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Abstract: A new highly water-soluble 1,8-naphthalimide fluorophore designed on the “fluorophore-
spacer-receptor1-receptor2” model has been synthesized. Due to the unusually high solubility in
water, the novel compound proved to be a selective PET-based probe for the determination of pHs
in aqueous solutions and rapid detection of water content in organic solvents. Based on the pH
dependence of the probe and its high water solubility, the INH logic gate was achieved using NaOH
and water as chemical inputs, where NaOH is the disabler and the water is an enabler. In addition,
the probe showed effective fluorescence “off-on” reversibility on glass support after exposure to acid
and base vapors, which defines it as a promising platform for rapid detection of acid/base vapors in
the solid-state, thus extending the molecular sensing concept from solution to the solid support.

Keywords: 1,8-naphthalimide fluorescent probe; solid state emission; photoinduced electron transfer
(PET); INH logic gate; acid-base vapors; water content

1. Introduction

In the past years, the development of fluorescent sensors and fluorescent sensing
materials has been a topic of research in chemistry [1–5]. The fluorescence signaling
output attracts due to several advantages such as cheap equipment with high sensitivity,
immediate response, harmless and non-invasiveness suitable for real-time bioimaging and
diagnostic medicine [6–11]. Consequently, major attention has been focused on the design
and synthesis of fluorescent probes for a variety of analytes [12–15]. The used approaches
were based on intramolecular charge transfer (ICT), photoinduced electron transfer (PET),
twisted intramolecular charge transfer (TICT), fluorescence resonance energy transfer
(FRET), excited-state intramolecular proton transfer (ESIPT), and aggregation-induced
emission [16–24]. Notably, the PET using the “fluorophore-spacer-receptor” format was
recognized as the most popular platform for the design of fluorescence chemosensing
probes [25–28]. This model was distinguished by simple construction and easier and
predictable communication between the receptor (recognition part) and the fluorophore
(signaling part). As a result, the PET process was recently tested extensively in the most
common fluorophores and a large number of PET-based probes were reported. In addition,
the PET process and the “fluorophore-spacer-receptor” format were involved even in the more
complicated molecular logic devices for multicomponent analysis [29–32]. However, the
synthesis of PET chemosensing probes with improved properties and better applicability is
still a major task.

Generally, the organic fluorescent probes are well soluble in organic solvents and
practically are insoluble in water. At the same time, the chemical analysis in the solution is
mostly performed in water. Additionally, water-soluble probes were preferred for real-time
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monitoring of living objects due to their lower toxicity and higher biocompatibility. That is
why in the last years, more and more attention has been paid to the design and synthesis of
fluorescent probes with higher water solubility [33–37].

Herein we are reporting on a highly water-soluble probe based on 1,8-naphthalimide
fluorophore (Scheme 1). This work is an extension of our previous report, where two
amidoamine containing 1,8-naphthalimides with water solubility in a concentration of
10−5 mol/L was described [38]. In contrast, the novel compound showed higher water sol-
ubility resulting in stable water solutions even at concentrations 10−2 mol/L. Furthermore,
due to the unusual solubility in water, the synthesized 1,8-naphthalimide was successfully
applied as a PET sensing probe for the detection of water content in organic solvents.
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The rapid detection of water in organic solvents is very important in large areas such
as industrial production, food processing, and biomedical and environmental monitor-
ing [39–42]. Nevertheless, the PET probes for water content are unusual and rare [43–45].
Hence, the synthesis of PET fluorescent probes for water content currently could be of great
interest. In addition, the novel compound showed PET fluorescence sensing properties in a
solid-state toward acid/base vapors. Extending the molecular sensing concept from solu-
tion to solid support currently is a major task, which opens possibilities in new directions
and practical applications [46–48]. However, only a few PET sensing compounds were
reported as solid-state emissive probes [49,50]. That is why we believe that the present
work should be of theoretical and practical significance in PET chemosensing studies for
the development of novel, simple, and low-cost PET-based sensors for rapid detection of
pH, acid/base vapors, and water content in organic solvents.

2. Results and Discussion
2.1. Design and Synthesis

The novel probe 4 was designed on a classic “fluorophore-spacer-receptor” model, as the
methylpiperazine unit containing two electron-rich amino groups is the receptor and the
1,8-naphthalimide unit is the fluorophore. The introduction of amines in the N-position
of the 1,8-naphthaimides significantly increases their hydrophilicity [51–53]. That is why
to obtain a water-soluble compound, the piperazine receptor in compound 4 was bound
to the N-position of the fluorophore. We chose an unsubstituted 1,8-naphthaimide unit
instead of the commonly used 4-amino or 4-oxy substituted one due to the push-pull ICT
nature of the 1,8-naphthaimide derivatives. It is well known that in the 1,8-naphthaimide
exited state occurs charge transfer from the C-4 electron-donating position to the carbonyl
electron-accepting groups that generate an electron-rich field around the imide [54,55].
The strong repulsive character of the resulted field seriously restricts the PET process
from N-position to the fluorophore in the electron-rich architecture such as 4-amino-1,8-
naphthalimides [56–58]. This effect was reduced in the unsubstituted electron poorer
derivatives that generated a weaker repulsive field around the imide cycle of the fluo-
rophore [59].

The synthesis of the PET-based 1,8-naphthalimide probe 4 is illustrated in Scheme 2.
It was performed in three steps using 1,8-naphthalic anhydride as a starting material. In
the first step, equimolar amounts of hydrazine monohydrate and 1,8-naphthalic anhydride
were condensed in a methanol solution. Then the so-prepared N-amino-1,8-naphthalimide
2 was reacted with chloroacetyl chloride at 70 ◦C in dioxane for 3 h to afford intermediate
3. In the last step, the desired compound 4 was obtained after a nucleophilic substitution
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of the chlorine in the intermediate 3 with a methylpiperazine moiety. The reaction was
performed in boiling DMF for 2.5 h.
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Scheme 2. Synthesis of probe 4.

2.2. Chemosensing Properties in Aqueous Solution
2.2.1. pH Sensing Properties

The synthesized probe 4 showed unusually high water solubility for the 1,8-naphthalimide
derivatives. It was found that clear and stable probe solutions are formed even at a concen-
tration of 5 × 10−2 mol/L. This encouraged us to investigate the photophysical behavior
of the probe in a pure water solution. Due to the ICT nature of the 1,8-naphthalimide
unit, compound 4 showed absorption long-wavelength band from 290 nm to 380 nm with
maximal intensity at 344 nm (Figure 1) and fluorescence signaling output in the range
between 350 nm and 480 nm with a maximum at 397 nm (Figure 2) [38,53]. The observed
absorption spectra were pH-independent, which is illustrated in Figure 1, where the ab-
sorption spectra of probe 4 at pH 3, pH 7, and pH 11 are depicted as an example. In contrast
to the absorption spectra, high pH-dependent fluorescence intensity was observed in the
corresponding fluorescent spectra. This behavior was expected and attributed to the PET
phenomenon, which occurs only in the excited state and does not affect the fluorophore
ground state, respectively, its absorption spectra.
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Figure 1. Absorption spectra of probe 4 in aqueous solution at different pHs.

Because of the PET process from the electron-rich piperazine amines to the excited state
of the 1,8-naphthalimide unit, the fluorescence emission of compound 4 was completely
quenched in an alkaline media. Upon protonation of the piperazine amines in an acid
media, the fluorescence quenching PET was impossible, and compound 4 showed bright
fluorescence. Owing to the stepwise protonation of both piperazine amines, the observed
pH titration plot of probe 4 consisted of two S-shaped curves (Inset of Figure 2).
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(λex = 340 nm). Inset: pH titration plot of the probe 4 fluorescence intensity at 397 nm.

According to the titration plot in Figure 2, the first piperazine amine protonation
occurred in a pH window of 12–7.7, that logically could be attributed to the quaternization
of the methylamino group possessing electron-donating methyl fragment (Scheme 3).
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From the obtained curve, a pKa value of 9.09 for the first protonation of probe 4 was
calculated using Hendersen–Hasselbalch Equation (1) [60]. This value is consistent with
the reported tertiary alkylamine pKa values.

pH = pKa + log (Imax−I)
(I−Imin)

(1)

where Imax and Imin are the maximum and minimum fluorescence intensity, respectively,
and I is the fluorescence intensity at the corresponding pH value.

Furthermore, Figure 2 reveals a second quaternization process in the piperazine moiety
of probe 4 occurring in a pH window of 7.7–3, which analysis according to Equation (1)
gives pKa = 7.33. This pKa value is slightly lower than the usual values for tertiary
alkylamines and could be attributed to the protonation of the methylene-bound amine
in 4. The methylene amine in 4 is connected with the electron-withdrawing amide that
decreased the electron density around neighboring groups and increased their acidity.

The influence of the most common cations and anions on the fluorescence output
of the novel probe 4, such as Co2+, Cu2+, Fe3+, Ni2+, Pb2+, Cd2+, Zn2+, Hg2+, Cl−, NO3

−,
SO4

2−, HSO4
−, CO3

2−, CH3COO−, Br−, NO2
−, SO3

2−, PO4
3−, and F− were also tested as

potential analytes. The study was performed at pH 4.5, pH 7.3, pH 8, and pH 10. However,
in all cases, the tested ions (10−4 mol/L) caused only a minor quenching of the probe’s
fluorescence intensity. This observation shows that the examined compound 4 could be
used as a selective probe for the determination of pHs in aqueous solutions.
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2.2.2. Detection of Water Content in Organic Solvents

The pKa values of the tertiary alkyl amines are usually about pKa ≈ 9 [61–63]. At the
same time, under normal conditions, the water pHs are in a range of pH 6~pH 8, which
allows protonation of the classical PET alkylamino receptors. This statement makes the
PET sensors a promising platform for the design of fluorescent probes for the detection of
water content in organic solvents. However, most PET probes are water-insoluble, which
results in a mixed signaling output—fluorescent enhancement due to the prevention of
the PET process and fluorescent quenching due to the aggregation caused by quenching.
That is why the reports of PET probes for the detection of water content in organic solvents
are very rare and unusual. The recent research progress in PET sensors is limited to a few
number of probes for the detection of water content in organic solvents using amino acids
as a receptor fragment [64–66].

Similarly, the synthesized compound 4 is highly water-soluble and possesses a PET
receptor containing both an amino group and an acid fragment (acid amide). This encour-
aged us to investigate the ability of probe 4 to detect water content in organic solvents.
For this purpose, the fluorescent spectra of 4 were recorded in dry ethanol and mixtures
of ethanol/water (Figure 3A). As can be seen from Figure 3, the fluorescent intensity of
probe 4 increased gradually with the increase in water content in the solutions under study.
This is due to both the changes in pH and the microenvironment around the fluorophore.
Since the main effect is pH, which is well defined only in pure water, the solution pH value
is strongly dependent on the water content in the organic solvent. From the fluorescent
changes at 390 nm, a calibration plot was constructed, which showed a linear range from
4% to 40% of water content (Figure 3B). Based on the linear calibration plot, the limit of
detection LOD = 3% was calculated using the equation LOD = 3 σ/b, where b is the slope
and σ is the standard deviation of 10 measurements in the dry solvent [67].
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2.2.3. Molecular Logic

To confirm our statement that the observed fluorescence enhancement of probe 4 in
the presence of water was due to a blocked PET process after protonation of the tertiary
alkyl amines in the probes PET receptor fragment, the fluorescence spectra of probe 4 were
investigated in mixtures of ethanol and water containing 10−6 mol/L NaOH or NH3. As
we expected, a fluorescent enhancement was not observed due to the lowered acidity of the
water, which is not able to prevent the PET process in probe 4 under these conditions. Based
on this behavior of compound 4, an INH molecular logic gate was constructed (Figure 4).
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ethanol, with Water (50% content) and Base (C = 10−6 mol/L) as chemical inputs.

As chemical inputs in this logic gate, NaOH (10−6 mol/L) and water (50% content) in
an ethanol solution containing 10−5 mol/L of probe 4 were used. The obtained signaling
output of the achieved logic gate was depicted in Figure 4. As can be seen, higher emission
of 4, coded in binary as 1, is observed only in the presence of water as an input, while the
presence of NaOH blocks the effect of water and the system shows low fluorescence, coded
in binary as 0, in all other input combinations. This behavior mimics very well the INH
logic gate, where the water is the enabler and NaOH is the disabler [68–70].

2.2.4. Detection of Acid/Base Vapors in Solid State

In our recent research, we have found that thin films of some classical PET-based
1,8-naphthalimides could be used effectively for the detection of acid or basic vapors due
to the switching between PET process and solid-state emission in the signaling fluorophore
after exposure of acid/base vapors [49]. This was the reason for preparing a thin film of
compound 4 on a glass support after spraying of ethanol solution of 4 onto a glass plate
and evaporation of the solvent in air. The resulted film was exposed for 2 s to HCl and then
to NH3 vapors. The glass samples were photographed (Figure 5) and their fluorescence
spectra were recorded after each exposure (Figure 6A).
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Before exposure, the fluorescence emission of the examined film showed low fluores-
cence due to the possible PET quenching process in probe 4. After the exposure to HCl
vapors, the PET process was disallowed and the fluorescence was amplified, which was
visible even by a naked eye (Figure 5). Furthermore, the high fluorescence output of 4 was
“turned off ” again after exposure to NH3 vapor for 2 s (Figure 6A) due to the deprotonation
of the fluorescent quaternary ammonium salt of compound 4.

The observed fluorescence enhancement (FE) was calculated to be FE = 10. Also, it
was found that the studied thin film of probe 4 could be transferred between “off ” and “on”
states reversibly at least seven times without changes in the fluorescence intensity in both
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“off ” and “on” states (Figure 6B). These results clearly showed that compound 4 could be
used as an efficient platform for rapid detection of acid/base vapors in the solid-state.
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3. Materials and Methods
3.1. Materials

The starting commercial reagents 1,8-naphthalic anhydride (Sigma-Aldrich Prod-
uct No.: N1607; CAS No.: 81-84-5; EC No.: 201-380-2, Sigma-Aldrich Co., St. Louis,
MO, USA), hydrazine monohydrate 99 + % (Fisher Scientific Product No.: AA1665136;
CAS No.: 7803-57-8, Fisher Scientific, Waltham, MA, USA), 1-methylpiperazine 99%
(Sigma-Aldrich Product No.: 130001; CAS No.: 109-01-3; EC No.: 203-639-5, Sigma-Aldrich
Co., St. Louis, MO, USA) and chloroacetyl chloride 98% (Sigma-Aldrich Product No.:
104493; CAS No.: 79-04-9; EC No.: 201-171-6, Sigma-Aldrich Co., St. Louis, MO, USA) were
used without purification. The intermediate compounds N-amino-1,8-naphthalimide 2 and
N-Chloroacetamide-1,8-naphthalimide 3 were synthesized as we described before [38]. The
Sigma-Aldrich salts at p.a. grade Hg(NO3)2.H2O (CAS No.: 7783-34-8), Cu(NO3)2.H2O
(CAS No.: 10031-43-3), Zn(NO3)2.6H2O (CAS No.: 10196-18-6), Ni(NO3)2.6H2O (CAS No.:
13478-00-7), Co(NO3)2.6H2O (CAS No.: 10026-22-9), Cd(NO3)2.4H2O (CAS No.: 13477-
34-4), Fe(NO3)3. 9H2O (CAS No.: 7782-61-8) and Pb(NO3)2 (CAS No.: 10099-74-8) were
used as a source of metal cations. The Sigma-Aldrich salts at p.a. grade KCl (CAS No.:
7447-40-7), NaNO3 (CAS No.: 7631-99-4), Na2SO4 (CAS No.: 7757-82-6), NaHSO4 (CAS
No.: 7681-38-1), Na2CO3 (CAS No.: 497-19-8), CH3COONa (CAS No.: 127-09-3), KBr (CAS
No.: 7758-02-3), NaNO2 (CAS No.: 7632-00-0), Na2SO3 (CAS No.: 7757-83-7), K3PO4.H2O
(CAS No.: 27176-10-9) and NaF (CAS No.: 7681-49-4) were used as a source of anions.

3.2. Methods

FT-IR spectra were recorded on a Thermo Scientific Nicolet iS20 FTIR spectrometer
(Thermo Fisher Scientific, Waltham, MA, USA). The 1H NMR analysis was performed
on a Bruker AV-600 spectrometer with an operating frequency of 600 MHz. Electrospray
ionization mass spectra (ESI-MS) were obtained on a BRUKER micrOTOF-Q system. The
TLC monitoring was performed on silica gel, ALUGRAM®SIL G/UV254, 40 × 80 mm,
0.2 mm silica gel 60. A Hewlett Packard 8452A spectrophotometer was used for the UV-VIS
absorption measurements. The photophysical study was performed at room temperature
(25.0 ◦C) in 1 × 1 cm quartz cuvettes. The fluorescence spectra were recorded using a Scinco
FS-2 spectrofluorimeter. The quantum yields of fluorescence (ΦF) were calculated relatively
to 9,10-Diphenylanthracene (ΦF = 0.95 in ethanol) [71]. The HANNA®instruments HI-2211
Bench Top pH meter was used in the pH monitoring. A very small amount of hydrochloric
acid and sodium hydroxide was used to adjust the pH. The influence of metal cations and
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anions on the fluorescence emission was studied by adding portions of ion stock solution
to 10 mL of the fluorophore solution. The addition was limited to 100 µL so that dilution
remains insignificant. The ions were added gradually up to 10 equivalents (10−4 mol/L) to
a fluorophore solution (10−5 mol/L). The effect of ions was studied at constant pH in the
presence of 10 µM phosphate (pH 6), 10 µM HEPES (pH 7.2), 10 µM Tris-HCl (pH 8), or
10 µM ammonia/ammonium chloride (pH 10) buffer solutions.

3.3. Synthetic Procedures
3.3.1. Synthesis of N-Amino-1,8-Naphthalimide 2

A hydrazine monohydrate (0.5 mL, 0.01 mol) was added to a solution of 1,8-naphthalic
anhydride (2 g, 0.01 mol) in 30 mL of methanol. The resulting mixture was heated under
reflux for 2 h. After cooling, the precipitate was filtered off, washed with methanol, and
dried to give pale yellow crystals of N-amino-1,8-naphthalimide (1.5 g, 71%). FT-IR (KBr)
cm−1: 3310 and 3233 (ν NH2); 1704 (νas N-C=O); 1648 (νs N-C=O).

3.3.2. Synthesis of N-Chloroacetamide-1,8-Naphthalimide 3

1.5 g of N-amino-1,8-naphthalimide 2 (0.007 mol) were added to 7 mL of dry dioxane.
The resulted suspension was heated to 70 ◦C and then 2.8 mL of chloroacetyl chloride
(0.035 mol) was added dropwise. The mixture was stirred at the same temperature for 3 h
and the solid that precipitated after cooling was filtered off to give intermediate 3 as white
crystals (0.88 g, 45%). 1H NMR (CHCl3-d, 600.13 MHz) δ ppm: 9.00 (s, 1H, NHCO); 8.58 (d,
2H, J = 7.3 Hz, naphthalimide H-2 and H-7); 8.22 (d, 2H, J = 8.2 Hz, naphthalimide H-4 and
H-5); 7.73 (t, 2H, J = 7.7 Hz, naphthalimide H-3 and H-6); 4.28 (s, 2H, COCH2Cl).

3.3.3. Synthesis of Probe 4

To the solution of N-chloroacetamide-1,8-naphthalimide 3 (0.88 g, 0.003 mol) in 5 mL of
DMF, 1.4 mL of methylpiperazine (0.012 mol) were added. Then the resulted solution was
heated under reflux for 2.5 h. The precipitated solid after cooling was filtered off and dried
to give white crystals of the desired probe 4 (0.54 g, 60%). FT-IR (KBr) cm−1: 3357 (ν NH);
1725 (ν N-C=O); 1698 (νas N-C=O); 1662 (νs N-C=O). 1H NMR (D2O, 600.13 MHz) ppm:
8.29 (d, 2H, J = 7.3 Hz, naphthalimide H-2 and H-7), 8.13 (d, 2H, J = 8.1 Hz, naphthalimide
H-4 and H-5), 7.61 (t, 2H, J = 7.7 Hz, naphthalimide H-3 and H-6), 3.67 (s, 2H, -COCH2-), 3.63
(m, 2H, CH2 piperazine), 3.36 (m, 2H, CH2 piperazine), 3.31 (m, 2H, CH2 piperazine), 2.98
(s, 3H, CH3), 2.84 (m, 2H, CH2 piperazine). Elemental analysis: Calculated for C19H20N4O3
(MW 352.39) C 64.76, H 5.72, N 15.90%; Found C 64.83, H 5.68, N 16.05%. Positive-ion
ESI-MS at m/z: 353.0176 [M + H]+.

4. Conclusions

In summary, we presented here the synthesis of the novel 1,8-naphthalimide fluo-
rophore as a selective PET-based probe for the determination of pH in aqueous solutions, de-
signed on a “fluorophore-spacer-receptor1-receptor2” architecture. Because of the PET pro-
cess from the electron-rich piperazine amines to the excited state of the 1,8-naphthalimide
unit, the fluorescence emission of the probe was completely quenched in alkaline media,
while upon protonation of the piperazine receptors, the probe restored its bright fluores-
cence. Owing to the stepwise quaternization of both piperazine amines, two S-shaped
curves with pKa values of 9.09 and 7.33, corresponding to lower and higher fluorescent
intensities, respectively, were calculated. Due to the unusual high solubility in water, the
synthesized compound was successfully applied as a PET sensing probe for the detection
of water content in organic solvents with a limit of detection LOD = 3%. In addition,
using NaOH and water as chemical inputs, an INH logic gate was achieved, where the
water is the enabler and NaOH is the disabler. The probe also showed reversible “off -on”
PET-dependent fluorescence on solid support when exposed to acid and base vapors. The
studied thin film of the probe was found to be able to switch between “off ” and “on” states
reversibly at least 6 times without changes in the fluorescence intensity in both “off ” and
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“on” states. The results obtained clearly show that the novel compound could be used as an
efficient solid-state emissive probe.
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