be non-toxic at a concentration of 10 µM when
incubated with THP-1 cells [22]. It had also been found that the half-maximal inhibitory
concentration (IC50) of morusin for the THP-1 cells is 24.3 µM [23,24].

The cytotoxic (antiproliferative) activity of the other two test compounds, acteoside
and pomiferin, for the THP-1 cell line could not be found in the literature, and it was,
therefore, measured using a WST-1 assay kit. As shown in Figure 2, acteoside influenced
the viability of THP-1 cells only slightly, even at the high concentration of 50 µM. The in-
formation published about cytotoxic effects observed for acteoside is quite inconsistent.
Lee et al. measured the cytotoxicity of this compound using the MTT assay on HL-60
human promyelocytic leukemic cells and found the IC50 value after a 24 h incubation to be
approximately 30 µM [25]. On the other hand, Sgarbossa et al. claimed to find no cytotoxic
effect on the immortalized human keratinocyte cell line HaCaT using the MTT assay at
a concentration of 200 µM even after 72 h of incubation [26]. Similarly, Nam et al. and
Speranza et al. reported no cytotoxic effect on the THP-1 cell line at concentrations of
16 µM and 100 µM, resp. The only difference from our experiment was using the MTT
assay, whereas we employed the WST-1 test [27,28].

Pomiferin greatly reduced the viability of THP-1 cells, with an IC50 of 1.0 µM (Figure 2),
suggesting that it may possess antitumor activity because THP-1 cells are cancer-derived.
Our conclusion is consistent with other results. Son et al. found that pomiferin inhibited
histone deacetylase (HDAC), an enzyme involved in cell proliferation, and thus may
reduce the proliferation of tumor cells. This was confirmed by further experiments with
the MTT assay, in which pomiferin inhibited the growth of several human tumor cell lines
with IC50 ranging from 1 to 5 µM [29]. Similarly, Yang et al. demonstrated the selective
antiproliferative activity of pomiferin against the tumorigenic breast epithelial cell line
MCF-7 (IC50 = 5.2 µM) [30]. Both articles also compared the antiproliferative activity of
pomiferin on normal, non-tumor cells—SON et al. employed primary human hepatocytes
that were affected much less (IC50 = 123 µM) [29]. Yang et al. proved a limited toxicity
toward non-tumorigenic breast epithelial cells (MCF-10A) [30].

Figure 2. The antiproliferative activity of the test compounds after 24 h of incubation with the THP-1
cell line, measured using a WST-1 kit: (A) acteoside; (P) pomiferin. The viability was calculated as a
percentage of the control cells treated only with DMSO.
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2.2. Cellular Antioxidant Activity (CAA) Assay

After the cytotoxicity had been evaluated, the overall antioxidant activity of the test
compounds was analyzed using the CAA assay. CAA measures the ability of compounds
to prevent AAPH-generated peroxyl radicals from forming fluorescent DCF in THP-1 cells.
AAPH gradually decomposes into carbon-centered radicals that then react rapidly with
O2 to give ROO• radicals [31]. The compounds were tested at a nontoxic concentration of
5 µM. The toxicity of pomiferin was not considered problematic because a short incubation
time was used for this assay (2 h).

As seen in Figure 3, the most active compound was acteoside, with a CAA value of
85.1 ± 0.7 and activity greater than that of quercetin, the positive control (n.s. difference).
The activity of both acteoside and quercetin was significantly higher than that of DMSO,
the negative control (NC; Figure 3). The ability of acteoside to scavenge radicals directly
has been reported in the literature. Koo et al. showed its DPPH• and NO• scavenging
activities [16]. Similarly, Siciliano et al. measured the ability of acteoside to scavenge the
radical cation 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonate) (ABTS•+) using the Trolox
equivalent antioxidant capacity (TEAC) assay [32]. Further, Li et al. demonstrated the
scavenging activity of acteoside in the FRAP and cupric reducing antioxidant capacity
(CUPRAC) assays [33]. Moreover, Lee et al. proved the ability of acteoside to scavenge •OH
and O2

•− [34]. The advantage of CAA is that the radical scavenging effect of a compound
is measured only inside the cells because after de-esterification DCFH stays inside the
cells [35]. It also confirms the ability of acteoside to cross the cell membrane, as shown by
Koo et al., who found that acteoside decreased the lipid peroxidation and neurotoxicity of
glutamate in cortical cell cultures [16].

Pomiferin showed mild antioxidant activity. It has been reported to be a scavenger
of DPPH• and O2

•− [18,36,37]. Bozkurt et al. also observed that a 300 mg/kg dose of
pomiferin administered to rats significantly reduced the lipid peroxidation induced by
indomethacin in their stomachs. Lipid peroxidation was measured by determining the
levels of malondialdehyde (MDA) [38]. Similarly, Hwang et al. showed the antioxidant
activity of the large quantity of pomiferin present in Osage orange extract [39].

Interestingly, neither diplacone nor morusin demonstrated any antioxidant effect
in the CAA assay, as seen in Figure 3. Diplacone had previously shown DPPH• scav-
enging activity and was the most active of the geranylated flavonoids extracted from
P. tomentosa [17]. Diplacone has shown activity in other antioxidant methods—scavenging
of ABTS•+, O2

•−, HClO, and inhibiting the plasmid DNA oxidative damage caused by the
Fenton reaction [36,40,41]. Similarly, Moon et al. showed that incubation cells of the human
lymphoblastoid cell line AHH-1 with diplacone and exposing them to γ-radiation protected
them from oxidative stress and DNA damage [42]. However, J774A.1 cells incubated for 30
min with diplacone produced almost double the amount of ROS, measured as DCF, as was
produced by untreated cells. Although the difference did not appear to be statistically
significant, it demonstrated a mild pro-oxidant effect for diplacone [36]. This result is
following the conclusion published by Malaník et al. that a crucial structural element for
activity in the CAA assay is the 5,7-m-dihydroxy arrangement of the flavonoid ring A, with
no substituent at C-6. Diplacone a has geranyl moiety at C-6, and its activity in CAA is,
therefore, reduced [43].

Hošek et al. have reported that cudraflavone B, a compound structurally similar
to morusin, scavenges HClO [36]. On the other hand, incubating this compound with
J774A.1 cells alone for 30 min tripled the production of ROS, measured as DCF, compared
to untreated cells [36]. However, contradictory results reported in the literature have found
morusin reducing the production of ROS in cell cultures. Cheng et al. reported that morusin
reduced 12-O-tetradecanoylphorbol-13-acetate (TPA)-mediated production of ROS in a
mouse epidermal JB6 P+ cell model [19]. Lee et al. reported a decrease in NO•-induced
cell death in neuroblastoma SH-SY5Y cells during incubation with morusin [44]. Similarly,
Yang et al. observed that morusin suppresses the production of NO• in RAW264.7 cells
caused by lipopolysaccharide (LPS) and interferon-γ [45]. Moreover, finally, Ko et al.
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found that morusin inhibits the formation of O2
•− in rat neutrophils stimulated with

phorbol myristate acetate (PMA) [46]. The difference between these findings and our result
probably stems from using different cell lines and ROS generators. Morusin was obviously
better at counteracting TPA, LPS, NO•, PMA, and radicals formed from them than radicals
generated by AAPH.

Figure 3. The antioxidant activity of acteoside (A), diplacone (D), morusin (M), and pomiferin (P) at
a concentration of 5 µM in a CAA assay in THP-1 cells. Quercetin at a concentration of 5 µM was
used as a positive control (PC). DMSO, the solvent used for both the test compounds and quercetin,
was added as the negative control (NC). The results are expressed as the mean ± SEM for two
independent experiments measured in triplicate and are statistically compared to NC (** p < 0.01,
and **** p < 0.0001).

2.3. Glucose Oxidative Stress Protection (GOSP) Assay

After the CAA assay experiments, acteoside and diplacone were chosen for further
evaluation in a GOSP assay. Morusin was not chosen because it showed the lowest values in
the CAA assay. Similarly, pomiferin was omitted due to its unfavorable cytotoxicity profile.
In the GOSP assay, the cells were exposed to a hyperglycemic condition that increased
oxidative stress. The amount of intracellular stress was visualized by the conversion to
fluorescent dichlorofluorescein (DCF).

Chronic hyperglycemia is a characteristic condition for diabetes mellitus (DM) that
negatively impacts cells and tissues. The toxicity of high levels of glucose manifests itself,
especially in the β-cells of the pancreas, where it reduces the secretion of insulin. In other
organs, it is responsible for the chronic microvascular complications of DM. The molecular
mechanisms of glucose toxicity involve the glycation of proteins via Schiff bases and
Amadori compounds that increase ROS production [47]. Overproduction of O2

•− in the
mitochondrial electron transport chain (ETC) increased production of ROS as glucose is
the main energy source and fuel for ETC [48].

After a 48 h incubation of HepG2 cells in hyperglycemic conditions, both test com-
pounds were able to reduce oxidative stress and the production of DCF to the level of
normoglycemia in a statistically significant manner (p < 0.001; Figure 4). Both acteoside
and diplacone reduced oxidative stress down to 28% of the level of the hyperglycemic
condition and were more effective than the quercetin used as a positive control.

El-Marasy et al. have reported that acteoside alleviates oxidative stress in rats with
streptozotocin-nicotinamide (STZ-NA)-induced type 2 diabetes [49]. This was observed as
reduced levels of malondialdehyde (MDA), a marker of lipid peroxidation. The content
of reduced glutathione in the liver was also increased. In addition, acteoside significantly
lowered blood glucose levels, glycosylated hemoglobin, and total cholesterol compared to
control diabetic rats [49]. Glucose toxicity during hyperglycemia is marked by increased
formation of advanced glycation endproducts (AGEs) and greater aldose reductase ac-
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tivity. According to the results of Yu et al., both of these parameters were inhibited by
acteoside [50].

Zima et al. described the effects of diplacone administered to rats with alloxan-
induced diabetes. While the impact of diplacone on glucose levels was minor, the com-
pound showed a cytoprotective effect on β-cells of the islets of Langerhans, which was
confirmed by histopathological analysis. The protection of β-cells correlated with the
greater antioxidant activity of diplacone than the other compounds examined [41].

Figure 4. The antioxidant activity of acteoside (A) and diplacone (D) at a nontoxic concentration
of 5 µM in a GOSP assay in HepG2 cells. Quercetin at a concentration of 5 µM was used as a
positive control (PC). DMSO, the solvent used for both the test compounds and quercetin, was added
as the negative control (NC). Normoglycemic control was achieved using a low glucose medium
(LG). All other samples were incubated in a high-glucose medium. The results are expressed as
the mean ± SEM for two independent experiments measured in triplicate and were statistically
compared to NC (*** p < 0.001).

2.4. Indirect Antioxidant Activity—Modulation of Antioxidant Enzymes
2.4.1. Protein Expression

Further, it was important to discern whether the test compounds acteoside and dipla-
cone can also protect cells against oxidative stress also by indirect modulation of antioxidant
enzymes and not only by the direct scavenging activity shown previously [32,33,36,40,41].

Because the most common representative ROS are O2
•−, H2O2, and •OH [51], we

chose to evaluate antioxidant enzymes that deal with them, namely CAT, SOD1, and SOD2.
We also evaluated the expression of another protein—Nrf2, a transcription factor involved
in the antioxidant response of cells. We incubated acteoside and diplacone with THP-1
cells and observed their influence on the level of protein expression.

After incubation periods of 8 and 24 h, acteoside showed almost no influence on
the expression of the selected proteins (data not shown). On the other hand, incubation
with diplacone increased the level of the CAT enzyme after both 8 h and 24 h. After 8 h
of incubation, diplacone treatment increased the level of SOD2 and showed a moderate
effect on the expression of Nrf2. After 24 h of incubation, increases were observed in the
levels of SOD1 and SOD2. Unfortunately, none of these effects were statistically significant
(Figures 5 and 6).
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Figure 5. Effects of diplacone (D) at a concentration of 2.5 µM on the expression of (1) CAT, (2) SOD1,
(3) SOD2, and (4) Nrf2 after 8 h incubation with THP-1 cells. DMSO was used as the solvent and
was added as the negative control (NC). The results are expressed as the mean ± SEM and were
measured in triplicate.

Figure 6. Effects of diplacone (D) at a concentration of 2.5 µM on the expression of (1) CAT, (2) SOD1,
(3) SOD2, and (4) Nrf2 after 24 h incubation with THP-1 cells. DMSO was used as the solvent and
was added as the negative control (NC). The results are expressed as the mean ± SEM and were
measured in triplicate.
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2.4.2. Gene Expression

To confirm the impact of diplacone, we tried to evaluate it also on the level of mRNA
transcription. The results of the experiment are shown in Figure 7. For this experiment,
we have chosen genes with elevated protein expression levels after 8 h of incubation.
Unfortunately, we did not observe any elevation of the transcription levels of CAT or
SOD2 mRNA.

Figure 7. Effects of diplacone (D) at a concentration of 2.5 µM on the gene expression (mRNA levels)
of (1) CAT and (2) SOD2 after 8 h incubation with THP-1 cells. DMSO was used as the solvent
and was added as the negative control (NC). The results are expressed as the mean ± SEM for two
independent experiments measured in triplicate.

2.4.3. Activation of the Nrf2-ARE System

Next, we tried to find out if either acteoside or diplacone could support the transloca-
tion of Nrf2 to the nucleus and the activation of ARE. Figure 8 shows that the luminescence
produced by the ARE luciferase reporter (normalized to Renilla luminescence) did not
increase when incubated with acteoside or diplacone. This probably means that neither of
these compounds activates the Nrf2-ARE system in HepG2 cells. Both compounds were
tested at a nontoxic concentration of 5 µM.

Figure 8. Effects of acteoside (A) and diplacone (D) at a concentration of 5 µM on the activation of
the Nrf2-ARE system. The HepG2 cell model was transiently transfected with the ARE luciferase
reporter vector firefly luminescence and a constitutively expressing Renilla vector. The results are
expressed as the ratio of firefly to Renilla luminescence. DMSO was used as the solvent and was
added as the negative control (NC). DL-sulforaphane at a concentration of 10 µM was used as a
positive control (PC). The results are expressed as the mean ± SEM for two independent experiments
measured in triplicate.

2.4.4. Activity of the Enzyme CAT

Finally, one of the mechanisms contributing to the ability of acteoside and diplacone
to help the THP-1 to survive under oxidative stress is an increase in the CAT activity.
To discern this possibility, we carried out an experiment with an incubation time of 5 h.
The results shown in Figure 9 indicate that both acteoside and diplacone increased CAT
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activity with statistical significance (p < 0.01 and p < 0.001, resp.). The effect of acteoside
was slightly greater than that of diplacone.

Figure 9. Effects of acteoside (A) and diplacone (D) at a concentration of 5 µM on the activity of
the enzyme CAT. THP-1 cells were incubated with the compounds for 5 h, and then the activity of
the enzyme CAT was calculated. DMSO was used as the solvent and was added as the negative
control (NC). Results are expressed as the mean ± SEM for two independent experiments measured
in triplicate and were statistically compared to NC (** p < 0.01, and *** p < 0.001).

Our experiments showed that the antiradical effect of acteoside was expressed more
in direct scavenging of ROS in the CAA assay, but it also showed indirectly as an increase
in the activity of the CAT enzyme. These two effects also appeared in the GOSP assay. Simi-
larly, Huan et al. have found that acteoside increases the CAT activity in homogenized liver
tissue [52]. Our results show that the indirect antiradical effect of acteoside is not related to
increased expression of antioxidant enzymes or activation of the Nrf2-ARE system.

In contrast to the results of our experiments, Sgarbossa et al. found acteoside upreg-
ulates the expression of heme oxygenase 1 (HO-1) in both mRNA and the protein level
in human keratinocyte HaCaT cells. This effect was observed after 24 h of incubation
with acteoside at a concentration of 200 µM. Because the induction of the HO-1 gene is
regulated primarily by Nrf2 and BACH1 transcription factors, Sgarbosa et al. also tested
the influence of acteoside on the expression of these respective proteins. Whereas the
Nrf2 factor activates the ARE sequence, BACH1 plays an inhibitory role. After 24 h of
incubation, acteoside increased steady-state nuclear levels of Nrf2 protein and decreased
the BACH1 protein levels. According to Sgarbossa et al., the antioxidant effect of acteoside
is partially direct (by scavenging) and partially indirect (by activation of enzymes) [26].
We have observed only the direct scavenging effect and the indirect effect on the CAT
activity, which can be due to different concentrations and cell cultures. The concentration
of acteoside we used in our experiments was 40× lower than the one used by Sgarbosa
et al. However. Their concentration would be obtained in vivo only with difficulty because
acteoside is known for its poor bioavailability; its maximum concentration in rat plasma
after peroral administration of 200 mg/kg was a mere 0.7 µM [48].

Surprisingly, diplacone showed no direct antioxidant effect in the CAA assay. On the
other hand, its activity in the GOSP assay was comparable to acteoside. Diplacone also
induced the expression of antioxidant enzymes, and it increased the activity of catalase in
THP-1 cells. Although the results of increased expression are not statistically significant,
they show the ability of diplacone to modulate the system of the antiradical defense of
cells. Under specific conditions, some antioxidants may behave as pro-oxidants [53]. In the
presence of heavy metals and oxygen, even some flavonoids undergo redox cycling and
form ROS. A similar thing happens when flavonoids are present at high concentrations in
cells [54,55]. These findings could explain why diplacone may act as a weak pro-oxidant
in THP-1 cells [36] and thus activate the antioxidant defense system. In our experiment,
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we have observed increased Nrf2 protein levels after 8 h incubation. This accords with
the overall evaluation of plant polyphenols that generate nanomolar amounts of H2O2
and thus act as activators of signaling factors [56]. However, diplacone was not shown to
activate the Nrf2-ARE system, which means there may be another mechanism involved.

3. Materials and Methods
3.1. Test Compounds

The test compounds were isolated and characterized at the Faculty of Pharmacy, Uni-
versity of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic [17,18,20,21].
The purity of all compounds tested was confirmed by HPLC analysis to exceed 95% in
all cases. All of the test compounds were dissolved in DMSO; the final concentration of
DMSO in the cellular assays was 0.1% (v/v).

3.2. Maintenance and Cultivation of the Cell Lines

Both cell lines, THP-1 human monocytic leukemia and HepG2 human hepatoma were
purchased from the European Collection of Cell Cultures (Salisbury, UK) and were cultured
according to reported procedures [21,57].

3.3. Antiproliferative Activity

The viability of THP-1 cells was measured using the cell proliferation reagent WST-1
(Roche, Basel, Switzerland) according to the manufacturer’s manual, as reported previ-
ously [58]. The antiproliferative activity of acteoside and pomiferin in THP-1 was screened
in five concentrations, ranging from 0.61 to 50 µM.

3.4. Cellular Antioxidant Activity (CAA) Assay

The antioxidant activity of the test compounds was measured in THP-1 cells using the
method of Wolfe and Liu [59] with some modifications, as reported previously [43].

3.5. Glucose Oxidative Stress Protection (GOSP) Assay

The protection against glucose oxidative stress provided by acteoside and diplacone
was measured in HepG2 cells using a previously reported assay with some modifica-
tions [12,13].

Briefly, the HepG2 cells were incubated in 24-well plates (100,000 cells/well) in a
low glucose DMEM growth medium (Biosera, Kansas City, MO, USA; 5 mM glucose) to
simulate normoglycemic conditions. High-glucose DMEM growth medium with added
glucose (Sigma-Aldrich, Saint Louis, MO, USA) up to 55 mM concentration was used to
create hyperglycemic conditions. The cells were incubated with acteoside, diplacone, or
quercetin (used as a positive control) in a concentration of 5 µM. The solvent, DMSO, was
used as a negative control (NC).

After 48 h of incubation, the cells were washed with PBS (Biosera) and further incu-
bated for 30 min in a medium containing 10 µM 2′,7′-dichlorodihydrofluorescein-diacetate
(DCFH2-DA; Sigma-Aldrich) dissolved in DMSO (the final concentration of DMSO in the
medium was 0.1% (v/v)) at 37 ◦C. The cells were then washed again with PBS and lysed
using trypsin/EDTA 1× (Biosera). The lysates were transferred into a black 96-well plate,
and the fluorescence signal of the dichlorofluorescein product was measured using a FLU-
Ostar Omega microplate reader (BMG Labtech, Ortenberg, Germany) at the wavelengths λ
(ex./em.) = 485/520 nm.

The fluorescence intensity (FI) was recalculated to accord with the number of viable
cells obtained from a parallel experiment with the same incubation conditions and mea-
surement of antiproliferative activity using a WST-1 kit. The values of FI/106 viable cells of
the NC were assigned as 100%, and other values were referenced to these.
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3.6. Indirect Antioxidant Activity—Modulation of Antioxidant Enzymes
3.6.1. Protein Expression

The effects on protein expression of antioxidant enzymes and Nrf2 were observed
in the THP-1 cell line using the method reported previously [57,60]. Briefly, the THP-1
cells were incubated in the form of floating monocytes (1 × 106 cells/mL) with diplacone
for 8 and 24 h. The cells were collected, and protein lysates were prepared. The lysates
were then separated using SDS–PAGE, and the proteins were transferred to polyvinyli-
dene fluoride membranes using Western blotting and visualized using antibodies and a
chemiluminescent kit (Bio-Rad, Hercules, CA, USA).

Specific primary antibodies were applied: mouse anti-CAT 1:1000 (Sigma-Aldrich;
product No. C0979), rabbit anti-SOD1 1:1000 (Sigma-Aldrich; product No. HPA001401),
rabbit anti-SOD2 1:1000 (Sigma-Aldrich; product No. HPA001814), rabbit anti-NRF2 1:1000
(Abcam, Cambridge, UK; product No. ab137550) or mouse anti-β-actin 1:5000 (Abcam;
product No. ab8226). After washing, the secondary antibodies were applied: anti-mouse
IgG (Sigma-Aldrich; product no. A0168), or anti-rabbit IgG (Sigma-Aldrich; product no.
A0545) at a dilution of 1:2000.

3.6.2. Gene Expression

To isolate RNA and evaluate gene expression, the THP-1 cells (floating monocytes,
500,000 cells/mL) were incubated in 100 µL of a serum-free RPMI 1640 medium and
seeded into 96-well plates in triplicate at 37 ◦C with diplacone at a concentration of 2.5 µM
in DMSO.

After 8 h, the total RNA was isolated from the cells using a RealTime Ready cell lysis
kit (Roche, Basel, Switzerland) according to the manufacturer’s instructions. The gene
expression of CAT, SOD2, or β-actin was quantified by two-step reverse-transcription
quantitative (real-time) PCR (RT–qPCR). The reverse transcription step was performed
with a Transcriptor Universal cDNA Master (Roche), using cell lysate as the template.
The reaction consisted of three steps: (1) primer annealing at 29 ◦C for 10 min, (2) reverse
transcription at 55 ◦C for 10 min, and (3) transcriptase inactivation at 85 ◦C for 5 min.

A Fast Start Universal Probe Master (Roche) and gene expression assays (Applied
Biosystems, Foster City, CA, USA) were used for qPCR. These assays contain specific
primers and TaqMan probes that bind to an exon−exon junction to prevent DNA contami-
nation. The parameters for the qPCR work were adjusted according to the manufacturer’s
recommendations: 50 ◦C for 2 min, then 95 ◦C for 10 min, followed by 40 cycles at 95 ◦C for
15 s and 60 ◦C for 1 min. The results were normalized to the amount of ROX reference dye,
and the change in gene expression was determined by the 2−∆∆CT method. Transcription
of the control cells was set as 100%, and other experimental groups were multiples of
this value.

3.6.3. Activation of the Nrf2-ARE System

The activation of the Nrf2-ARE system in HepG2 cells was determined using an ARE
reporter kit (BPS Bioscience, San Diego, CA, USA) as described previously [57]. The cells
were transiently transfected for 1 h (35,000 cells/well in 96-well plates) with the ARE
luciferase reporter vector (firefly luminescence) plus a constitutively expressing Renilla
vector using the TransFast transfection reagent (Promega, Madison, WI, USA). After serum
recovery, the cells were treated for 24 h with acteoside or diplacone at a concentration of
5 µM. As a positive control for this experiment, we used DL-sulforaphane (Sigma-Aldrich)
at a concentration of 10 µM dissolved in DMSO, as recommended by ARE reporter kit.
Luciferase activity from the cell lysates was detected using a dual-luciferase reporter assay
system (Promega, Madison, WI, USA). Data were normalized to the Renilla luminescence.

3.6.4. Activity of the Enzyme CAT

THP-1 cells (floating monocytes, 750,000 cells/mL) were incubated in 2 mL of serum-
free RPMI 1640 medium and seeded into 6-well plates in triplicate at 37 ◦C. The cells
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were treated for 5 h with acteoside or diplacone at a concentration of 5 µM. The cells
were then lysed, and the protein concentration was measured using the Bradford method.
Then the activity of the CAT enzyme in the cell lysates was measured using a catalase assay
kit (Cayman Chemical Company, Ann Arbor, MI, USA) according to the manufacturer’s
instructions. The activity of CAT was expressed in nmol/min/mL/mg of proteins in
the sample.

3.7. Statistical Analysis

Statistical analyses were carried out using IBM SPSS Statistics for Windows, software
version 26.0 (Armonk, NY, USA). The data were graphed as the mean ± SEM. Compar-
isons between groups were made using a Mann–Whitney U test or Kruskal–Wallis test
followed by pair-wise comparison with Bonferroni correction, depending on the number
of experiments being compared.

4. Conclusions

We selected four plant phenolics previously determined to have antioxidant activity.
Among these compounds, acteoside showed a direct antioxidant effect in a CAA assay.
It also showed great activity in a GOSP assay. In both cases, the activity was higher than
that of quercetin, the positive control. On the other hand, acteoside did show any effect on
the expression of typical antioxidant enzymes or activate the Nrf2-ARE pathway. Instead,
it increased only the activity of the enzyme CAT. Diplacone showed an antioxidant effect
only in the GOSP assay, not in the CAA assay. This compound showed a positive effect on
the expression of the enzymes CAT, SOD1, and SOD2. Again, the activity of enzyme CAT
was increased.

Our results show that the antioxidant activity of compounds measured using in vitro
chemical assays does not always correspond with an ability to counteract the production
of ROS in cell-based systems.
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