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Abstract: Eucalyptus nitens wood samples were subjected to hydrothermal processing to obtain soluble
saccharides from the hemicellulosic fraction. The hemicellulose-derived saccharides were employed
as substrates for furfural production in biphasic media made up of water, methyl isobutyl ketone,
and one acidic ionic liquid (1-butyl-3-methylimidazolium hydrogen sulfate or 1-(3-sulfopropyl)-3-
methylimidazolium hydrogen sulfate). The reactions were carried out in a microwave-heated reactor
to assess the effects of the most influential variables. Under selected operational conditions, the molar
conversions of the precursors into furfural were within the range of 77–86%. The catalysts conserved
their activity after reutilization in five consecutive reaction cycles.
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1. Introduction

Sustainability and environmental concerns derived from the intensive use of fossil
resources foster the use of renewable resources as feedstocks for the industry. Among these
problems, climate change is one of the main ones to combat. Other problems linked to the
intensive use of fossil resources are their limited availability, supply insecurity, and the
volatility of prices. In this context, the European Commission has adopted the European
Green Deal [1], a strategy to address the current climate and environmental challenges.

Vegetal biomass, and particularly lignocellulosic materials (LCMs), are renewable and
potential feedstock for the industry that could help to meet the objectives of a carbon-neutral
economy by 2050, as proposed by the European Commission. These materials can be treated
following the biorefinery approach. According to the International Energy Agency [2], a
biorefinery is a facility that, operating in an analogous way to an oil refinery, sustainably and
synergistically processes all the components of biomass into a wide spectrum of products
(including chemicals and materials), marketable food and feed ingredients, and energy
(fuel, power, and heat).

Interestingly, integrated biorefineries (capable of obtaining benefits from the diverse
LCM components) are compatible with the circular economy principles [3] and have been
claimed to facilitate the transition to a circular economy on the basis of suitable waste
management [4].

Among the multiple types of LCM available for industrial processing, hardwoods
show important advantages, such as limited lignin percentages, satisfactory polysaccharide
content, and hemicelluloses typically dominated by heteroxylan. Eucalyptus, the most
widely planted type of hardwood, has been proposed as a feedstock for industrial processes
based on sustainable conversion technologies [5], favored by their ability to be produced
at a relatively low cost [6]. In this field, Eucalyptus nitens is attracting interest owing to
its specific features, including comparatively good resistance to plagues [7–9] and low
temperatures [7].

Molecules 2022, 27, 4258. https://doi.org/10.3390/molecules27134258 https://www.mdpi.com/journal/molecules

https://doi.org/10.3390/molecules27134258
https://doi.org/10.3390/molecules27134258
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/molecules
https://www.mdpi.com
https://orcid.org/0000-0002-4336-6956
https://orcid.org/0000-0002-0785-635X
https://doi.org/10.3390/molecules27134258
https://www.mdpi.com/journal/molecules
https://www.mdpi.com/article/10.3390/molecules27134258?type=check_update&version=2


Molecules 2022, 27, 4258 2 of 11

The fact that heteroxylan in E. nitens is the dominant hemicellulose polymer facilitates
its separation from cellulose and lignin via aqueous processing with hot, compressed water
(autohydrolysis or hydrothermal processing). Autohydrolysis is a green fractionation
technology that stands out for its ability to convert hemicelluloses into soluble saccharides
(low-molecular-weight polysaccharides, xylooligosaccharides, and xylose) at high yields
while keeping cellulose and lignin in solid phase [10–14]. Multistage processes based on
autohydrolysis achieve added value from the raw material through the fractionation of the
constituent polymers and further conversion of the resulting compounds into chemicals,
fuels, and/or materials. In this scope, the hemicellulose-derived saccharides from hard-
wood autohydrolysis are suitable substrates for furfural manufacture. The situation is more
complex when softwoods (whose hemicellulose fraction contains both heteroxylan and
glucomannan) are employed as feedstock for autohydrolysis, the soluble products gener-
ated include pentoses, saccharides made up of anhydropentoses, hexoses, and saccharides
made up of anhydrohexoses. In this last case, sugar dehydration leads to furfural, as well
as hydroxymethylfurfural, levulinic acid, and formic acid [13,14].

The major reactions involved in furfural manufacture based on the autohydrolysis of
hardwood are as follows [10,12–14]:

(a) Partial hydrolysis of pentosans (xylan or arabinan, with formula (C5H8O4)n) via auto-
hydrolysis, involving the uptake of 1 mol water/mol anhydrosugar, to yield soluble
low-molecular-weight polysaccharides or oligosaccharides made up of anhydropen-
toses (with formula (C5H8O4)k, where n and k are the polymerization degrees of
pentosans and soluble higher saccharides, respectively;

(b) Hydrolysis of the above low-molecular-weight polysaccharides or oligosaccharides
made up of anhydropentoses into pentoses (xylose or arabinose, with formula C5H10O5,
consuming 1 mol water/mol anhydrosugar);

(c) Dehydration of the above pentoses (xylose or arabinose) into furfural (C5H4O2),
releasing 3 mol water/mol pentose.

Additionally, it can be noted that the solids from autohydrolysis (mainly made up
of cellulose and lignin) are susceptible to further fractionation (for example, by pulping
reactions), enabling a complete utilization of the raw material. This approach has been
successfully assessed in literature for the kraft pulping of autohydrolyzed Eucalyptus
wood [15,16].

Furfural (OC4H3CHO), a platform chemical with a bright future, has been mentioned
as one of the top 30 value-added chemicals derived from biomass in a report supported
by the US Department of Energy [17], further updated by Bozell and Petersen [18]. The
interest in furfural relies on both its important current applications [19–21] and its role
as a precursor of new families of bio-based, sustainable chemicals and fuels [22]. In
particular, furfural is the sole precursor for all compounds containing a furyl, furfuryl,
furoyl, or furfurylidene radical, such as furfuryl alcohol, furan, tetrahydrofurfuryl alcohol,
furfurylamine, tetrahydrofurfurylamine, 2-methylfuran, 2-methyltetrahydrofuran, and
furoic acid [23].

As indicated above, the production of furfural in acidic media from pentoses, pen-
tosans, or higher soluble saccharides derived from pentosans involves the dehydration of
pentoses or the hydrolysis–dehydration of oligomers or polymers containing anhydropen-
toses. However, a number of undesired, side reactions also occur, leading to decreased
furfural yields [24,25]. A number of strategies have been proposed to improve the furfural
yields, including the utilization of new catalysts of enhanced selectivity, improved reaction
technologies, and continuous separation of the target product from the reaction phase.

Acidic ionic liquids (here denoted AIL) have been proposed as environmentally
friendly catalysts for LCM biorefineries, based on their physicochemical properties (par-
ticularly, low volatility and good stability), which allow fewer emissions and an easier
recovery [26,27]. Most studies on LCM fractionation with ionic liquids, including AIL,
have been carried out with compounds bearing the imidazolium ion. In LCM biorefineries,
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imidazolium-type AIL can be employed as solvents, as acidic catalysts, or playing both
roles simultaneously, and may increase conversion and selectivity values [28].

In recent years, microwave reactors have attracted attention for LCM processing
owing to their advantages over conventional reactors, such as fast heating profiles (and,
therefore, faster reaction rates), higher energy efficiency, and the possibility of improving
the results, increasing the product yields and/or decreasing the generation of undesired
byproducts [29,30].

In the manufacture of furfural from LCMs or LCM-derived saccharides using aqueous
treatments in the presence of an acidic catalyst, the extent of undesired side reactions can
be limited by transferring the target product to an immiscible organic solvent. The organic
solvent should present favorable partition coefficients and low water solubility. These
conditions are met by methyl isobutyl ketone (MIBK), an environmentally friendly solvent
included in the CHEM21 guide [31], which has been employed in the literature for furfural
production in media catalyzed with ionic liquids [32,33].

This study deals with the production of furfural from hemicellulose-derived sac-
charides obtained via the hydrothermal treatment of E. nitens wood. The operation was
carried out in biphasic media containing the liquid phase from hydrothermal processing,
MIBK, and an AIL acting as a catalyst. The catalyst was one of the following AIL: 1-
butyl-3-methylimidazolium hydrogen sulfate, denoted [C4mim]HSO4; or 1-(3-sulfopropyl)-
3-methylimidazolium hydrogen sulfate, denoted [C3SO3Hmim]HSO4. Reactions were
performed in a stirred, microwave-heated reactor, and the effects of the selected variables
(organic-to-aqueous phase-mass ratio, denoted OAR; catalyst concentration, denoted CC;
and isothermal reaction time, denoted t) were assessed for optimal furfural production.

2. Results and Discussion
2.1. Wood Processing

The hydrothermal processing of E. nitens wood was performed as per Penín et al. [34].
In this study, the optimal conditions for E. nitens autohydrolysis (carried out in the same
reactor and with the same hydromodule employed here) were optimized in terms of the
severity parameter S, defined by Overend and Chornet [35] as

Severity = log
[∫ Tmax

T0

exp
(

T(t)− Tref
Tω

)
·dt
]

(1)

where T0 is the initial temperature; Tmax is the maximum temperature; T(t) represents
the temperature profile; Tref is the reference temperature (100 ◦C); and Tω is a parameter
measuring the activation energy, which was fixed in the value (14.75 ◦C), as proposed by
Overend and Chornet. The best conditions were found to correspond to a severity rate of
3.62 (corresponding to a maximum temperature of 195 ◦C).

The liquid phase from autohydrolysis performed under these conditions presented
the following composition (in g/L): xylosyl groups in oligosaccharides, 15.1; xylose, 4.08;
arabinose, 0.575; furfural, 0.248; acetyl groups in oligosaccharides, 3.95; acetic acid, 0.934;
glucosyl groups in oligosaccharides, 1.19; glucose, 0.443; and 5-hydroxymethylfurfural,
0.034. Besides xylan-derived products (xylooligosaccharides, xylose resulting from their
hydrolysis, and furfural coming from xylose dehydration), the medium also contained low
concentrations of arabinose (produced from arabinan, a hemicellulose component), acetyl
substituents in xylooligosaccharides, and acetic acid (produced by acetyl group hydroly-
sis). The rest of the components (glucosyl groups, glucose, and 5-hydroxymethylfurfural)
were produced at low conversions by hydrolysis or hydrolysis–dehydration of glucose-
containing polymers present in the native wood. It can be noted that some furfural can also
be produced from the small amounts of arabinose detected since this sugar also undergoes
dehydration in aqueous, acidic media [13,14].

The aqueous phase from E. nitens autohydrolysis was employed for furfural manufac-
ture using an AIL as a catalyst. In this study, the experimental results were obtained using



Molecules 2022, 27, 4258 4 of 11

biphasic media (water/MIBK) containing one AIL ([C4mim]HSO4 or [C3SO3Hmim]HSO4)
as a catalyst.

2.2. Experiments Using [C4mim]HSO4 as a Catalyst

Based on preliminary experiments (data not shown), the effects of the relative amount
of organic solvent (OAR in the range of 1–4 g/g) were assessed by performing treatments
at 180 ◦C for 30 min in media containing 1.16 mol [C4mim]HSO4/L aqueous phase.

Table 1 shows that furfural was concentrated in the organic phase, owing to the
favorable partition coefficient. For the sake of simplicity, the results in Table 1 are expressed
in terms of conversions of potential substrates into furfural (FC, defined as g furfural/100 g
of furfural resulting from the stoichiometric conversion of the precursors). The data are
reported separately for the aqueous and organic phases, and the discussion is made in
terms of the total FC. No significant amounts of formic acid were found in the media,
confirming that the decomposition of furfural into formic acid was negligible under the
conditions tested.

Table 1. Conversions of the potential substrates into furfural (FC) in the aqueous and organic phases
obtained at 180 ◦C, operating for 30 min with [C4mim]HSO4 charge of 1.16 mol/L aqueous phase,
using OAR in the range 1–4 g/g.

Experiment OAR (g/g)
FC (%)

Aqueous Phase Organic Phase Total

1 1 12.4 ± 0.11 60.1 ± 0.50 72.5 ± 0.39
2 2 7.5 ± 0.004 67.5 ± 0.71 75.0 ± 0.71
3 3 4.9 ± 0.06 70.4 ± 0.57 75.3 ± 0.51
4 4 3.4 ± 0.01 71.2 ± 0.26 74.6 ± 0.27

The experimental data showed a slight FC increase when OAR increased from 1 to 2,
almost no variation in FC when OAR increased from 2 to 3, and a small FC decrease when
OAR increased from 3 to 4. Based on these results, OAR = 2 was considered optimal, owing
to the good balance between furfural conversion, limitation of solvent usage, and increased
volumetric concentration of the target product. Owing to this, the rest of the experiments
were performed at OAR = 2 g/g.

To assess the effects of the catalyst concentration, five additional experiments were
performed at 180 ◦C for 30 min with OAR = 2, in media containing 0.106–1.16 mol
[C4mim]HSO4/L (Figures 1 and 2). The maximum FC (75.0 ± 0.71%) was reached in the
assay performed at the highest catalyst concentration assayed (1.16 mol [C4mim]HSO4/L
aqueous phase).
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Figure 1. Molar conversions of potential substrates into furfural (FC) and xylose concentrations
obtained at 180 ◦C using [C4mim]HSO4 as a catalyst.
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Figure 2. Molar conversions of potential substrates into furfural (FC) and xylose concentrations,
obtained at 180 ◦C in experiments using [C4mim]HSO4 as a catalyst. Results were obtained at diverse
reaction times in media containing 0.847 mol [C4mim]HSO4/L aqueous phase.

When the catalyst loading decreased to 0.847 mol [C4mim]HSO4/L aqueous phase,
the concentrations of furfural in the aqueous and organic phases were 0.612 ± 0.015
and 3.48 ± 0.004 g/L, respectively (corresponding to molar conversions of 5.7 ± 0.14 and
68.8 ± 0.08%, respectively).

Lower catalyst loadings resulted in decreased furfural concentrations, as can be ob-
served in Figure 1. Operating with 0.424 mol [C4mim]HSO4/L, FC reached 69.5 ± 0.46%
(with furfural concentrations of 0.528 ± 0.012 and 3.28 ± 0.018 g/L in the aqueous and
organic phases, respectively). The experiments performed with CC of 0.212 or 0.106 mol
[C4mim]HSO4/L aqueous phase led to overall furfural molar conversions of 61.3 ± 0.07
and 55.9 ± 0.65%, respectively. Since no significant conversions were found when using
catalyst concentrations of 1.16 or 0.847 mol/L aqueous phase (corresponding to FC values
of 75.0 ± 0.71% and 74.5 ± 0.22%, respectively), further experiments were carried out while
keeping CC constant at 0.847 mol/L aqueous phase.

As a result of biphasic treatments, most xylooligomers were converted into xylose,
which appeared concentrated in the aqueous phase (Figure 1). Concerning the experimental
error, the range observed for the absolute value of the deviations (|δ|) and the correspond-
ing average values (|δa|) were as follows: %FC in organic phase, |δ|range 0.02–0.71,
|δa|= 0.35; %FC in aqueous phase, |δ|range 0.00–0.14, |δa|= 0.07; xylose concentration in
g/L, |δ|range 0.01–0.51, |δa|= 0.19.

Based on the above information, a new set of 8 assays were performed at 180 ◦C for
reaction times up to 45 min in media formulated with 0.847 mol [C4mim]HSO4/L aqueous
phase. Figure 2 shows the experimental results obtained in terms of FC, including the
contributions of both aqueous and organic phases. Operating up to reach 180 ◦C with
no isothermal stage (reaction time, 0 min), furfural was obtained at 26.1 ± 1.29% molar
yield. Longer reaction times improved the furfural production: after 15 min, FC achieved
72.8 ± 0.34% and reached a maximum (77.4 ± 0.13%) after 20 min. Harsher conditions
(reaction time, 25 min) resulted in decreased FC (74.8 ± 0.68%). The losses of furfural
became more important at longer reaction times: for example, after 30 and 45 min, FC
dropped to 73.1 ± 0.70 and 70.9 ± 0.96%, respectively. The deviations determined for the
data in Figure 2 were as follows: %FC, |δ|range 0.13–1.29, |δa|= 0.73; xylose concentration
in g/L, |δ|range 0.00–0.38, |δa|= 0.20.

In related studies dealing with the manufacture of furfural from commercial xy-
lose in biphasic media, Peleteiro et al. [36] reported FC around 71% in water/toluene or
MIBK/[C4mim]HSO4 media, whereas Wang et al. [37] achieved FC = 79.76% in media
made up of water/γ-valerolactone/1-butyl-3-methylimidazolium chloroaluminate. Re-
cently, Xia et al. [38] employed a biphasic medium made up of [C4mim]HSO4 (which
served as the reaction phase and catalyst) and 1,4-dioxane for furfural manufacture from
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xylose or bamboo hemicelluloses under microwave irradiation. The addition of a small
amount of water improved the furfural molar conversions up to 63.87% or 85.69% starting
from xylose or bamboo hemicelluloses, respectively.

2.3. Experiments Using [C3SO3Hmim]HSO4 as a Catalyst

In order to assess the possible benefits derived from using a catalyst of higher acidity, a
new set of experiments were performed using [C3SO3Hmim]HSO4 instead [C4mim]HSO4.
For the sake of simplicity, the first experiment of the set was performed under the conditions
(180 ◦C, 20 min, OAR = 2) identified as optimal in the previous section for operation with
[C4mim]HSO4, and the effects of the catalyst charge were assessed. The experimental re-
sults are shown in Figure 3. Operating with CC = 0.658 mol/L liquid phase, furfural reached
poor concentrations in the aqueous and organic phases (0.207 ± 0.002 and 2.38 ± 0.072 g/L,
respectively; corresponding to FC = 1.9 ± 0.02 and 47.1 ± 1.42%), confirming that the
increased catalytic activity of [C3SO3Hmim]HSO4 boosted the furfural-consuming reac-
tions and suggesting that milder operational conditions would result in improved furfural
production. Following this idea, a new experiment was performed cutting the catalyst
concentration by half (CC = 0.329 mol/L liquid phase). Although the furfural concen-
trations in both phases increased by factors of 1.31–1.38, the resulting FC (67.6 ± 1.56%)
was still below the target range, suggesting that lower catalyst charges could improve the
results. To confirm this idea, a new set of experiments were performed with lower catalyst
concentrations (CC = 0.164, 0.082, 0.049, 0.033 or 0.016 mol [C3SO3Hmim]HSO4/L aqueous
phase), keeping the rest of operational variables constant. When CC decreased from 0.164
to 0.049 mol [C3SO3Hmim]HSO4/L, FC increased from 70.9 ± 0.30 up to 82.5 ± 0.91%,
whereas lower CC (0.033 or 0.016 mol [C3SO3Hmim]HSO4/L) led to decreased yields
(below 77%). The deviations observed for the data in Figure 3 were as follows: %FC in
organic phase, |δ|range 0.24–1.54, |δa|= 0.88; %FC in aqueous phase, |δ|range 0.00–0.19,
|δa|= 0.07; xylose concentration in g/L, |δ|range 0.00–0.04, |δa|= 0.01.
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Figure 3. Molar conversions of precursors into furfural, and xylose concentrations in experiments
performed at 180 ◦C using [C3SO3Hmim]HSO4 as a catalyst. Data were obtained for diverse catalyst
concentrations in experiments lasting 20 min.

Based on these results, CC = 0.049 mol [C3SO3Hmim]HSO4/L was considered optimal
and, therefore, was employed in further experiments.

In order to assess the effects of the reaction time, experiments lasting up to 30 min
were performed in media containing the optimal catalyst concentration, keeping the rest of
the operational variables unchanged. The results (Figure 4) led to a poor FC (57.8 ± 2.37%)
when the operation was performed up to reach 180 ◦C, without an isothermal stage (re-
action time = 0). The maximum FC (85.6 ± 0.32%) was achieved after 5 min, whereas
longer reaction times (up to 30 min) resulted in decreased furfural concentrations (with
FC = 78.3 ± 0.52% after 30 min). Interestingly, the [C3SO3Hmim]HSO4 concentration lead-
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ing to the highest FC was lower than in the previous case, as a consequence of its higher
activity. The deviations observed for the data in Figure 4 were as follows: %FC, |δ|range
0.32–2.37, |δa|= 0.88; xylose concentration in g/L, |δ|range 0.01–0.54, |δa|= 0.09.
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Figure 4. Molar conversions of precursors into furfural, and xylose concentrations in experiments
performed at 180 ◦C using [C3SO3Hmim]HSO4 as a catalyst. Data were obtained at diverse reaction
times in media containing 0.049 mol catalyst/L aqueous phase.

[C3SO3Hmim]HSO4 has been employed in the literature as a catalyst for furfural
manufacture from commercial substrates. Matsagar et al. [39] employed a water–toluene
system (1:5 v/v) containing 3% or 6% xylose at 170 ◦C, to obtain furfural at FC = 81 and 73%,
respectively, after 4 h. Lin et al. [40] assessed the effects of different SO3H-functionalized
ionic liquids (including [C3SO3Hmim]HSO4) as catalysts for furfural manufacture from
xylose in water–GVL. The best result (FC = 78.12%) was obtained using 1-propylsulfonic-
3-methylimidazolium chloride at 140 ◦C for 180 min. Recently, López et al. [41] obtained
furfural from hemicellulose hydrolyzates, which were processed with [C3SO3Hmim]HSO4
and MIBK to yield furfural at near 78% molar conversion.

2.4. Catalyst Recycling

The possibility of reusing the catalyst in consecutive reaction cycles was assessed
from reaction media obtained under the conditions considered optimal (180 ◦C, 20 min,
0.847 mol [C4mim]HSO4/L or 0.049 mol [C3SO3Hmim]HSO4/L aqueous phase, 180 ◦C,
5 min). The organic and aqueous phases obtained in the experiment were separated via
decantation, and the aqueous phase (containing the catalyst together with the target product
and byproducts) was filtered. The filtrate was extracted with ethyl acetate, and subjected
to vacuum evaporation to recover the catalyst as the non-volatile fraction. The recovered
catalyst was employed in further experiments (after supplementation with fresh AIL when
necessary to compensate for losses).

Figure 5 shows the experimental results obtained for consecutive experiments using
recovered catalysts. The experiments using recovered [C4mim]HSO4 led to FC in the range
72.4–77.4% (average value, 75.7%), confirming that the catalyst kept most of its activity
after five runs. The assays performed with recovered [C3SO3Hmim]HSO4 resulted in FC
in the range 68.5–85.6% (average value, 76.2%). The deviations observed for the data in
Figure 4 were as follows: %FC for experiments with [C4mim]HSO4, |δ|range 0.17–3.32,
|δa|= 1.45; %FC for experiments with [C3SO3Hmim]HSO4, |δ|range 0.19–0.55, |δa|= 0.34;
xylose concentration in g/L, |δ|range 0.01–0.54, |δa|= 0.09. The increased experimental
error observed in these experiments was ascribed to the utilization of very small amounts
of catalyst.
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Figure 5. Molar conversion into furfural determined for 5 consecutive reaction cycles using
[C4mim]HSO4 or [C3SO3Hmim]HSO4.

In conclusion, high furfural conversions were obtained from the hemicellulose frac-
tion of E. nitens wood operating in biphasic media catalyzed using [C4mim]HSO4 or
[C3SO3Hmim]HSO4. The conversion of potential substrates into furfural was in the range
of 77–86%. These results showed that the comparatively high acidity of [C3SO3Hmim]HSO4
enabled operation under mild conditions (defined by decreased catalyst concentrations and
isothermal reaction times). Both AIL considered in this study kept most of their catalytic
activity after reutilization in five consecutive reaction cycles.

3. Materials and Methods
3.1. Materials and Reaction in Biphasic Media

E. nitens wood samples were provided by ENCE (Pontevedra, Spain). Hydrothermal
treatments were performed under the conditions reported as optimal [20]. The liquid
phases from hydrothermal treatments were mixed with MIBK and one of the catalysts
([C4mim]HSO4 or [C3SO3Hmim]HSO4), and processed in a stirred MARS 6 microwave
reactor under the desired reactions conditions. The reactions and the analyses were per-
formed in duplicate. The experimental tasks are summarized in Figure 6.
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Figure 6. Scheme of wood processing for furfural production.

3.2. Analytical Methods

The liquid phases from hydrothermal treatments (as collected, or after quantitative
saccharification to convert the higher saccharides into monosaccharides), as well as the
aqueous and organic phases from furfural production runs, were analyzed via HPLC
operating as per Peleteiro et al. [19].
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3.3. AIL Reutilization

The aqueous phase from the first reaction medium obtained in the set of experiments
was filtered through a 0.2 µm membrane, extracted with ethyl acetate, and subjected to
evaporation in a vacuum oven at 50 ◦C for 48 h. The AIL recovered as the non-volatile
fraction was supplemented with fresh catalyst when necessary to compensate for losses
and employed in the next run.
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