
����������
�������

Citation: Zannou, O.; Pashazadeh,

H.; Ghellam, M.; Ibrahim, S.A.; Koca,

I. Extraction of Anthocyanins from

Borage (Echium amoenum) Flowers

Using Choline Chloride and a

Glycerol-Based, Deep Eutectic

Solvent: Optimization, Antioxidant

Activity, and In Vitro Bioavailability.

Molecules 2022, 27, 134. https://

doi.org/10.3390/molecules27010134

Academic Editors: Francesca

Giampieri and Tamara

Forbes-Hernández

Received: 23 November 2021

Accepted: 20 December 2021

Published: 27 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

molecules

Article

Extraction of Anthocyanins from Borage (Echium amoenum)
Flowers Using Choline Chloride and a Glycerol-Based, Deep
Eutectic Solvent: Optimization, Antioxidant Activity, and In
Vitro Bioavailability

Oscar Zannou 1,* , Hojjat Pashazadeh 1 , Mohamed Ghellam 1,2 , Salam A. Ibrahim 3 and Ilkay Koca 1

1 Food Engineering Department, Faculty of Engineering, Ondokuz Mayis University, Samsun 55139, Turkey;
hojjat_pashazadeh@yahoo.com (H.P.); mohamed.gh2010@gmail.com (M.G.); itosun@omu.edu.tr (I.K.)

2 VetAgro-Sup, Agronomic Campus, 63370 Clermont-Ferrand, France
3 Food and Nutritional Sciences Program, North Carolina A&T State University, Greensboro, NC 27411, USA;

ibrah001@ncat.edu
* Correspondence: zannouoscar@gmail.com; Tel.: +90-5318173783

Abstract: Borage flower (Echium amoenum), an annual herb native to the Mediterranean region, is an
excellent source of anthocyanins and is widely used in various forms due to its biological activities.
In the present study, a choline chloride and glycerol (CHGLY)-based natural deep eutectic solvent
(NADES) was applied in order to extract the anthocyanins from borage flowers. The traditional
solvents, including water, methanol, and ethanol, were used to evaluate the efficiency of CHGLY. The
results showed that CHGLY was highly efficient compared to the traditional solvents, providing the
highest amounts of the total anthocyanin content (TAC), total phenolic content (TPC), total flavonoid
content (TFC), individual anthocyanins, and antioxidant activity (DPPH radical scavenging (DPPH)
and ferric-reducing antioxidant power (FRAP) assays). The most dominant anthocyanin found in
studied borage was cyanidin-3-glucoside, followed by cyanin chloride, cyanidin-3-rutinoside, and
pelargonidin-3-glucoside. The bioavailability % was 71.86 ± 0.47%, 77.29 ± 0.57%, 80.22 ± 0.65%,
and 90.95 ± 1.01% for cyanidin-3-glucoside, cyanidin-3-rutinoside, by pelargonidin-3-glucoside and
cyanin chloride, respectively. However, cyanidin-3-glucoside was the anthocyanin compound show-
ing the highest stability (99.11 ± 1.66%) in the gastrointestinal environment. These results suggested
that choline chloride and glycerol-based NADES is not only an efficient, eco-friendly solvent for the
extraction of anthocyanins but can also be used to increase the bioavailability of anthocyanins.

Keywords: borage; Echium amoenum; phenolic compounds; antioxidant activity; bioavailability

1. Introduction

Human health and well-being are closely linked to one’s environment, diet, and
overall lifestyle. Free radicals are associated with increased incidence of cardiovascular,
pulmonary diseases, and many types of cancers [1]. Like reactive oxygen species (ROS)
and reactive nitrogen species (RNS), free radicals can be produced in the organism as a
by-product of metabolism or introduced from a number of exogenous sources (pollution,
radiation, drugs, etc.) [2,3]. Free radicals can adversely affect many biological molecules
(nucleic acids, proteins, and lipids), which alters the biological activities and results in
increased oxidative stress. Consequently, they are involved directly or indirectly in the
activation of diseases, such as diabetes, neurodegenerative disorders, respiratory diseases,
cardiovascular diseases, along with other various diseases and cancers [2]. Through the
ages, humans have believed in the positive effects associated with using a variety of herbs
and foods for the treatment of certain illnesses. More recently, over the past few decades,
researchers have begun to study the composition and purported effects of herbal treatments
used in traditional medicine.
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Borage or Echium amoenum is a member of the Boraginaceae family and one of the
popular annual herbs used in traditional medicine in several countries. Borage is dispersed
in many parts of Europe, the Mediterranean basin, and northern Iran. Its stems and leaves
are hairy and bristly, and it has bright blue, star-shaped flowers, which are the most used
part of the plant [4]. This plant has been used as a decoction separately or in combination
with other herbs [5]. It has been traditionally used as a sedative, antidepressant, antifebrile,
anti-inflammatory, for infectious diseases and influenza, and also used against cardiovascu-
lar and pulmonary diseases. Recently, it has been widely believed to have possible effects
against various types of cancers [3,4]. Many recent in vivo, in vitro, and clinical studies
have been conducted in an effort to prove the therapeutic effects of the borage plant. It
was found that its flowers possess an antiviral [4], antioxidant [3,6], antibacterial activ-
ity against Gram-positive and Gram-negative bacteria [6,7], as well as anti-inflammatory
effects [6,8]. It was also suggested that borage flowers could be a natural co-treatment
due to their neuroprotective effects [9], anti-cancer proprieties and reduction of oxidative
stresses [3,6], anxiolytic effect [10], and an inhibitory effect with regard to enzymes-related
health issues [11].

Those positive effects are mostly attributed to the chemical composition, owing to
the presence of phenolics (pyrogallol, salicylic acid, gallic acid, caffeic acid), flavonoids
(rutin, myricetin), fatty acids (α-linolenic, palmitic, stearidonic) [6], and anthocyanins [5,12].
Borage also contains rosmarinic acid, which is one of the carboxylic acids believed to have
beneficial effects on human health [11,13]. Besides, borage can be a good source of minerals
(iron, calcium, phosphorus) and soluble and insoluble fibers [5]. Various studies have been
carried out to assess the effect of treatments on the composition and biological activities of
the borage plant. For example, Nadi et al. [14] investigated the effect of fluidized drying pa-
rameters (temperature, air velocity) on energy consumption and the quality (color, phenolic
compounds, anthocyanins, antioxidant activity) of borage petals. Their results showed a
decrease in energy consumption and preservation of the quality and maintenance of the
bioactive components of the dried petals. Mehran et al. [12] evaluated the encapsulation
process of anthocyanin extracts using spray drying and maltodextrin/modified starch.
Their results indicated a high encapsulation efficiency and an increase in the stability
of anthocyanin.

In order to take advantage of their biochemical activities, the extraction of different
bioactive compounds from the borage plant has been realized using a variety of solvents.
The extracts obtained with various solvents exhibited different methods and amplitudes of
the response. For instance, methanolic extracts of flowers possessed the highest antibacterial
and antioxidant activities compared to the ethanolic and aqueous extracts [6]. In a previous
study, it was found that the ethanolic extract of borage flowers exhibited a significantly
higher antibacterial activity than the aqueous extracts [7]. In addition, the application of
assistive techniques (e.g., pulsed electric field) has improved the efficiency of polyphenol
extraction, and thus the antioxidant capacity of aqueous leaf extracts [15].

Recently, the application of natural deep eutectic solvents (NADESs) for the isolation
of bioactive compounds has revolutionized their extraction processes. NADESs are a mix
between the hydrogen bond acceptor (HBA) and hydrogen bond donor (HBD). NADESs
have been found to be excellent solvents for separating and stabilizing phenolic com-
pounds [16–18] because they form hydrogen bonds with phenolic compounds and increase
solubility [19]. NADESs are highly efficient at extracting the phenolic compounds from
various plant materials compared to extraction by traditional solvents such as methanol,
ethanol, hexane, dichloromethane, and water [20–23].

To the best of our knowledge, no published studies investigating the anthocyanins
from borage using NADESs have been found in the existing literature. In the present study,
choline chloride and glycerol-based NADESs (CHGLY) were prepared and applied for
the extraction of anthocyanins from borage. Water, ethanol, and methanol were used as
conventional solvents for comparison. Moreover, total phenolic, total flavonoid, total antho-
cyanin contents, DPPH radical scavenging, and FRAP of borage extracts were evaluated. In
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addition, the extraction conditions with the prominent CHGLY were optimized using the
central composite of Response Surface Methodology (RSM), and the in vitro bioavailability
of the extract obtained at the optimum conditions was determined.

2. Results and Discussion
2.1. FTIR Spectra, Viscosity, pH, and Conductivity of CHGLY

The FTIR spectrum of NADES obtained from choline and glycerol (CHGLY) is shown
in Figure 1. The low intensity of OH stretching bands at wavenumber 3500–3200 cm−1

confirmed the presence of a low quantity of water in CHGLY [24,25]. During the CHGLY
preparation, 20% of water was introduced to tailor the viscosity and to facilitate ma-
nipulation and enhance the extraction performance. The OH stretching vibration at the
wavenumber of 3300–3100 cm−1 indicated the formation of hydrogen bonding between
HBA and HBD [24,26]. The wavenumber at 3200–2932 cm−1 and 1645 cm−1 wavenumber
referred to C-H stretching bands and C=C stretching vibrations, respectively. In addition,
the wavenumbers 1500–600 cm−1 correspond to the C–O, CH, C–C, and OCO stretch-
ing, deformation, or bending vibrations [27]. Thus, the CHGLY can be assessed to be a
homogenized NADES in which the chemical group tied different bunding networks.
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Figure 1. FTIR spectrum of natural deep solvent prepared from choline chloride and glycerol (CHGLY).

The viscosity, pH, and electric conductivity of CHGLY were found to be 22.89 ± 0.10 mPa,
5.03 ± 0.01, and 770.50 ± 10.25 µS.cm−1, respectively. Viscosity is an important factor for the
NADESs application in the extraction of bioactive compounds. NADES with high viscosity
decreases the mass transfer in the extraction matrix [18]. In accordance with the viscosity
found in the present study, Yadav et al. [28] have reported a viscosity of 21.37 mPa for the
NADES prepared with choline chloride and glycerol at a 1:2 molar ratio and with the addition
of 20% of water. Additionally, CHGLY has been reported as an adequate NADES for the
extraction of phenolic compounds [29].

2.2. Screening CHGLY Efficiency vs. Conventional Solvents

The extraction efficiency of CHGLY compared to methanol, ethanol, and water was in-
vestigated, and the results are given in Table 1. The extractability of TAC, TPC, TFC, DPPH,
and FRAP changed greatly depending on the type of solvents (p < 0.05). The TAC, TPC,
TFC, DPPH, and FRAP determined in borage were found in the ranges 0.07–2.61 mg c3gE/g,
10.08–27.76 mg GAE/g, 2.34–10.29 mg ECE/g, 48.35–146.92 mmol TE/g, and 444.73–939.85
mmol ISE/g, respectively. Similar to our findings, Bekhradnia and Ebrahimzadeh [30] have
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determined TPC of 3.79–41.69 mg/g and TFC of 1.14–11.11 mg/g from various extracts of
borage. In contrast, Asghari et al. [11] have reported higher values of TPC (90.20–296.20 mg/g)
and TFC (48.40–115.90 mg/g) from different extracts of borage. These variations could be
linked to the growing conditions of the raw material, extraction, and analysis conditions.
In the present study, four anthocyanin compounds, including cyanin chloride, cyanidin-
3-glucoside, cyanidin-3-rutinoside, and pelargonidin-3-glucoside, were detected in borage
various extracts (Figure 2). The recovery of these anthocyanins changed greatly depending
on the solvent used for the extraction (p < 0.05). The most dominant anthocyanin found
in the studied borage was cyanidin-3-glucoside (26.97 ± 0.08–1126.45 ± 64.72 mg/kg), fol-
lowed by cyanin chloride (532.65 ± 17.79–1005.01 ± 8.20 mg/kg), cyanidin-3-rutinoside
(52.34 ± 2.12–604.36 ± 4.74 mg/kg), and pelargonidin-3-glucoside (37.71 ± 0.23–508.86 ± 2.05
mg/kg). Accordingly, cyanidin-3-glucoside has been reported as the most important antho-
cyanin in borage [12,31,32].

Table 1. Antioxidant properties of borage extracts obtained from different solvents.

Solvents
Phytochemical Characteristics

TAC TPC TFC DPPH FRAP

CHGLY 2.61 ± 0.28 a 27.76 ± 0.31 a 10.29 ± 0.80 a 146.92 ± 11.84 a 939.85 ± 16.35 a
Ethanol 0.07 ± 0.03 c 10.08 ± 0.80 c 2.34 ± 0.44 c 48.35 ± 5.26 b 444.73 ± 1.52 d
Water n.d. 26.50 ± 0.42 a 5.36 ± 0.36 b 124.61 ± 10.52 a 665.53 ± 0.00 b

Methanol 1.41 ± 0.11 b 20.33 ± 2.14 b 8.29 ± 0.26 a 120.89 ± 3.95 a 482.81 ± 6.83 c

a–d = Different lowercase letters indicate significant differences between solvents (p < 0.05); n.d. = not determined;
TAC (mg c3gE); TPC (mg GAE/g); TFC (mg ECE/g); DPPH (mmol TE/g); FRAP (mmol ISE/g).
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Figure 2. Individual anthocyanins extracted from borage using different solvents. a–c = Different
lowercase letters on the bars with the same color indicate significant differences between solvents
(p < 0.05).

As can be observed in Table 1, CHGLY exhibited the highest performance of all evalu-
ated phytochemical characteristics, followed by water, methanol, and ethanol. However,
no anthocyanin was determined in the aqueous extract. Likewise, the highest amounts
of all identified individual anthocyanins were found in the CHGLY extract. CHGLY was
followed by methanol for cyanin chloride and by ethanol for cyanidin-3-rutinoside and
pelargonidin-3-glucoside (Figure 2). Several studies have reported similar results in which
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different NADESs have been found to be more efficient than conventional solvents for the
recovery of phenolic compounds, such as anthocyanins [19,21,33,34]. The highest efficiency
of CHGLY could also be associated with multiple hydrogen bonding networks formed by
the different chemical groups of choline chloride and glycerol [35,36], which interact and
facilitate the extraction of phenolic compounds [37,38]. Moreover, phenolic compounds
are polar molecules, and their extraction is prominent with highly polar solvents. Recently,
polyalcohol-based NADESs, including CHGLY, have been reported amongst the most polar
and efficient for the recovery of phenolic compounds plants [29,39,40]. Therefore, CHGLY
was selected for further analyses and optimization of extraction conditions.

2.3. Optimization of Extraction Conditions

The extraction optimization of anthocyanins from borage petals using deep eutectic
solvents and applying a three-level central composite design was realized using four
independent factors (X1; molar ratio, X2; water content, X3; temperature, and X4; extraction
time). The results of different experimental points are shown in Table 2.

Table 2. Independent factors (X1, X2, X3, and X4) and experimental results for the responses.

Run X1 X2 X3 X4 TAC TPC TFC FRAP DPPH Cyanin
Chloride

Cyanidin-3-
Glucoside

Cyanidin-3-
Rutinoside

Pelargonidin-
3-Glucoside

1 5 40 40 35 3.92 38.44 18.90 795.47 189.52 860.61 10.16 410.84 237.87
2 5 40 75 35 4.06 45.41 23.06 824.8 214.17 834.99 968.08 53.84 137.55
3 2 40 75 15 3.99 43.11 18.93 758.02 253.30 971.10 1215.04 127.43 56.25
4 3.5 30 90 25 4.08 47.93 25.01 707.33 332.58 706.11 879.72 123.73 68.64
5 3.5 10 60 25 3.11 28.95 12.85 571.98 245.81 406.11 479.72 607.72 510.31
6 5 40 40 15 3.40 35.55 10.54 782.19 240.55 1005.80 1273.19 651.01 507.41
7 2 20 40 15 3.30 26.96 12.80 703.36 148.52 551.66 677.73 174.02 374.54
8 5 20 75 15 4.29 40.44 22.80 748.41 280.64 1166.77 1726.42 397.66 160.64
9 2 40 40 35 5.69 45.56 20.39 755.92 189.52 507.78 650.27 410.46 599.86

10 2 20 75 35 3.55 39.03 14.65 622.43 285.88 879.05 1062.68 707.30 523.18
11 3.5 30 60 25 3.40 39.74 17.36 680.24 215.76 495.32 751.63 480.66 534.20
12 5 20 75 35 3.64 37.55 18.19 840.3 218.68 956.59 1092.72 380.74 514.11
13 3.5 30 60 45 4.38 53.20 26.85 972.43 335.31 1377.59 1327.59 330.61 405.41
14 3.5 30 60 25 3.02 40.22 16.80 752.76 217.79 362.74 493.87 465.40 726,86
15 5 40 75 15 5.83 40.44 18.88 646.61 229.61 928.25 1340.97 375.35 83.83
16 0.5 30 60 25 4.14 36.36 11.80 683.39 55.88 723.11 990.96 439.36 486.50
17 2 20 40 35 6.73 32.14 11.57 505.77 205.01 101.39 50.27 371.56 416.50
18 2 40 40 15 4.06 34.51 14.13 885.05 167.65 970.69 960.69 330.67 692.36
19 2 20 75 15 2.76 39.18 20.21 708.62 242.39 1241.75 763.34 579.17 220.59
20 5 20 40 15 2.64 32.29 12.54 650.81 291.58 155.38 1080.62 262.85 236.88
21 3.5 30 25 25 4.75 27.61 11.36 652.91 216.86 100.89 140.72 245.00 446.71
22 3.5 50 60 25 3.02 38.66 17.31 703.24 207.93 676.81 797.21 434.45 506.93
23 2 40 75 35 3.08 45.96 18.65 729.64 277.00 696.74 1508.97 68.50 181.60
24 5 20 40 35 3.76 35.70 14.08 705.47 217.77 18.07 30.45 116,73 152,115
25 3.5 30 60 25 3.52 42,66 13.01 720.18 204.22 459.71 637.24 417.58 627.67
26 3.5 30 60 5 4.43 45.52 25.47 884.78 299.75 1554.68 1798.48 442.14 144.36
27 6.5 30 60 25 4.25 33.32 14.29 768.53 80.13 844.71 1413.81 355.91 154.76

TAC (mg c3gE); TPC (mg GAE/g); TFC (mg ECE/g); DPPH (mmol TE/g); FRAP (mmol ISE/g); cyanin chloride
(mg/kg); cyanidin-3-glucoside (mg/kg); cyanidin-3-rutinoside (mg/kg); pelargonidin-3-glucoside.

As can be seen in Table 2, the nine responses demonstrated different variations of
the values of experimental data. For instance, the analyzed spectrophotometric responses,
TAC, TPC, TFC, FRAP, and DPPH, ranged between 2.64 and 6.73 mg CGE/100 g, 26.96
and 53.20 mg GAE/g, 10.54 and 26.85 mg ECE/g, 505.77 and 972.43 mmol ISE/g, and
55.88 and 335.31 mmol TE/g, respectively. Except TAC, which exhibited a high extraction
efficiency at run 17 (X1; 1:2 molar ratio, X2; 20% water content, X3; 40 ◦C, and X4; 35 min),
the rest, TPC, TFC, FRAP, and DPPH, had their highest value at run 13 (X1; 1:3.5 molar
ratio, X2; 30% water content, X3; 60 ◦C, and X4; 45 min). Meanwhile, the chromatographic
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analysis of individual anthocyanins had another trend. They widely ranged between
18.07 and 1554.68 mg/kg, 10.16 and 1798.48 mg/kg, 53.84 and 707.30 mg/kg, and 56.25
and 726.86 mg/kg, for cyanidin chloride, cyanidin-3-glucoside, cyanidin-3-rutinoside,
and pelargonidin-3-glucoside, respectively. The best recovery of cyanidin chloride and
cyanidin-3-glucoside was at run 26 (X1; 1:3.5 molar ratio, X2; 30% water content, X3;
60 ◦C, and X4; 5 min), cyanidin-3-rutinoside at run 10 (X1; 1:2 molar ratio, X2; 20% water
content, X3; 75 ◦C, and X4; 35 min), and pelargonidin-3-glucoside at run 14 (X1; 1:3.5 molar
ratio, X2; 30% water content, X3; 60 ◦C, and X4; 25 min). Apparently, except for TAC,
high-temperature extraction (60–75 ◦C) seems to be efficient in recovering antioxidant
compounds and increasing the antioxidant capacity of extracts. The molar ratio appears as
a second influencing factor in a range between 2 and 3.5 of glycerol to 1 choline chloride
molar ratio.

ANOVA obtained results are shown in Table 3. According to them, the quadratic model
has been found suitable for the representation of experimental data. In general, and for all
responses, the significance of the model was very low (p < 0.0001), and the insignificant
lack-of-fit had high values (p > 0.1735). Additionally, the model had satisfactory R2 (>0.9429)
and adjusted-R2 (>0.8762). All this confirms the closeness between experimental and the
predicted values. After the model selection, the developed model terms of all the responses
are shown in Table 3. Generally, temperature linear terms (X3) were highly significant
(p < 0.0001) for most responses, except for FRAP and cyanidin-3-rutinoside responses.
According to the number of responses and their significance, the temperature was followed
by water content (X2), time (X4), and finally by molar ratio linear terms; however, time
quadratic terms (X4×4) were highly significant (p < 0.0009) for all responses, excluding the
cyanidin-3-rutinoside response. Molar ratio quadratic terms (X1X1) exhibited significance
for many responses, followed by temperature (X3X3) and water content (X2X2) quadratic
terms. Moreover, terms of interactions have shown another tendency, where molar ratio–
time (X1X4) interactions had a high significance for most responses (p < 0.0343), followed
by temperature–time (X3X4), temperature–water content (X2X3), and time–water content
(X2X4) interactions. The final polynomial equations are given in terms of the coded factors
for all studied responses as follows:

TAC mg CGE/100 g = 3.33 − 0.07X1 + 0.13X2 − 0.12 X3 + 0.18X4 + 0.15X1 X2 + 0.60X1 X3 − 0.36 X1 X4
+0.11X2 X3 − 0.33X2 X4 − 0.54X3 X4 + 0.21X1 X1 − 0.07X2 X2 + 0.26X3 X3 + 0.27X4 X4

(1)

TPC mg GAE
g = 40.46 − 0.27X1 + 2.72 X2 + 3.47 X3 + 1.80 X4 − 1.12 X1 X2 − 0.39 X1 X3 − 0.66 X1 X4

−0.49 X2 X3 − 1.01 X2 X4 − 1.00 X3 X4 − 1.54 X1 X1 − 1.80 X2 X2 − 0.66 X3 X3
+2.09X4 X4

(2)

TFC mg ECE
g = 15.44 + 0.51 X1 + 1.08 X2 + 2.68 X3 + 0.50X4 − 0.57X1 X2 + 0.76 X1 X3 + 0.64 X1 X4

−0.53 X2 X3 + 1.77 X2 X4 − 1.21 X3 X4 − 0.85 X1 X1 − 0.34 X2 X2 + 0.51 X3 X3
+2.43 X4 X4

(3)

FRAP mmol ISE
g = 717.70 + 20.46 X1 + 40.53 X2 + 7.37 X3 + 2.49 X4 − 30.27X1 X2 + 8.98 X1 X3

+48.71 X1 X4 − 35.30 X2 X3 + 10.70 X2 X4 + 24.74 X3 X4 − 0.004 X1 X1 − 22.09 X2 X2
−11.14 X3 X3 + 50.66 X4 X4

(4)

DPPH mmol TE
g = 208.97 + 7.15X1 − 8.56X2 + 23.56X3 + 0.55X4 − 8.78X1 X2 − 19.58 X1 X3 − 21.74 X1 X4

+1.20 X2 X3 + 0.93 X2 X4 + 2.59 X3 X4 − 34.98 X1 X1 + 4.74X2 X2 + 17.29X3 X3
+27.41X4 X4

(5)

Cyanidin chloride mg
kg = 418.45 + 10.15X1 + 97.59 X2 + 185.00 X3 − 104.15 X4 + 60.02 X1 X2 + 12.06X1 X3

+60.27 X1 X4 − 190.77X2 X3 + 11.55 X2 X4 + 18.34 X3 X4 + 79.86X1 X1 + 19.25 X2 X2
−8.60 X3 X3 + 250.42 X4 X4

(6)

Cyanidin − 3 − glucoside mg
kg = 599.31 + 60.96 X1 + 87.39 X2 + 251.45 X3 − 195.38X4 − 132.42 X1 X2 + 32.53 X1 X3

−185.95X1 X4 − 38.34 X2 X3 + 22.47X2 X4 + 165.88 X3 X4 + 135.84 X1 X1 − 5.14 X2 X2
−27.63X3 X3 + 226.00 X4 X4

(7)
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Cyanidin − 3 − rutinoside mg
kg = 458.98 − 11.44 X1 − 35.11 X2 − 14.44 X3 − 24.86 X4 + 76.75 X1 X2 − 24.96 X1 X3

−66.95X1 X4 − 131.89 X2 X3 − 43.96 X2 X4 − 9.28 X3 X4 − 18.59 X1 X1 + 12.27 X2 X2
−71.07 X3 X3 − 21.41 X4 X4

(8)

Pelargonidin − 3 − glucoside mg
kg = 643.07 − 71.75X1 − 2.38 X2 − 87.24 X3 ∓ 38.18 X4 − 5.77 X1 X2 + 48.22 X1 X3

−20.28 X1 X4 − 102.87 X2 X3 − 49.76X2 X4 + 72.04X3 X4 − 80.32X1 X1 − 33.32 X2 X2
−97.16 X3 X3 − 91.75 X4 X4

(9)

Table 3. Results of ANOVA of the reduced models giving significant and non-significant terms.

TAC TPC TFC

SS F-Value p-Value SS F-Value p-Value SS F-Value p-Value

Model 22.46 19.25 <0.0001 984.14 14.15 <0.0001 543.53 17.56 <0.0001
X1 0.12 1.47 0.2489 1.77 0.3569 0.5613 6.26 2.83 0.1182
X2 0.40 4.83 0.0484 177.97 35.82 <0.0001 27.78 12.57 0.0040
X3 0.42 5.09 0.0436 325.83 65.58 <0.0001 194.39 87.95 <0.0001
X4 0.78 9.32 0.0100 77.57 15.61 0.0019 6.01 2.72 0.1250

X1 X2 0.36 4.37 0.0585 20.16 4.06 0.0669 5.18 2.34 0.1518
X1 X3 6.95 83.42 <0.0001 2.87 0.5779 0.4618 11.17 5.06 0.0441
X1 X4 2.05 24.60 0.0003 6.96 1.40 0.2595 6.61 2.99 0.1094
X2 X3 0.2236 2.68 0.1273 4.58 0.9212 0.3561 5.31 2.40 0.1470
X2 X4 1.70 20.43 0.0007 16.42 3.31 0.0941 50.36 22.78 0.0005
X3 X4 5.54 66.53 <0.0001 19.19 3.86 0.0730 28.30 12.81 0.0038
X1 X1 1.00 12.01 0.0047 51.18 10.30 0.0075 15.50 7.01 0.0213
X2 X2 0.1001 1.20 0.2946 69.92 14.07 0.0028 2.45 1.11 0.3132
X3 X3 1.56 18.71 0.0010 10.11 2.04 0.1792 6.05 2.74 0.1239
X4 X4 1.55 18.62 0.0010 94.74 19.07 0.0009 128.23 58.01 <0.0001

Residual 1.00 59.62 26.52
Lack of Fit 0.8602 1.23 0.5291 54.72 2.23 0.3489 15.28 0.2719 0.9365
Pure error 0.1398 4.90 11.24
Cor. total 23.46 1043.76 570.05

R2 0.9574 0.9429 0.9535
Adj. R2 0.9076 0.8762 0.8992
Pred. R2 0.7684 0.6985 0.8107

Adeq.
Precision 18.66 15.19 13.92

C.V. % 7.30 5.75 8.68

FRAP DPPH Cyanin
Chloride

SS F-Value p-Value SS F-Value p-Value SS F-Value p-Value

Model 2.43 × 105 21.20 <0.0001 1.05 × 105 31.39 <0.0001 3.86 × 106 27.02 <0.0001
X1 10,040.96 12.29 0.0043 1225.33 5.13 0.0428 2469.16 0.24 0.6315
X2 39,400.87 48.22 <0.0001 1758.35 7.36 0.0189 2.28 × 105 22.41 0.0005
X3 1473.65 1.80 0.2041 15,059.88 63.04 <0.0001 9.29 × 105 91.08 <0.0001
X4 148.28 0.1815 0.6777 7.17 0.03 0.8654 2.602 × 105 25.52 0.0003

X1 X2 14,662.44 17.94 0.0012 1233.55 5.16 0.0423 57,645.47 5.65 0.0349
X1 X3 1555.50 1.90 0.1928 7386.77 30.92 0.0001 2802.53 0.27 0.6096
X1 X4 37,957.63 46.45 <0.0001 7559.31 31.64 0.0001 58,116.76 5.70 0.0343
X2 X3 24,007.45 29.38 0.0002 27.53 0.12 0.7401 7.013 × 105 68.79 <0.0001
X2 X4 1831.85 2.24 0.1601 13.84 0.06 0.8138 2133.24 0.21 0.6555
X3 X4 11,797.43 14.44 0.0025 129.72 0.54 0.4754 6482.65 0.64 0.4407
X1 X1 0.0004 5.34 × 107 0.9994 26,500.12 110.92 <0.0001 1.382 × 105 13.55 0.0031
X2 X2 10,571.53 12.94 0.0037 486.45 2.04 0.1791 8027.43 0.79 0.3923
X3 X3 2920.94 3.57 0.0830 7043.70 29.48 0.0002 1740.12 0.17 0.6868
X4 X4 55,583.85 68.03 <0.0001 16,268.41 68.09 <0.0001 1.358 × 106 133.25 <0.0001

Residual 9805.10 2866.95 1.223 × 105
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Table 3. Cont.

FRAP DPPH Cyanin
Chloride

SS F-Value p-Value SS F-Value p-Value SS F-Value p-Value

Lack of Fit 7166.32 0.5432 0.7914 2759.73 5.15 0.1735 1.129 × 105 2.40 0.3300
Pure error 2638.78 107.22 9416.00
Cor. total 2.524 × 105 1.078 × 105 3.979 × 106

R2 0.9611 0.9734 0.9693
Adj. R2 0.9158 0.9424 0.9334
Pred. R2 0.8086 0.8511 0.8309

Adeq.
Precision 19.43 22.77 21.88

C.V. % 3.91 6.88 13.94

Cyanidin-3-
glucoside

Cyanidin-3-
rutinoside

Pelargonidin-
3-glucoside

SS F-Value p-Value SS F-Value p-Value SS F-Value p-Value

Model 6.03 × 106 21.51 <0.0001 7.50 × 105 24.74 <0.0001 1.06 × 106 21.20 <0.0001
X1 89,142.53 4.45 0.0566 3137.70 1.45 0.2520 1.24 × 105 34.50 <0.0001
X2 1.83 × 105 9.14 0.0106 29,562.93 13.65 0.0031 136.08 0.0380 0.8487
X3 1.72 × 106 85.62 <0.0001 5654.72 2.61 0.1321 2.07 × 105 57.68 <0.0001
X4 9.16 × 105 45.70 <0.0001 14,820.72 6,84 0.0226 34,969.07 9.77 0.0088

X1 X2 2.81 × 105 14.00 0.0028 94,259.78 43.52 <0.0001 532.96 0.1489 0.7064
X1 X3 20,386.20 1.02 0.3330 12,004.45 5.54 0.0364 44,806.23 12.52 0.0041
X1 X4 5.532 × 105 27.61 0.0002 71,727.02 33.12 <0.0001 6581.42 1.84 0.2001
X2 X3 28,332.30 1.41 0.2574 3.35 × 105 154.77 <0.0001 2.04 × 105 56.97 <0.0001
X2 X4 8081.15 0.40 0.5373 30,922.98 14.28 0.0026 39620.95 11.07 0.0060
X3 X4 5.30 × 105 26.46 0.0002 1660.45 0.77 0.3985 1.00 × 105 27.93 0.0002
X1 X1 4.00 × 105 19.95 0.0008 7489.71 3.46 0.0876 1.40 × 105 39.03 <0.0001
X2 X2 571.82 0.03 0.8687 3259.60 1.50 0.2434 24,047.83 6.72 0.0236
X3 X3 17,986.51 0.90 0.3621 1.19 × 105 54.92 <0.0001 2.22 × 105 62.11 <0.0001
X4 X4 1.11 × 106 55.22 <0.0001 9929.23 4.58 0.0535 1.82 × 105 50.94 <0.0001

Residual 2,40 × 105 25,991.61 42,958.12
Lack of Fit 2.07 × 105 1.24 0.5262 23,826.04 2.20 0.3527 24,394.65 0.26 0.9409
Pure error 33,361.53 2165.57 18,563.47
Cor. total 6.273 × 106 7.76 × 105 1.11 × 106

R2 0.9617 0.9665 0.9611
Adj. R2 0.9170 0.9275 0.9158
Pred. R2 0.7983 0.8192 0.8348

Adeq.
Precision 18.20 18.69 15.20

C.V. % 15.84 12.87 16.64

Model and terms are significant at p ≤ 0.05.The previous equations are used to generate
the perturbation plots (Figure 3), which helps to compare the effect of factors in one chosen
point (A = 3.5, B = 30, C = 58, D = 25). A, C, B, and D represent molar ratio, water content,
temperature, and time, respectively. For TAC (Figure 3a), factors, the molar ratio (A),
temperature (C), and time (D) had a high extraction effect at their low and high limits and
gave a weak extraction at the center point. However, water content factor (B) gave the
lowest values in low limits, which means that the extraction efficiency of TAC was very
weak at low water content, and after that, the effect was stabilized. Time seemed to be more
effective more than other factors for long-duration treatment.

Moreover, TPC demonstrated another tendency (Figure 3b); the extraction of phenolic
compounds has a positive relationship with water content and temperature; meanwhile,
the molar ratio gives a high extraction efficiency when it approaches from the center point.
Time presented more efficiency after 25 min of extraction. Similar to TPC, TFC extraction
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efficiency had a positive relationship with increasing temperature. FRAP analysis presented
the effect of increasing water content and almost a stable effect of molar ratio and temper-
ature variation. The antiradical scavenging capacity presented by DPPH (Figure 3e) has
been affected; positively by increasing extraction temperature and negatively by increasing
water content. Varying the molar ratio was more efficient around the midpoint. Beyond the
center point, extraction time was more efficient at positive and negative extremes to give
the highest values for TFC, FRAP, and DPPH.
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Figure 3. Perturbation plots showing the effects of the fours experimental factors (A: molar ratio,
B: water content, C: temperature, D: time) on the analyzed responses ((a): TAC, (b): TPC, (c): TFC,
(d): FRAP, (e): DPPH, (f): cyanidin chloride, (g): cyanidin-3-glucoside, (h): cyanidin-3-rutinoside,
and (i): pelargonidin-3-glucoside).

However, the long extraction time affected the content of most individual antho-
cyanins (Figure 3f–i). Unexpectedly, a short extraction time gave a high content of cyanidin
chloride and cyanidin-3-glucoside, more than 750 mg/kg and 1000 mg/kg.b respectively.
Meanwhile, for the same components, the high levels of molar ratio, water content, and
temperature enhanced their extraction. For almost all factors, high levels negatively affected
the extraction of cyanidin-3-rutinoside. The high molar ratio and extraction temperature
drastically decreased the content of recovered pelargonidin-3-glucoside; in contrast, a short
extraction time also gave weak levels.
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The obtained results are consistent with a list of studies performed on the effect
of extraction conditions using deep eutectic solvents. For instance, the study of de
Almeida Pontes et al. [41] on olive leaves showed an improvement in the extraction
of phenolic compounds by increasing extraction temperature (>50 ◦C). Additionally, it
was demonstrated that variation in the amount and composition of deep eutectic sol-
vents contents influences the composition and the quantity of recovery phenolic com-
pounds. In addition, Cui et al. [42] found that the extraction yield of polyphenols was
closely related to extractions parameters (time, temperature, liquid ratio, water content).
Da Silva et al. [25] analyzed the effect of the molar ratio of choline-chloride: glycerol: citric
acid mixture on the extraction of blueberry anthocyanins. They indicated the existence of a
relationship between the anthocyanin’s extraction efficiency and the chosen molar ratio. In
the same way, Zannou et al. [21] observed that deep eutectic extraction behaves differently,
and anthocyanins were sensible to all the studied factors (molar ratio, solvent ratio, and
additional water).

2.4. Multi-Response Optimization on the Responses Using RSM

RSM was performed to identify the optimum conditions to obtain the maximum responses.
The optimum conditions were determined by applying the desirability function, where the
independent variables were kept in range, and the responses were maximized. The optimum
conditions for maximum responses were a 1:4.62 molar ratio, 23.33% water content, a temper-
ature of 74 ◦C, and 15 min extraction time. Under these optimum conditions, the predicted
values of TAC, TPC, TFC, FRAP, DPPH, cyanin chloride, cyanidin-3-glucoside, cyanidin-3-
rutinoside, and pelargonidin-3-glucoside were 4.39 mg c3gE/g, 42.65 mg GAE/g, 22.72 mg
ECE/g, 731.87 mmol ISE, 273.48 mmol TE/g, 995.74 mg/kg, 1409.78 mg/kg, 447.85 mg/kg,
and 234.38 mg/kg, respectively. Further analyses were conducted in triplicate under the same
optimum conditions to confirm the predicted data. The experimental results were found
as 4.37 ± 0.34 c3gE/g, 54.96 ± 5.23 mg GAE/g, 28.85 ± 0.85 mg ECE/g, 777.38 ± 9.64 mmol
ISE/g, 279.13± 2.96 mmol TE/g, 1085.37 ± 11.49 mg/kg, 1418.91 ± 7.71 mg/kg, 448.01 ± 5.22
mg/kg, and 299.39 ± 0.97 mg/kg for TAC, TPC, TFC, FRAP, DPPH, cyanin chloride, cyanidin-
3-glucoside, cyanidin-3-rutinoside, and pelargonidin-3-glucoside. The predicted and experi-
mental data were found to be very close, which confirmed the reliability and reproducibility
of the applied RSM process. As can be observed in Figure 4, the extract obtained in the
optimum conditions had a high antioxidant activity, with the FRAP providing the highest
value. Also. Figure 5 shows the chromatogram of individual anthocyanins obtained under
optimal conditions.
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2.5. In Vitro Bioavailability

An in vitro gastrointestinal model was applied to mimic the different steps of in vivo
physiological digestion. Anthocyanins are the type of pH-sensitive phenolic compounds
present in different chemical structures. The main chemical forms are flavylium cations in
the stomach, while the carbinol forms predominate in the intestinal environment [43]. The
bioavailability % and biostability % of the anthocyanin-enriched extract were investigated
considering cyanin chloride, cyanidin-3-glucoside, cyanidin-3-rutinoside, and pelargonidin-
3-glucoside (Figure 6). The bioavailability of the evaluated anthocyanin compounds varied
greatly in the simulated intestinal digestion (p ≤ 0.05). After the simulated intestinal
digestion, cyanin chloride exhibited the highest bioavailability (90.95 ± 1.01%), followed
by pelargonidin-3-glucoside (80.22 ± 0.65%), cyanidin-3-rutinoside (77.29 ± 0.57%), and
cyanidin-3-glucoside (71.86 ± 0.47%), respectively. These findings were found close to
the previous results of Mehran et al. [12], who determined a range of bioavailability of
70–90% for the anthocyanin extract of borage. Furthermore, Oliveira and Pintado [44]
and Koh et al. [45] reported 88% and 90% bioavailability of cyanidin-3-glucoside after
simulated intestinal digestion. Generally, anthocyanins are destroyed or biotransformed
into other substances in the intestinal environment due to the high pH. Nonetheless, the
bioavailability found in the present study was high and ranged from 70 to 90%, suggesting
that CHGLY exerted a protective effect on borage anthocyanins. Anthocyanin compounds
were less degraded due to the strong hydrogen bunding formed between CHGLY and
anthocyanins. Similar to our findings, Da Silva et al. [46] found that the intestinal bioac-
cessibility of phenolic compounds was remarkably increased in the extract obtained from
NADES (choline chloride:glycerol:citric acid; 0.5:2:0.5 molar ratio) compared to the ex-
tract obtained from conventional organic solvent (methanol:water:formic acid; 50:48.5:1.5;
v/v/v), being about 35-fold higher for anthocyanins and 5-fold higher for non-anthocyanin
phenolic compounds. Furthermore, Huang et al. [47] concluded that NADES is not only
a sustainable ionic liquid with higher extraction efficiency but also an enhancer of oral
bioavailability of specific natural products. The biotransformation of anthocyanins dur-
ing the gastrointestinal tract changes greatly during the phase II metabolism processes
and enzymatic and microbiota catabolism [43,48]. Di Lorenzo et al. [43] determined that
the food matrix or technological/processing conditions, enzymatic patterns, and micro-
biota composition are the main factors affecting the bioavailability of anthocyanins in
the gastrointestinal environment. As shown in Figure 6, the stability of the evaluated
anthocyanins was found to be different in the intestinal environment. Although cyanidin-
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3-glucoside exhibited a low bioavailability compared to other anthocyanins, it presented
the highest stability (99.11 ± 1.66%) in the intestinal environment. Cyanidin-3-glucoside
was followed by cyanin chloride (96.37 ± 1.66%), pelargonidin-3-glucoside (93.39 ± 0.93%),
and cyanidin-3-rutinoside (93.13 ± 1.96%).
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3.2. Chemical and Reagents

Folin–Ciocalteu’s reagent, 2,2-diphenyl-1-picrylhydrazyl (DPPH), methanol (HPLC
grade), ethanol (HPLC grade), acetonitrile (HPLC grade), sodium carbonate, sodium ac-
etate, sodium nitrite, sodium hydroxide, hydrochloric acid (37%), choline chloride (≥98%),
and standards were purchased from Sigma-Aldrich Chemical Co. (St. Louis, MO). Gallic
acid, glacial acetic acid (≥99.5%), and iron sulfate were purchased from Carlo Erba. Alu-
minum chloride and iron chloride were acquired from Merck, while glycerol (≥99.5%) was
acquired from Tekkim.

3.3. Preparation of NADES

NADES was prepared according to Chanioti and Tzia [29]. HBA (Choline chloride)
and HBD (glycerol) were combined at 1:2 molar ratio, followed by the addition of 20%
of distilled water. Afterward, the mixture was heated for 2 h 30 min at 80 ◦C to obtain a
homogenized liquid, briefly abbreviated CHGLY.

3.4. Physico-Chemical Characteristics of NADES

Viscosity of CHGLY was determined at 30 ◦C using a Rheometer (Buchi, CH-9230 Flawil,
Switzerland) fitted with a parallel geometry with 20 mm of diameter and gap 1 mm [22]. pH
was measured using a pH-meter (Model Starter 3100, OHAUS, Parsippany, NJ, USA). FTIR
analysis of NADESs and extracts was carried out at the wavenumbers of 4000 and 400 cm−1 us-
ing an FTIR Spectrometer (Perkin Elmer, Spectrum-Two, Watham, MA, USA, PEService 35) [21].
Electrical conductivity properties were measured using an electrochemical analyzer (Consort,
c6010, Turnhout, Belgium). The measurements were performed at 25 ◦C, and the values were
recorded as µS.cm−1.

3.5. Extraction of Anthocyanins

The extraction was carried out using a water bath. Distilled water, methanol, and
ethanol (conventional solvents), and CHGLY (NADES), were used as solvents. A total of
0.3 g was mixed with 10 mL of solvents, and the mixture was ultrasonicated at 25 ◦C for
20 min. The samples were then filtered through Whatman filter paper No.1 thrice.

3.6. Total Phenolic Content (TPC)

TPC was evaluated by Folin–Ciocalteu method adopted from Nguyen et al. [49] with
some modifications. Briefly, 150 µL of samples were mixed with 750 µL of 10% Folin–
Ciocalteu reagent (5 min) and 600 µL of 7.5% Na2CO3. The mixture was kept in dark for 2 h,
and the absorbance was read at 760 nm. TPC was expressed as mg gallic acid equivalent
per g (mg GAE/g).

3.7. Total Flavonoid Content (TFC)

TFC was determined by adopting the procedure mentioned in Kim et al. [50]. The
absorbance was read at 510 nm. The results were given as mg epicatechin equivalent per g
(mg ECE/g).

3.8. Total Anthocyanin Content (TAC)

TAC was determined with the pH differential method reported in Lee et al. [51]. The
absorbances of the samples containing pH 1 and pH 4.5 were read at 510 and 700 nm. TAC
was expressed as mg cyanidin-3-glucoside equivalent per 100 g (mg CGE/100 g).

3.9. Determination of Antioxidant Activity
3.9.1. DPPH Radical Scavenging Activity Assay (DPPH)

DPPH assay was conducted following the method of Pashazadeh et al. [52]. The
absorbance was read against a control. The values of DPPH radical scavenging were
determined with a calibration curve as mmol Trolox equivalent per g (mmol TE/g).
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3.9.2. Ferric-Reducing Antioxidant Power Assay (FRAP)

FRAP assay was conducted following the method of Özdemir et al. [53]. The value
of FRAP was obtained from a standard curve of FeSO4. The results were given as mmol
FeSO4 equivalents per g (mmol ISE/g).

3.10. Determination of Individual Anthocyanins

The individual anthocyanins were identified using the previous method of Bosiljkov
et al. [54] with modifications. The anthocyanins were determined using a high-pressure
liquid chromatography (HPLC) system (Agilent 1260; Agilent Technologies) with a diode
array detector (DAD) at 520 nm wavelength. The anthocyanins were separated in an Inertsil
ODS-4 column (3 µm, 4.6 × 50 mm; GL Sciences Kat No: 5020-0404) at a 1 mL.min−1 flow
rate. The mobile phases were: (A) 94% 2 mM sodium acetate and 6% acetic acid (v/v);
and (B) acetonitrile. The following elution gradient was used, according to solvent B:
0–20 min, 14–23%; 20–40 min, 23–35%; 40–50 min, 40%; 50–60 min, 60%; 60–65 min 95%.
The column temperature was set at 30 ◦C. The individual anthocyanins were identified by
comparing their retention times with their respective standard. The identified anthocyanins
were quantified using a mixture of external standards (cyanidin-3-glucoside, cyanidin-
3-rutinoside, cyanidin chloride, and pelargonidin-3-glucoside), which were prepared at
different concentrations.

3.11. Optimization with Response Surface Method (RSM)

The optimization parameters were examined systematically using response surface
methodology based on the three-level central composite design (Design Expert software
13.0). The experimental design included four independent variables of X1 (CHGLY, molar
ratio), X2 (water content, %), X3 (temperature, ◦C), and X4 (extraction time, min). The actual
and coded values of the independent variables are shown in Table 4. The combination
of parameters, such as molar ratio of CHGLY (1:0.5, 2, 3.5, 5, and 6.5), water content (10,
20, 30, 40, and 50%), temperature (25, 40, 60, 75, and 90 ◦C), and extraction time (5, 15,
25, 35, and 45 min), were chosen as independent variables. From these variables, RSM
generated 27 experimental points, including three replicates at the central point. TPC, TFC,
TAC, DPPH radical scavenging activity, FRAP, and individual anthocyanin compounds
were chosen as the responses (Y). The experimental points, together with responses, are
given in Table 2. The analyses were performed in triplicate, and the results were given as
means ± standard deviation. The experimental data were fitted to the following quadratic
polynomial model:

Y = β0 +
k

∑
i=1

βiXi +
k

∑
i=1

βiiXii +
k−1

∑
i=1

k

∑
i=i+1

βijXiXj + ź (10)

where Y is the response; X is the independent variable; β0 is the model intercept coefficient;
βi, βii, βij are interaction coefficients; k is the number of independent factors; and ź is the
experimental error. The relationship between independent variables and responses was
examined using analysis of variance (ANOVA) test in the Design Expert program.

Table 4. Actual and coded values of independent variables.

Coded Values
Actual Values

X1 X2 X3 X4

−1.41 0.5 10 25 5
−1 2 20 40 15
0 3.5 30 60 25

+1 5 40 75 35
+1.41 6.5 50 90 45

X1 (Molar ratio); (water content, %); X2 (molar ratio) and X3 (temperature, ◦C); X4 (extraction time, min).
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3.12. In Vitro Bioavailability

The in vitro bioaccessibility of anthocyanins was determined to be the fraction of
anthocyanins that was solubilized within the mixed micelles and which became accessible
for intestinal adsorption [55]. Following in vitro digestion, an aliquot of raw digesta was
collected after the simulated small intestine digestion and centrifuged at 5000× g for
15 min at 4 ◦C. A supernatant (micelle fraction) was collected from the centrifuged digesta
in which the anthocyanins were solubilized. A portion (3 mL) of the micelle fraction was
vortexed after adding 3 mL of methanol and centrifuged at 5000× g for 15 min at 25 ◦C. The
supernatant was then carefully collected and used for the determination of anthocyanins
using HPLC-DAD. The bioaccessibility and stability of anthocyanins were then determined
using the following equations:

Bioaccessibility (%) = (CMicelle/CDigesta) × 100 (11)

Stability (%) = (CDigesta/CInitial) × 100 (12)

where CInitial, CMicelle, and CDigesta are the concentration of the individual anthocyanins initially,
in the micelle phase, and the overall digesta at the end of the in vitro digestion, respectively.

3.13. Statistical Analyses

All results were expressed as the mean of three replicates ± standard deviation.
Statistical analyses were performed using a one-way analysis of variance ANOVA, and the
significance of the difference between means was evaluated by Turkey’s test. Statistical
significance was determined at p < 0.05. Design Expert software (version 13.0, Stat-Ease Inc.,
Minneapolis, MN, USA) was used for the RSM and experimental data analysis. ANOVA
was used to determine the statistical relationship between factors. The adequacy of the
models was determined by R2, adjusted R2, predicted R2, coefficient of variation (CV),
adequate precision, p-value, and the value of Fisher’s test (F-value). The significance of the
models and regression coefficients were measured at p < 0.05. The behaviors of variables
and responses were checked by the perturbation graphics. The optimum conditions were
determined by applying the desirability function.

4. Conclusions

In the present study, the extraction efficiency of borage anthocyanins was investigated
using green choline chloride and glycerol-based NADES (CHGLY). The results revealed
that the CHGLY was a promising and efficient medium for the recovery of borage antho-
cyanins. The use of CHGLY, water, methanol, and ethanol for the extraction of antioxidants
from borage displayed the following ranges, 0.07–2.61 mg c3gE/g, 10.08–27.76 mg GAE/g,
2.34–10.29 mg ECE/g, 48.35–146.92 mmol TE/g, and 444.73–939.85 mmol ISE/g for TAC, TPC,
TFC, DPPH, and FRAP, respectively. Four individual anthocyanins, cyanidin-3-glucoside,
cyanin chloride, cyanidin-3-rutinoside, and pelargonidin-3-glucoside, were identified from
borage extracts. The results revealed that that CHGLY performed better than traditional
solvents and provided the highest amounts of total anthocyanin content (TAC), total phenolic
content (TPC), total flavonoid content (TFC), and individual anthocyanins and antioxidant
activity (DPPH and FRAP assays). The highest bioavailability was found with cyanin chloride
(90.95 ± 1.01%), followed by pelargonidin-3-glucoside (80.22 ± 0.65%), cyanidin-3-rutinoside
(77.29 ± 0.57%), and cyanidin-3-glucoside (71.86 ± 0.47%), respectively. The greatest biosta-
bility was found with cyanidin-3-glucoside, followed by cyanin chloride (96.37 ± 1.66%),
pelargonidin-3-glucoside (93.39 ± 0.93%), and cyanidin-3-rutinoside (93.13 ± 1.96%). These
findings suggest that CHGLY is a promising eco-friendly solvent that could be used as a sus-
tainable, highly efficient, and green method for the extraction of bioactive plant compounds.
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