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Abstract: Eukaryotic elongation factor 2 kinase (eEF2K) is a highly conserved α kinase and is
increasingly considered as an attractive therapeutic target for cancer as well as other diseases.
However, so far, no selective and potent inhibitors of eEF2K have been identified. In this study,
pharmacophore screening, homology modeling, and molecular docking methods were adopted to
screen novel inhibitor hits of eEF2K from the traditional Chinese medicine database (TCMD), and
then cytotoxicity assay and western blotting were performed to verify the validity of the screen.
Resultantly, after two steps of screening, a total of 1077 chemicals were obtained as inhibitor hits
for eEF2K from all 23,034 compounds in TCMD. Then, to verify the validity, the top 10 purchasable
chemicals were further analyzed. Afterward, Oleuropein and Rhoifolin, two reported antitumor
chemicals, were found to have low cytotoxicity but potent inhibitory effects on eEF2K activity. Finally,
molecular dynamics simulation, pharmacokinetic and toxicological analyses were conducted to
evaluate the property and potential of Oleuropein and Rhoifolin to be drugs. Together, by integrating
in silico screening and in vitro biochemical studies, Oleuropein and Rhoifolin were revealed as
novel eEF2K inhibitors, which will shed new lights for eEF2K-targeting drug development and
anticancer therapy.

Keywords: anticancer; eEF2K inhibitors; pharmacophore screening; molecular docking; traditional
Chinese medicine

1. Introduction

Despite advances in diagnosis and treatment, cancer currently remains the leading
cause of death in many countries [1]. Therefore, there is an urgent need to explore new
therapeutic targets and new molecular targeted drugs. Eukaryotic elongation factor 2 ki-
nase (eEF2K), also known as Ca2+/Calmodulin-dependent protein kinase III, is an atypical
member of the α-kinase family [2,3]. So far, its best-known function is to negatively regulate
the extension of polypeptide chain in the process of protein synthesis, through phospho-
rylation of eukaryotic elongation factor 2 (eEF2) on Thr56 [4–6]. Notably, the activity of
eEF2K is often found to be enhanced in many types of tumors, and the activated eEF2K in
tumor cells is supposed to inhibit protein synthesis, reduces the consumption of nutrients
and energy of the cells, thus assisting the tumor cells to resist adverse environments and
facilitate their proliferation [7,8]. Consistent with this assumption, a growing number
of studies have reported that inhibition of eEF2K expression or activity indeed impairs
tumor cells proliferation [9,10]. Therefore, eEF2K is considered as a new potential target for
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cancer therapy, and the research and development of eEF2K inhibitors are of great clinical
significance [11–13].

So far, several small-molecule eEF2K inhibitors have been reported. 1-Benzyl-3-cetyl-
2-methylimidazolium iodide (NH125) is one of the earliest reported eEF2K inhibitors
and it has potent anti-proliferative effects against different tumor cells [14]. However, its
contentious effect on eEF2K has not been clearly explained, as eEF2 is phosphorylated
rather than dephosphorylated when the kinase activity of eEF2K is inhibited by NH125 [14].
Furthermore, A-484954 is identified as a selective but weak inhibitor of eEF2K. A-484954
decreases eEF2 phosphorylation in cells but has little effect on cancer cell growth [15].
Moreover, several thieno[2,3-b]]pyridine analogs are shown to possess inhibitory activity
against eEF2K [16].Additionally, compound 34 is found to be highly effective, with an IC50
of 170 nM for eEF2K in vitro, but its mechanism of suppressing eEF2K remains unclear [16].

Recently, computer-aided virtual screening technology is emerging as an excellent tool
to advance the development of pharmaceuticals [17]. Compared with the traditional process
of new drug discovery, a virtual screen can greatly reduce the scope of artificial ligand
activity, thus speeding up the process of drug development and significantly improving
the pace of scientific research [17]. In fact, there have been few attempts to perform in silico
screening to discover new eEF2K inhibitors. For example, Chen. et al. screened eEF2K
inhibitors from FDA approved drugs through virtual screening and found Pemetrexed was
a new eEF2K inhibitor [18]. Moreover, Yoshimori., et al. discovered a few novel eEF2K
inhibitors using HTS fingerprint which was based on the computer predicted profiling of
compound-protein interactions [19]. Although significant progress has been made to seek
eEF2K inhibitors in the last 10 years, to date no selective and suitably potent inhibitors of
eEF2K have been identified [13].

It is well-known that traditional Chinese medicine (TCM) is a valuable resource
for the discovery of molecular-targeted drugs [20]. Extracts prepared from medicinal
plants and other natural sources typically contain a variety of molecules with potent
biological activities, especially including antitumor activity [20]. For example, astragalus
polysaccharides and ginseng polysaccharides, isolated from traditional Chinese herbs
Astragalus membranaceus (A. membranaceus) and Panax ginseng (P. ginseng) respectively,
have been proven to have tumor-killing effects [21,22]. However, to date no TCM-derived
inhibitors of eEF2K are reported.

To this end, in this study we first screened potential eEF2K inhibitors from traditional
Chinese medicine database (TCMD, Version 2009) by integrating pharmacophore screening
and molecular docking in Discovery Studio (DS) 2020, and then we picked two purchasable
candidates, Oleuropein and Rhoifolin, for further validating the reliability of the screen via
in vitro biochemical assays and in silico predictions. The results indicate that our strategy
for potential eEF2K inhibitor discovery is effective and reliable. Thus, the finding in this
study will contribute to new eEF2K inhibitor discovery, and also give insights into new
anticancer drug development.

2. Results
2.1. Pharmacophore Model Generation and Validation

To obtain ligand-based pharmacophore models of eEF2K inhibitors, 29 reported eEF2K
inhibitors [23–26] were utilized as the training set (Figure 1A), and then the HipHop tool
in DS 2020 was adopted to create the pharmacophore model based on the training set. In
the end, a total of 10 pharmacophore models were generated (Supplementary Materials,
Figure S1).
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Figure 1. The structures of eEF2K-related chemicals. (A) Molecular structures of the training set.
(B) Molecular structures of the test set, in which 2, 3, 12, 13, 16, and 18 are inactive compounds.
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Then, to evaluate the reliability of the pharmacophore model, we firstly established a
test set of compounds according to the literature [25,26], which includes 13 active chemicals
and 6 inactive chemicals (Figure 1B). Subsequently, Ligand Profiler analysis revealed that
08 of pharmacophore model had the highest score (92.31% for HRA) in distinguishing the
active chemicals from the inactive ones (Table 1), suggesting pharmacophore model 08
has the best predictive power than the other pharmacophores. Therefore, pharmacophore
model 08 was selected for the following analysis.

Table 1. The test scores of the pharmacophore models.

Pharmacophore Features Rank D A Ha Ht HRA IEI CAI

08 HHA 188.548 19 13 12 18 92.31% 0.974359 0.899408
02 RHA 206.975 19 13 9 14 69.23% 0.93956 0.650465
06 RHA 200.597 19 13 9 14 69.23% 0.93956 0.650465
01 RHA 209.374 19 13 8 13 61.54% 0.899408 0.553482
09 RHA 187.640 19 13 5 8 38.46% 0.913462 0.351331
03 RHA 206.677 19 13 2 3 15.38% 0.974359 0.149901
05 RHA 201.811 19 13 2 4 15.38% 0.730769 0.112426
07 RHA 191.351 19 13 2 2 15.38% 1.461538 0.224852
04 RHA 201.811 19 13 0 0 0.00% 0 0
10 RHA 185.059 19 13 0 0 0.00% 0 0

2.2. Virtual Screening Based on Pharmacophore Model

Specifically, pharmacophore model 08 consists of two hydrogen-bonded receptors, two
aromatic ring centers, and one hydrophobic center (Figure 2A). Based on this model, the
program of Search 3D Database in DS 2020 was used to screen potential eEF2K inhibitors
from the traditional Chinese medicine database (TCMD) which contains 23,034 compounds.
As shown in Figure 2B, a total of 2920 chemicals were obtained in this step of screen. The
top 10 compounds in the fit value are shown in Table S1. To reduce the false-positive output
of this step, a second step of screening is required.
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2.3. Homology Modeling

eEF2K is a highly-conserved monomer protein and it consists of 725 amino acid
residues, however, so far the intact 3D structure of eEF2K protein is not available in the PDB
database. Thus, the Modeler module in DS 2020 was used to predict eEF2K protein structure
based on its amino acid sequence. After searching the templates via the BLAST Search
program, the protein crystals (i.e., 6nx4_A, 5ks5_A, 3lkm_A, and 3pdt_A) only with high
homology to eEF2K352–725 were selected as templates for homology modeling (Figure 3A
and Table S2). Interestingly, it was reported that eEF2K562–725 has a similar regulatory
role with the full-length eEF2K on eEF2 [27], therefore it is feasible to use 3D structure
of eEF2K352–725 to perform the molecular docking. Because of that, the 3D structure of
eEF2K352–725 was constructed by using Build Homology Models in DS 2020, and in the
end, a total of 10 protein models were generated (Supplementary Materials Figure S2).The
lower the PDF Total Energy of the model, the better the reliability of the model. Thus,
we analyzed the PDF Total Energy of each model, and found M0007 of the model, whose
structure is shown in Figure 3B, had the lowest PDF Total Energy (Table 2), suggesting
M0007 is the best model for eEF2K protein. Then, to further validate this 3D model of
eEF2K protein, we depicted the distribution of Ramachandran map (Figure 3C), which is
often used to examine the backbone conformation of each residue in a protein. From the
map, we found that about 95% amino acid residues of the eEF2K protein were distributed
in the best region indicated by blue circles. Therefore, the structure of M0007 is reliable and
can be used for the follow-up study.
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3lkm_A, and 3pdt_A from the top left to the bottom right, respectively. (B) eEF2K 3D homology
model (M0007). (C) Ramachandran map analysis of eEF2K 3D homology model.

Table 2. The PDF energy score of the 3D models of eEF2K protein.

Name PDF Total Energy PDF Physical Energy DOPE Score

M0007 18,709.2754 2533.81030749 −20,998.439453
M0003 19,247.8340 2847.16375490001 −18,696.406250
M0004 19,468.7598 2588.140841099 −18,796.500000
M0006 19,751.0020 2865.9443023 −21,234.820312
M0008 20,003.1426 2772.2228905791 −22,023.769531
M0005 20,003.2539 2956.111978 −20,604.794922
M0009 20,415.1406 2995.0741653 −21,289.044922
M0002 20,913.9961 3115.7153669 −19,221.875000
M0001 21,081.1328 3155.63869406 −19,377.949219
M0010 22,975.1074 3739.238885 −19,577.082031
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2.4. Virtual Screening Based on Molecular Docking

Next, to further screen eEF2K inhibitors from the previous output, the LibDock pro-
gram of DS 2020 was used to select the chemicals which can be docked into the previously
established 3D structure of eEF2K. Because the exact binding sites of inhibitors to eEF2K
have not been uncovered, we defined the possible binding site in the protein cavity accord-
ing to the structural characteristics of receptor (Figure 4A). To verify the validity of the
predicted binding site, two well-known eEF2K inhibitors, A484954 and compound 34, were
used to simulate docking, and the results showed that both of them can bind to the pre-
dicted binding site (Figure 4B,C). Thus, this binding site is reliable and can be used for the
following study. After docking screening, a total of 1077 compounds were obtained in the
end (Figure 4D). Top 100 of the compounds are shown in Table S3. Of note, we found that
most of the compounds in the list are not purchasable currently. To facilitate the follow-up
experimental validation, the top 10 purchasable chemicals were picked according to their
LibDock score from high to low, and then the list was re-ranked according to chemicals
economic cost from low to high (Table 3). In the follow-up study, we mainly focused on
these 10 chemicals.

Molecules 2022, 27, x FOR PEER REVIEW 7 of 19 
 

2.4 Virtual Screening Based on Molecular Docking 

Next, to further screen eEF2K inhibitors from the previous output, the LibDock pro-

gram of DS 2020 was used to select the chemicals which can be docked into the previously 

established 3D structure of eEF2K. Because the exact binding sites of inhibitors to eEF2K 

have not been uncovered, we defined the possible binding site in the protein cavity ac-

cording to the structural characteristics of receptor (Figure 4A). To verify the validity of 

the predicted binding site, two well-known eEF2K inhibitors, A484954 and compound 34, 

were used to simulate docking, and the results showed that both of them can bind to the 

predicted binding site (Figure 4B,C). Thus, this binding site is reliable and can be used for 

the following study. After docking screening, a total of 1077 compounds were obtained in 

the end (Figure 4D). Top 100 of the compounds are shown in Table S3. Of note, we found 

that most of the compounds in the list are not purchasable currently. To facilitate the fol-

low-up experimental validation, the top 10 purchasable chemicals were picked according 

to their LibDock score from high to low, and then the list was re-ranked according to 

chemicals economic cost from low to high (Table 3). In the follow-up study, we mainly 

focused on these 10 chemicals. 

 

Figure 4. Molecular docking to screen chemicals interaction with eEF2K. (A) The defined inhibitor 

binding site to eEF2K protein, indicated by the circle. (B,C) The position of A484954 (B) and Com-

pound 34 (C) in the binding pocket of eEF2K. (D) The work flow of molecular docking. 

Table 3. Top 10 purchasable chemicals obtained by molecular docking 

Rank Name Source Plant 
LibDock 

Score 
Price 

1 Oleuropein 

Fraxinus chinensis, Ligustrum 

lucidum, Fraxinus japonica, 

Ligustrum japonicum, Olea 

europaea. 

152.589 1.80 $/mg 

2 Rhoifolin Anabasis aphylla 153.939 5.85 $/mg 

3 Vitamin K2 Hippophae rhamnoides. 152.964 39.46 $/mg 

4 Licuroside Glycyrrhiza sp 148.674 63.25 $/mg 

5 

Chrysophanol-8-O-β-D-

(6’-O-galloyl)-glucopy-

ranoside 

Rheum hotaoense. 152.437 74.96 $/mg 

6 Calyxin H Alpinia pinnanensis 160.676 90.36 $/mg 

Figure 4. Molecular docking to screen chemicals interaction with eEF2K. (A) The defined inhibitor
binding site to eEF2K protein, indicated by the circle. (B,C) The position of A484954 (B) and Com-
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Table 3. Top 10 purchasable chemicals obtained by molecular docking.

Rank Name Source Plant LibDock Score Price

1 Oleuropein

Fraxinus chinensis, Ligustrum
lucidum, Fraxinus japonica,
Ligustrum japonicum, Olea

europaea.

152.589 1.80 $/mg

2 Rhoifolin Anabasis aphylla 153.939 5.85 $/mg
3 Vitamin K2 Hippophae rhamnoides. 152.964 39.46 $/mg
4 Licuroside Glycyrrhiza sp 148.674 63.25 $/mg
5 Chrysophanol-8-O-β-D-(6′-O-galloyl)-glucopyranoside Rheum hotaoense. 152.437 74.96 $/mg
6 Calyxin H Alpinia pinnanensis 160.676 90.36 $/mg
7 Sanggenon G Morus mongolica, Morus alba. 149.677 134.93 $/mg
8 Cannabisin D Hyoscyamus niger 154.383 154.33 $/mg
9 Bis-5,5-nortrachelogenin Wikstroemia indica 166.105 426.95 $/mg

10 Fortunellin Fortunella margarita,
Fortunella crassifolia 160.992 619.72 $/mg

Note: The price of compounds was obtained from websites of Yuanye Bio-Technology Corp (Shanghai, China), Top-
science Corp (Shanghai, China), Winherb Medical Technology Corp (Shanghai, China), BioBioPha Corp (Kunming,
China), Desite Corp (Chengdu, China) and Nakeli Bio-Technology Corp (Chengdu, China), respectively.
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2.5. Characterization of the Binding of Rhoifolin and Oleuropein to eEF2K

To validate the reliability of the molecular docking screen, the selected top 10 pur-
chasable chemicals were docked with the assigned cavity of eEF2K. As shown in Figure 5A,B
and Supplementary Figure S3, all 10 compounds can bind to the predicted binding site,
suggesting our docking screen is successful. To more clearly exhibit the interaction of the
hits with eEF2K, 3D images of the interaction between two examples (Rhoifolin and Oleu-
ropein) with eEF2K were shown in Supplementary Figure S4. Given that the cost of a drug
partially determines whether it can be applied at a large scale, two cheapest chemicals in
the top 10, i.e., Rhoifolin and Oleuropein, were chosen to perform the subsequent analysis
and in vitro experimental study.
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(A,B) The predicted binding mode of Rhoifolin (A) and Oleuropein (B) with eEF2K. (C,D) Ligand
interactions of Rhoifolin (C) and Oleuropein (D) with eEF2K residues. (E,F) 2D interaction diagram
of Rhoifolin (E) and Oleuropein (F) with eEF2K residues.
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Firstly, to closely observe the binding of selected chemicals to the eEF2K protein, we
analyzed the non-bonding interaction (Figure 5C,D) and 2D receptor-ligand interaction
(Figure 5E,F). The results indicated that Rhoifolin forms a hydrogen bond interaction with
residue Gln404, Asp451, Asp452, and Ser499, and forms a hydrophobic interaction with
Pro455, Pro496, Leu571, and Met572, respectively (Figure 5C,E). By contrast, Oleuropein
forms a hydrogen bond interaction with residue Asp682, and forms a Van Der Waals force
with residue Lys405 (Figure 5D,F). In addition, there was an amide-pi stacked interaction
between Oleuropein and Gln404 residue (Figure 5F).

Additionally, we counted all the interactions between 1077 potential inhibitors with
eEF2K residues, and found that the residues that form the most hydrogen bonds with the
chemicals are Ser499, Pro401, and Pro455 (Supplementary Materials Figure S5A), and the
residues that form the most hydrophobic interaction with the chemicals are Ser499, Ala399,
and Pro401 (Supplementary Materials Figure S5B), and the residues that form the most charge
interaction with the chemicals are Ser499 and Pro401 (Supplementary Materials Figure S5C),
respectively. Overall, Ser499, Ala399, Pro455, and Pro401 were observed to have the highest
counts of the favorable interactions (Supplementary Materials Figure S5D), suggesting
these residues may play a key role in the interaction with the inhibitors of eEF2K and could
be used as a reference for screening new inhibitors of eEF2K.

2.6. Evaluation of Effects of Rhoifolin and Oleuropein on eEF2K Activity

Next, to directly validate whether Rhoifolin and Oleuropein can inhibit eEF2K activity,
Hela cells were used as an in vitro model, and the effects of Rhoifolin and Oleuropein
on eEF2K activity were verified under two deprived nutrition conditions as previous
reported [14]. A known eEF2K inhibitor, A484954, was adopted as a positive control. Firstly,
to test the cytotoxicity of the chemicals, CCK8 (Cell Counting Kit-8) colorimetric assays
were performed to detect cell viability after chemicals treatment. As shown in Figure 6A,
in serum-free conditions, all the three chemicals showed undetectable cytotoxicity on
Hela cells at 50 µM or 100 µM concentrations. Similar results were also observed in
condition of Hanks’ Balanced Salt Solution (HBSS), except for 100 µM of A484954 treatment,
which showed slight cytotoxicity on Hela cells (Figure 6B). Thus, these data indicate that
50 µM~100 µM of Rhoifolin or Oleuropein is a safe concentration to Hela cells.

Then, we detected the effects of Rhoifolin and Oleuropein treatments on eEF2K activity
by western blotting. As shown in Figure 6C, under serum-free condition, both levels of
A484954 did not affect the protein levels of eEF2K and its target eEF2, but dramatically
reduced the phosphorylation levels of eEF2. This expected result suggests that our experi-
mental system is reliable. Strikingly, a similar result was also observed in Rhoifolin and
Oleuropein treatment, indicating Rhoifolin and Oleuropein are two new eEF2K inhibitors
(Figure 6C). Subsequently, we verified the effects in HBSS conditions. The result showed
that both Rhoifolin and Oleuropein addition significantly reduced the protein levels of
phosphorylated eEF2, and relatively, the inhibitory effect of Oleuropein was more potent
than Rhoifolin (Figure 6D). Of note, interestingly, the protein levels of eEF2K and eEF2
were also downregulated by treatment of A484954, Rhoifolin, or Oleuropein under HBSS
condition (Figure 6D). Overall, these data demonstrate that Rhoifolin and Oleuropein
indeed could inhibit eEF2K activity, suggesting Rhoifolin and Oleuropein are two new
inhibitors of eEF2K.
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Figure 6. Effects of the selected compounds on cell viability and eEF2K activity. A484954 was used
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(C,D) Western blotting analysis of treatments of different concentrations of Rhoifolin and Oleuropein
on indicated protein levels under serum-free condition (C) or HBSS condition (D), respectively.

2.7. Molecular Dynamics Simulation

Next, to evaluate the dynamic binding stability of Oleuropein and Rhoifolin in the
complex of eEF2K, 100 ns MD simulations were employed, and A484954 was used as a
reference ligand. First, we performed the RMSD measurement, which aims to calculate
the average changes in atom displacement for evaluating the conformational shifts and
biosystem stability. As shown in Figure 7A, the RMSD of A484954 gradually increased
over the first 20 ns to about 1.3 nm, stabilizing to the end of operation, but fluctuations of
about 1.2 to 1.4 nm were observed during most of the simulation. By contrast, the RMSD of
Oleuropein and Rhoifolin were both lower than that of A484954. Between them, the better
performer was Rhoifolin, which reached equilibrium around 10 ns and remained around
0.75 nm with minimal volatility. These observations suggest that Oleuropein and Rhoifolin
have higher stability than A484954 in the complex with eEF2K. Then, RMSF analysis,
which helps to explain the protein areas that fluctuate throughout the simulation, was
conducted. The RMSF plot indicated that compared to A484954, Rhoifolin and Oleuropein
exhibited relatively less fluctuations of the atoms in the complex (Figure 7B). Furthermore,
we analyzed the Rg values of the protein-ligand complexes to examine changes in their
densification throughout the simulation. The Rg plot showed that there was a large
fluctuation with Rg value up to 2.53 nm within 25 ns in A484954-eEF2K complex and the
average Rg value was 2.49 nm (Figure 7C). However, the average Rg value of Oleuropein-
eEF2K complex was 2.34 nm and that of Rhofolin-eEF2K complex was 2.35 nm, which
represent a narrower range of fluctuations compared to A484954 (Figure 7C). Collectively,
MD simulations reflected that the Rhoifolin- or Oleuropein- eEF2K complex had the higher
stability than the control, suggesting Rhoifolin and Oleuropein are promising to be potent
inhibitors of eEF2K.
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2.8. Pharmacokinetic and Toxicological Analyses

Finally, to explore the possibility of being drugs in the future, we predicted the phar-
macokinetics and toxicity of Oleuropein and Rhoifolin by using online tools Swiss-ADME
and eMolTox, respectively. As shown in Table 4, both chemicals had lower gastrointestinal
absorption, suggesting it is necessary to develop a formulation in the future that allows
their non-intestinal administration. Moreover, the two chemicals cannot cross the blood-
brain barrier (Table 4), indicating they may have no effect on the central nervous system.
However, both drugs can act as substrates of P-glycoprotein (P-gp) (Table 4), which may
cause them to be pumped out of the cell [28], thus further chemical modifications are
needed for future drug formation. Additionally, neither compound inhibits cytochromes
(Table 4), suggesting they may not affect drug metabolism.

Next, the toxicological analysis showed that both compounds were not toxic to the
central nervous system and were also not carcinogenic or genetically mutagenic (Table 5).
However, in contrast to Oleuropein, Rhoifolin may have cardiotoxicity due to being a
possible modulator of the platelet activating factor receptor which is associated with
myocardial inflammation (Table 5) [29]. Collectively, these analyses indicate that Oleuropein
and Rhoifolin may have lower toxicity, thus they can be considered as potential drugs.
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Table 4. Pharmacokinetic analyses of Oleuropein and Rhoifolin.

Pharmacokinetic Analyses Oleuropein Rhoifolin

GI absorption Low Low
BBB permeant No No
P-gp substrate Yes Yes

CYP1A2 inhibitor No No
CYP2C19 inhibitor No No
CYP2C9 inhibitor No No
CYP2D6 inhibitor No No
CYP3A4 inhibitor No No

Table 5. Toxicological analyses of Oleuropein and Rhoifolin.

Toxicological Analyses Oleuropein Rhoifolin

Cardiotoxicity Negative Positive, modulator of platelet
activating factor receptor

CNS Toxicity Negative Negative
Mutagenicity Genotoxicity Negative Negative

Carcinogenicity Negative Negative

3. Discussion

In recent years, along with the increased potential of eEF2K as a drug target in cancer,
as well as in cardiovascular and neurodegenerative diseases, a growing attention has
been paid to the development of eEF2K inhibitors [30]. However, to date no suitably
potent inhibitors of eEF2K have been developed [13]. In this study, through combining
in silico screening and in vitro biochemical analysis, we discovered two new inhibitors
and numerous inhibitor candidates from the traditional Chinese medicine database. The
findings here will provide a valuable resource for further identification of selective and
potent eEF2K inhibitors.

Currently, computer-aided virtual screening technology is becoming prevalent in
the new drug discovery. DS 2020 represents a powerful simulation tool as it allows a
determination of compound binding sites, pharmacophore modeling and screening, drug
design, and optimization [31]. Therefore, in this study we used this software to perform
virtual screening. To increase the reliability of the screen, we integrated ligand-based
pharmacophore modeling and molecular docking methods. Particularly, due to the lack of
intact crystal structure of eEF2K in the PDB database, we constructed the 3D structure of
the eEF2K protein through homology modeling (Figure 2A). While we selected the best
model from the total 10 protein structure candidates for the follow-up study, we have to
admit that there is still a gap between the predicted structures with the real structure. Thus,
to facilitate eEF2K-targeting drug development, it is urgent to generate the refined crystal
structure of eEF2K by traditional cryo-electron microscopy (cryo-EM) technology [32] or
newly emerged artificial intelligence, such as AlphaFold [33] and RoseTTA-fold [34] in
the future.

While great progress has been made in the virtual screening technology, it is still
necessary to verify the validity. Among of the inhibitor hits, Rhoifolin and Oleuropein were
selected to test the accuracy and reliability of the screen. They were selected following the
criterion of the higher LibDock score and lower price in the rank. Specifically, Rhoifolin
is a natural glycoside of apigenin, isolated from the green leaves of Rhus succedanea [35],
while Oleuropein is a non-toxic secoiridoid derived from the olive tree [36]. To test the
effects of the chemicals on eEF2K activity, we focused on the alteration of phosphorylation
levels of eEF2, which is a primary downstream target of eEF2K and is often used as
an indicator for eEF2K activity [5,18]. Of note, since eEF2K is inactive under adequate
nutrition condition, thus two poor nutrition conditions, namely serum-free condition and
HBSS condition, were adopted to test eEF2K activity just as previous reported [14]. To
our surprise, both chemicals showed strong inhibitory effects on eEF2K activity as the
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phosphorylation levels of eEF2 is dramatically decreased (Figure 6C,D). However, we
noticed a previous unreported phenomenon that, under HBSS conditions, the protein levels
of eEF2K are also remarkably reduced after the treatment of these chemicals, including
the positive control. Although we currently do not know the underlying mechanism, this
finding indicates that the chemicals may exert functions via different manners depending
on the specific conditions. Importantly, consistent with our finding, we noticed that both
Rhoifolin and Oleuropein have been reported to have potent antiproliferative activity in
several cancer cell lines [37,38], further suggesting that our screen strategy is reliable. On
the other hand, our study uncovers a previous unknown mechanism that the anti-tumor
properties of Rhoifolin and Oleuropein may be partially mediated by the inhibition of
eEF2K activity. However, the selectivity of these two chemicals needs further investigation
in the future.

Although in this study only Rhoifolin and Oleuropein on eEF2K activity were verified
by in vitro studies, the remaining candidates, especially with high LibDock score in the
rank, also have high potential to be eEF2K inhibitors. For example, Vitamin K2, which ranks
in the top 10 purchasable candidates, has a high possibility to be a new eEF2K inhibitor
because it has been reported to induce lung carcinoma cell apoptosis [39]. Thus, in the
future, it would be worth conducting more biological studies to verify the candidate hits
function, so as to identify selective and potent inhibitors of eEF2K or to seek inhibitors with
unique structure which can be used as scaffolds for the optimization of eEF2K inhibitors.
Additionally, while positive hits were obtained in this study, an improvement to the
screen strategy could be applied in the future. The modified screen strategy is as follows:
Firstly, virtual screening is performed on the whole TCMD by both molecular docking and
pharmacophore modeling. Secondly, the intersection is obtained between the outcomes of
the two screenings. Lastly, the compounds within the intersection can be selected as lead
hits for the follow-up analysis. This new strategy can be tested in the future, which would
be more effective in new drug discovery.

4. Materials and Methods
4.1. Construction of Pharmacophore Model
4.1.1. Preparation of the Training Set Molecules

Based on the literature reports, the known eEF2K inhibitors were used as training sets
and input into DS 2020 (Accelrys, San Diego, CA, USA). Then, to accurately distinguish the
active from the inactive, two important parameters, i.e., Principal value and MaxOmitFix,
were set as “2” and “0”, respectively. Principal value defines the level of molecular activity,
and “2” means the molecule is a reference molecule and all chemical features in the molecule
are considered when constructing the pharmacophore model. Moreover, MaxOmitFix
defines the number of characteristic elements in each molecule that are allowed to not
match the pharmacophore model, and “0” thereby represents that all the characteristic
elements in the constructed pharmacophore model must match the compound.

4.1.2. Common Feature Pharmacophore Generation and Evaluation

Pharmacophore was constructed by the Hiphop method based on common molecular
features as described previously [40]. Briefly, the Feature Mapping tool was used to select
possible pharmacophore characteristic elements. Then, Common Feature Pharmacophore
Generation was employed to set Input Ligands as all small molecules in the training sets,
and meanwhile set Conformation Generation as “Best”. In the end, 10 pharmacophore
models were generated.

To select the best pharmacophore model for the follow-up study, the following steps
were performed. Firstly, the test set, which includes both active and inactive compounds
for eEF2K protein, was established for verifying the model. Then, the fit value between the
pharmacophores and the chemicals in the test set was obtained by using the program of
Ligand Profiler. Finally, pharmacophore models were evaluated by fit value-dependent
indexes, such as hit rate of active compounds (HRA), identify effective index (IEI), and
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comprehensive appraisal index (CAI) [41]. Specifically, HRA represents the ability to
identify active compounds from the test set, IEI means the ability of the model to identify
active compounds from inactive compounds, and CAI is a comprehensive evaluation model
of pharmacophore. These indexes are calculated by the following formulas, in which HA
represents the number of active hit compounds from the test set, A represents the number
of active compounds in the test set, Ht is the total number of hit compounds from the test
set, and D represents the total number of compounds in the test set.

HRA =

(
HA
A

)
× 100% (1)

IEI =

(
HA
Ht

)
A
D

(2)

CAI = HRA× IEI (3)

4.1.3. Discovery of Lead Compounds

Traditional Chinese medicine database (TCMD, Version 2009), which contains
23,034 chemicals, was initially input into DS 2020 through Build 3D Database tool. Then,
Search 3D Database program was used to screen the lead compounds in TCMD based
on pharmacophore. Finally, the compounds with Fit value >2.5 were selected for follow-
up analysis.

4.2. Homology Modeling

The eEF2K protein structure was predicted by method of homology modeling fol-
lowing previous study [42]. Briefly, the whole amino acid sequence of eEF2K was firstly
retrieved from National Center for Biotechnology Information (NCBI) (https://www.
ncbi.nlm.nih.gov/, accessed on 29 July 2022). Then, the Blast Search program of DS
2020 was adopted to search the templates in the Protein Data Bank (PDB) database
(http://www.rcsb.org/pdb, accessed on 29 July 2022). The templates were selected mainly
based on the homology and E-value, which represents the sequence similarity and template
reliability, respectively. Generally, the higher the sequence homology and the lower the E-
value, the better the templates. Therefore, the templates having a high sequence homology
(>30) to eEF2K, but having a low E-value (<e-10), were chosen to load the structure through
Load Structure and Alignment program of DS 2020. Subsequently, the 3D structure of
eEF2K was built by using the Build Homology Model program in DS 2020 based on these
template proteins. After that, the best 3D model of eEF2K protein was selected according
to the indexes of PDF Total Energy and Ramachandran Plot, which are two often used
parameters for evaluation the quality of 3D model

4.3. Virtual Screening Based on Molecular Docking

Since there is no referable inhibitor binding site for eEF2K protein, the possible in-
teraction site was defined according to the receptor cavities (XYZ: −11.517721 1.429773
9.231896; Radius: 15.00000). Then, the 3D structure of eEF2K was prepared using the
Prepare Protein program of DS 2020. After that, virtual screening was carried out using
the LibDock module of DS 2020. LibDock is a rigid-based docking module. It calculates
hotspots for the protein using a grid placed into the binding site and polar and a nonpolar
probe. The hotspots are further used to align the ligands to form favorable interactions.
The Smart Minimizer algorithm and CHARMM force field were performed for ligand
minimization. After minimization, all ligand poses were ranked based on the ligands
score [43]. Of note, since the LibDock score is essentially a measure of strength of binding
affinity but not binding energy between the ligand substrate and receptor protein, it is
a positive, rather than a negative, value. Finally, the chemicals, of which LibDock score
is higher than that of the positive controls (A484954 and Compound 34), were kept as
candidates for eEF2K inhibitors.

https://www.ncbi.nlm.nih.gov/
https://www.ncbi.nlm.nih.gov/
http://www.rcsb.org/pdb
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4.4. Chemicals

Rhoifolin (CAS: 17306-46-6) was purchased from Yuanye Bio-Technology Corp (Shang-
hai, China), and Oleuropein (CAS: 32619-42-4) was ordered from Nakeli Bio-Technology
Corp (Chengdu, China). They were both dissolved in DMSO at the stock concentration of
20 mM and stored at −20 ◦C.

4.5. Cell Culture

Hela cells were cultured in Dulbecco’s modified Eagle medium (Gibco, NY, USA)
containing 10% fetal bovine serum (Gibco) and 1% (v/v) antibiotic in a humidified in-
cubator at 5% CO2 at 37 ◦C. When treating the cells with 0 µM (DMSO), 50 µM or
100 µM A484954/Rhoifolin/Oleuropein, the culture medium was replaced with serum-free
medium or Hanks’ balanced salt solution (HBSS). 24 h later, the cells were collected for
CCK-8 assay or western blotting.

4.6. Cell Viability Assay

CCK-8 solution kit (Yeasen, Shanghai, China) was used to measure the cell viability.
Hela cells were seeded in 100µL of DMEM in a 96-well plate and placed in a 5% CO2
incubator at 37 ◦C. After a 24 h period, different concentrations of compounds were
added into the plates and incubated for another 24 h in a humidified incubator (37 ◦C, 5%
CO2). Then, the culture medium was removed and replaced with 100 µL of fresh medium
containing 10% CCK-8 solution. After incubation for 2 h at 37 ◦C, the absorbance was read
at a wavelength of 450 nm using a microplate reader (Tecan, Männedorf, Switzerland). The
results were expressed as mean ± SD. Significance was estimated by one-way ANOVA. A
probability of p < 0.05 was considered to be statistically significant. The statistical analysis
and figures were prepared using GraphPad Prism 8.0.

4.7. Western Blotting

Hela cells were lysed with RIPA lysis buffer containing protease and phosphatase
inhibitors. Protein concentrations were determined using the BCA protein quantitative
assay kit (Beyotime Biotechnology, Shanghai, China). After boiling with loading buffer,
10~20 µg of prepared proteins were separated by electrophoresis on SDS-polyacrylamide
gels and then transferred onto a polyvinylidene fluoride membrane (PVDF) for 120 min at
400 A. Then, the PVDF was blocked with TBST containing 5% skim milk powder for 1 h at
room temperature. The membranes were incubated with the primary antibody overnight at
4 ◦C. The following primary antibodies and dilutions were used: anti-eEF2K (3692S, 1:1000),
anti-eEF2 (2332S, 1:1000), anti-phospho-eEF2 (Thr56) (2331S, 1:1000) and anti-α-tubulin
antibody (2148S, 1:1000). They were all ordered from Cell Signaling Technology, Danvers,
MA, USA. Next, the membranes were incubated with the goat anti-rabbit IgG (111-035-003,
Jackson, West Grove, PA, USA, 1:3000) for 1 h at room temperature. After adding ECL
ultra-sensitive luminescent liquid (Solarbio, Beijing, China), the Image Lab (Bio-Rad) was
used to detect chemiluminescence signals.

4.8. Molecular Dynamic Simulation

Molecular dynamic (MD) simulation was performed using with Gromacs [44].The
simulation conditions were a full-atom CHARMM 36 force field, intermolecular transferable
potential water model 3P (TIP3P), and the addition of Na+ or Cl− to balance the system.
All simulations maintain neutral ionization, performed in a three-oblique square. A total
of 5000 minimization steps were performed using the steepest descent method and the
particle mesh Ewald (PME) method. After minimization, two balancing steps and one
production step were performed in succession, both using the Leap-Frog algorithm and the
Berndsen coupling to control pressure and temperature. The first equilibrium simulation is
a 100 ps equilibrium simulation in 300 K NVT, followed by a 100 ps equilibrium simulation
in NPT at a 1.0 bar setup. The production simulations were 100 ns long and coordinates
were saved every 10 ps. All trajectories were corrected for the marginal effects of cyclical
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conditions. Root mean square deviation (RMSD), Root mean square fluctuation (RMSF),
Radius of gyration (Rg) between protein and ligand were calculated, all considering the
protein backbone alone or in conjunction with ligands.

4.9. Pharmacokinetics and Toxicological Analyses

The online tools of Swiss-ADME [45] (http://www.swissadme.ch/, accessed on 29
July 2022) and eMolTox [46] (http://xundrug.cn/moltox, accessed on 29 July 2022) were
employed to predict the pharmacokinetic and toxicological properties of the selected eEF2K
inhibitor hits, respectively. For all analyses, the following SMILES codes were used. Oleu-
ropein: COC(=O)C1=CO[C@@H](O[C@@H]2O[C@H](CO)[C@@H](O)[C@H](O)[C@H]2O)\
C(=C\C)[C@@H]1CC(=O)OCCC1=CC(O)=C(O)C=C1; Rhoifolin: C[C@@H]1O[C@@H](O
[C@@H]2[C@@H](O)[C@H](O)[C@@H](CO)O[C@H]2OC2=CC3=C(C(O)=C2)C(=O)C=C(O3)
C2=CC=C(O)C=C2)[C@H](O)[C@H](O)[C@H]1O.

5. Conclusions

Overall, this study supplies an efficient strategy for identification of novel eEF2K
inhibitors from traditional Chinese medicine, which will provide a useful reference for
exploring inhibitors for other proteins. Meanwhile, the current study identifies two cheap
inhibitors for eEF2K, i.e., Rhoifolin and Oleuropein. While the specificity and effectiveness
of these two inhibitors need be evaluated in the future studies, the current findings have def-
initely given insights into eEF2K-targeting new drug development and anticancer therapy.
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