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1 Chemometric analysis 

1.1 Chemometric analysis – general procedures. 

All absorbance values were expressed as molar extinction coefficients. Values were organised 

in matrix W containing n rows (wavelengths) and m columns (spectra obtained in different 

pH conditions). Firstly, data was centred according to the equation provided below (S1) 

and the resulting spectra are presented in Figures S1 and S2: 

Wij =  Sij −  μj ( S1 ) 

Wij – centered molar extinction coefficient of i-wavelength and j-spectra, 

Sij – molar extinction coefficient of i-wavelength and j-spectra, 

µj – the mean value of the molar extinction coefficient of the j–spectra. 

Figure S1. Spectra for analysis of C-2045 protonation forms. Initial spectra (left), centered 

spectra (right). 



Figure S2. Initial spectra for aggregation study of C-2045 (left), centered spectra (right). 

1.1.1.  Singular value decomposition of the matrix. 

The next step was principal component analysis of the W matrix. W matrix was converted into 

a covariance matrix (S1) and decomposed. 

𝑐𝑜𝑣(𝑥, 𝑦) =
1

𝑛−1
∑ (𝑥𝑖 − 𝑥̅)(𝑦𝑖 − 𝑦̅)𝑛

𝑖=1 ( S2 ) 

x,y – variables, 

n – number of wavelengths. 

Covariance matrix W was decomposed into singular values (according to the SVD algorithm), 

which allowed to determine eigenvalues and eigenvectors (U). 

Contributions of principal components were calculated using the matrix equation provided 

below (S3). 

𝑈 = [𝑉𝑇𝑉]−1𝑉𝑇𝑊 ( S3 ) 

Conversely, the coordinates of the observations on the principal components are calculated 

by: 

𝑉 = 𝑊𝑈[𝑈𝑈𝑇]−1 ( S4 ) 

V – coordinates of the observations on the principal components, 

W – centered spectrum, 

U – contributions of principal components. 



Matrices U and V were used to calculate components of the spectra (Figures S3 and S4). If a 

spectra matrix component is denoted by C, then it can be calculated as: 

𝐶 = 𝑉𝑈𝑇 ( S5 ) 

Figure S3. Spectra of C-2045 components (pKa determination). 

Figure S4. Spectra of C-2045 components (aggregation study). 

Reconstructed spectra (D) were determined based on C, and residual spectra (R) were then 

calculated by: 

𝑅 = 𝑊 − 𝐷 ( S6 ) 



The spectra are placed in a vector space, which is spanned by the principal components. 

These vectors are placed into a hyperplane with the number of dimensions equal to the number 

of pure spectral forms. This means that the first step in further analysis should be determining 

the number of spectral forms. This can be achieved by analysing the eigenvalues and spectra 

of the components. It is assumed that the rank of residual spectra at which the systematic 

changes of these spectra disappear defines the number of significant principal components 

(spectral forms). Subsequently, the points corresponding to the pure spectral forms need to be 

identified over the principal component space.  

1.1.2. Calculation of the molar fractions and individual spectrum matrix. 

Calculation of the X matrix allows to solve equation (S7) which results in B matrix. 

𝑊 = 𝐵𝑋 ( S7 ) 

W – initial data matrix, 

B – individual spectra matrix, 

X – estimation of the molar fraction matrix. 

Values of the U matrix were optimised using the penalty function. Optimised values obtain a 

penalty for violation of the constrains. This means that it is required to add a value until a 

minimum of the optimised function (FC) is achieved. 

𝑝𝑒𝑛𝑎𝑙𝑡𝑦 = ∑ ∑ 𝑥𝑖𝑗
2 ( S8 ) 

𝑟𝑒𝑤𝑎𝑟𝑑 =  ∑ 𝑣𝑎𝑟(𝑥𝑖𝑗)𝑖 ( S9 ) 

𝐹𝐶 = 𝑝𝑒𝑛𝑎𝑙𝑡𝑦 − 𝑟𝑒𝑤𝑎𝑟𝑑 ( S10 ) 

Based on the selected number of significant eigenvectors, n, principal component analysis was 

performed once again to extract the (n-1)-dimensional hyperplane from the n-dimensional 

space. Points from the X matrix were placed into a four-dimensional tetrahedron analogue. 

Corners of the given entities were found manually and then optimised using the simplex 

method. Molar fractions were obtained based on contributions of the principal components 

and were calculated using coefficients of the plane Equations (S11) – (S12). Appropriate 

planes were determined using the linear regression method. 

∑ 𝑑𝑖 = ℎ 𝑖  𝑖 ∈ {𝑅} (S11)

𝑢𝑖 =
𝑑𝑖

ℎ
( S12 ) 



h – height of a five-dimensional simplex, 

di – distance from ui to the opposite plane of the simplex, 

ui – molar fractions. 

An example of a four-dimensional simplex is shown in Fig. S5. In this case, the quaternary plot 

for C-2041 is shown because it is not possible to accurately represent a projection of a higher 

dimensional simplex on the plane. 

Figure S5. Quaternary plot for C-2041 in orthogonal projection (left) and perspective projection 

(right). 

Dissociation constants (pKa) were determined based on the molar fractions using an 

extended version of the Henderson-Hasselbalch Equations (S13 – S15). 

1.1.3. Fitting to the theoretical model. 

a) pKa determination

Based on previously determined pKa values, theoretical molar fractions were calculated and 

compared to those experimentally determined.  

𝛾 =
∏ 𝐾𝑖

4
𝑖=1

∏ 𝐻𝑖4
𝑖=1

( S13 ) 



𝑢1 =
1

1+𝛾
( S14 ) 

𝑢𝑛 = 𝑢1 ∙ 𝛾  𝑛 = {1,4} ( S15 ) 

K – Dissociation constant, 

un – Molar fractions. 

In the next step, pKa values were optimised using the simplex optimisation algorithm and then 

were validated using leave-one-out cross-validation. 

All numerical optimisations were performed using the Nelder-Mead algorithm, which is based 

on comparing the objective functions in the m+1 corners of the simplex and moving it towards 

the extremum. A simplex is an n-dimensional object, which is the smallest convex set 

containing points p0, p1,…, pn, which are the corners of the simplex. 

The maximum number of iterations was 10 000. 

b) Self-association study

Based on determined molar fractions, theoretical molar fractions were calculated using an 

appropriate aggregation model (dimerization or unlimited aggregation) and fitted to those 

experimentally determined. All calculations were performed in the R environment (version 

4.0.2). 



2 NMR assignments for UAs 

Figure S6. The general structure of UAs with proton codenames, used in NMR assignments. 

Table S1. Chemical shifts (δ) of resonance signals for non-exchangeable protons in UAs, 

recorded at pH = 4.5, 25°C in D2O. Multiplet codenames: s – singlet, d – doublet, t – triplet, m 

– unresolved multiplet. All chemical shifts were referenced to residual water signal at δ = 4.780

ppm. Protons were referenced as shown in Figure S6. 

 1H chemical shift [ppm] (observed multiplet) 

Proton (amount) C-2028 C-2041 C-2045 C-2053

H1 (1H) 8.093 (s) 8.267 (s) 8.096 (s) 8.069 (s) 

H3 (1H) 7.139 (d) 7.435 (d) 7.364 (d) 7.159 (d) 

H4 (1H) 6.473 (d) 6.365 (d) 6.543 (d) 6.450 (d) 

H7 (1H) 7.299 (d) 7.523 (d) 6.181 (s) 7.211 (d) 

H8 (1H) 7.194 (t) 7.128 (t) - 7.141 (t) 

H9 (1H) 7.669 (t) 7.517 (t) 6.921 (d) 7.654 (t) 

H10 (1H) 7.457 (d) 7.375 (d) 7.174 (d) 7.414 (d) 

H15 (2H) 3.487 (m) 3.291 (m) 3.479 (m) 3.472 (m) 

H16 (2H) 2.132 (m) 2.119 (m) 2.173 (m) 2.118 (m) 

H17 (2H) 3.308 (m) 3.355 (m) 3.241 (m) 3.291 (m) 

H2’ (1H) 7.674 (d) 7.605 (d) - - 

Me2’ (3H) - - 2.488 (s) 2.566 (s) 

H3’ (1H) 7.768 (t) 7.655 (t) 7.596 (d) 7.596 (d) 

H4’ (1H) 7.872 (d) 7.789 (d) 7.845 (d) 7.772 (d) 

H7’ (1H) 7.206 (d) 7.798 (d) 7.011 (d) 7.616 (d) 

H8’ (1H) 7.020 (t) 7.301 (t) 7.494 (t) 7.563 (t) 

H9’ (1H) 7.583 (t) 7.704 (t) 7.585 (t) 7.053 (t) 

H10’ (1H) 7.345 (d) 7.407 (d) 6.915 (d) 7.159 (d) 

H15’ (2H) 3.566 (m) 3.598 (m) 3.504 (m) 3.551 (m) 

H16’ (2H) 2.199 (m) 2.060 (m) 1.934 (m) 2.187 (m) 

H17’ (2H) 3.482 (m) 2.952 (m) 3.238 (m) 3.472 (m) 

NMe (3H) 3.033 (s) - 2.999 (s) 3.024 (s) 

Lin1 (4H) - 3.501 (m) - - 

Lin2 (4H) - 3.294 (m) - - 



3 Selected regions of 2D NMR spectra for UAs 

DQF-COSY, TOCSY and ROESY experiments were conducted for resonance assignment to 

respective protons. We present selected regions spectra below as an example. 

Figure S7. Aromatic region of the DQF-COSY spectrum for C-2041. 



Figure S8. Fragment of the ROESY spectrum for C-2041, depicting dipolar couplings between 

the aromatic protons and the linker sidechain. 



Figure S9. Aromatic region of the TOCSY spectrum for C-2045. 



Figure S10. Fragment of the ROESY spectrum for C-2045, depicting dipolar couplings 

between the aromatic protons and the aminoalkyl linker. Also, diagnostic Me2’-H3’ ROE could 

be observed. 




