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Abstract: In this study, we describe the semisynthesis of cost-effective photosensitizers (PSs) derived
from chlorophyll a containing different substituents and using previously described methods from
the literature. We compared their structures when used in photodynamic inactivation (PDI) against
Staphylococcus aureus, Escherichia coli, and Candida albicans under different conditions. The PSs
containing carboxylic acids and butyl groups were highly effective against S. aureus and C. albicans
following our PDI protocol. Overall, our results indicate that these nature-inspired PSs are a promising
alternative to selectively inactivate microorganisms using PDI.

Keywords: Spirulina maxima; chlorophyll a derivatives; photosensitizers; semisynthesis; photody-
namic inactivation

1. Introduction

Photodynamic reactions have been demonstrated to be an efficient alternative for the
treatment of cancer [1–5], psoriasis [6], herpes [7], dermatological treatment [8], periodon-
tics [9], canine otitis [10], control of cariogenic bacteria [11,12], and pneumonia [13]. In
particular, antimicrobial photodynamic therapy (aPDT) or photodynamic inactivation (PDI)
represents an interesting alternative for microbiological control because this technique is
minimally toxic, noninvasive, minimizes the use of antibiotics, and due to its action over a
broad spectrum of biomolecules, the risk of resistance is unlikely [14–18].

PDI has been used in the treatment of diseases caused by various microorganisms,
including Gram-positive and Gram-negative bacteria and fungi [19], such as the inacti-
vation of Candida albicans, which causes diseases in patients with low immunity [20,21].
It has also been used in the inactivation of Aedes aegypti mosquito larvae, a vector of the
dengue, Zika, and chikungunya arboviruses [22–26]. Furthermore, PDI has gained atten-
tion in the inactivation of viruses, which have also shown resistance to drugs, such as an
alternative to antiviral treatments against human papillomavirus and hepatitis B virus [27].
Recent studies have also shown the use of PDI for the treatment of severe acute respira-
tory syndrome caused by the new coronavirus (COVID-19) [28]. As PDI can inactivate
DNA- or RNA-based viruses, these studies suggest considerable potential for use in virus
photoinactivation in the future [29].

In general, photodynamic reactions require the presence of a photosensitizer, which
is activated by light at a specific wavelength, allowing the production of reactive oxygen
species (ROS). The main ROS are singlet oxygen, superoxide anions, hydroxyl radicals, and
hydrogen peroxide. The quantum yields of each of these ROS depend on the PS and the
conditions of the medium. After the formation of ROS, they interact with the target cells,
causing death [30–34].
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The most commonly used photosensitizers are methylene blue [35], porphyrins [36],
chlorins [16,37], curcuminoids [38,39], and bacteriochlorins [40]. However, natural product
derivatives, such as chlorin-e6 (chl-e6) obtained from chlorophyll a, are relatively low-cost
photosensitizers and present many advantages in terms of pharmacokinetics, as they are
easily eliminated from the body [11,41].

Chlorophyll a is formally a chlorin derivative, with four nitrogen atoms surrounding
a central magnesium atom, along with numerous attached side chains and a hydrocarbon
chain. Chlorins are excellent photosensitizers, and several synthetic chlorin analogues,
such as m-tetrahydroxyphenylchlorin and mono-L aspartyl chlorin e6, have been used.
Some substances, such as porphyrins, chlorins, and bacteriochlorins, stand out for their
application in PDI: they present selected photophysical characteristics, allowing structural
modifications to promote better solubility and amphiphilicity and improve their properties
in several treatments [42]. Natural products are sources of inspiration for the development
of several drugs [43]. The natural chlorophyll pigments from the cyanobacterium Spirulina
maxima are abundant and easy to obtain. According to our protocol, [44] once dried, S.
maxima is treated with methanol with 5% sulfuric acid, it gives rise to methyl pheophor-
bide a, and, after treatment with different amines or molecular oxygen, generates methyl
pheophorbide a derivatives, including purpurin-18.

In this study, we propose the diverse semisynthesis of chlorophyll a derivatives,
using simple reactions to evaluate these photosensitizers against microorganisms. All
the chemical modifications performed with chlorophyll a were also aimed at conferring
amphiphilicity to the PS, as this strategy has succeeded well in many approaches for PDT
or PDI studies [45–48].

2. Results and Discussion
2.1. Semisynthesis of Photosensitizers

All the compounds were prepared using previously described methods from the
literature. Initially, methyl-pheophorbide a (1) was obtained as previously described by our
research group [44] (Scheme 1). Subsequently, primary aliphatic amines (butylamine, hexy-
lamine, and octylamine) were reacted with 1 to give compounds 2–4, all with absorption
bands around 660 nm [49–51].

The purpurin-18 methyl ester (5) was also obtained from the oxidation of methyl
pheophorbide a (1) [52,53], which allowed the addition of different aliphatic amines (buty-
lamine, hexylamine, and octylamine) into the anhydride ring, resulting in products 6–8.
Compound 5 exhibited a characteristic absorption at 700 nm, which became approximately
660 nm when the anhydride ring was opened by the insertion of the amines (products
6–8) [54–56].
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Scheme 1. Semisynthesis of chlorophyll a derivatives.

The obtained PS 2–4 and 6–8, were characterized using NMR, UV-vis, and high-
resolution mass spectrometry (HRMS Q-TOFF) and presented absorption bands in the red
region. See more details on the characterizations in Supplementary Materials, in which we
present our compound band wavelengths and additional literature data (Table S1). Overall,
these photosensitizers were semisynthesized at a low cost because we performed small
structural modifications in the natural chlorophyll a, having the methyl-pheophorbide a
(1) as a direct and versatile molecular template. With these modifications, we obtained
six chlorin derivatives, 2–4 and 6–8, all with absorption bands near 660 nm, different sub-
stituents, and amphiphilicity, which are desirable for use in PDT (Figures 1 and 2) [57]. The
photostability of all compounds was also checked, showing that the photobleaching was
not measurable even after 10 min of irradiation (see Supplementary Materials, Figure S18).
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Figure 2. UV-vis absorption spectra of chlorophyll a derivatives 2–4 and 6–8 in ethyl acetate.

2.2. Photodynamic Inactivation

The compounds 2–4 and 6–8 were evaluated against three microorganisms—S. aureus,
C. albicans, and E. coli—for the inactivation of these microorganisms. First, we investigated
the dark toxicity of the chlorophyll derivatives. The microorganisms were incubated for
20 min in the dark with the respective photosensitizer (10 µM) and their mortality was
evaluated after 24 h. No mortality was observed after 24 h with only the irradiation
of the microorganisms without photosensitizers (30 Jcm−2). The inactivation study was
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then performed with each microorganism. All photosensitizers 2–4 and 6–8 were used
in the evaluation of S. aureus (Gram-positive bacteria), and different concentrations of
photosensitizer (1 µM and 10 µM) and light fluences (15 Jcm−2 and 30 Jcm−2) were utilized.
The results obtained from these initial photoinactivation studies (Figure 3) show that with
the increase in the carbon chain (from four to eight C atoms), the photosensitizers presented
a decrease in the inactivation levels for the derivatives 2–4 and 6–8.
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Figure 3. Staphyloccocus aureus counts (log CFU/mL) for 1 µM and 10 µM of photosensitizers 2–4
and 6–8 with the light doses of 0 Jcm−2 (control), 15 Jcm−2 and 30 Jcm−2. Results are presented
as mean ± SE. All the experiments were statistically evaluated (Tukey’s test) and are in agreement
with significance level of at least p < 0.05. Experiments pointed out with (*) represent p < 0.05 when
compared to the control.

In addition, we observed that the photoinactivation of both S. aureus (Figure 3) and C.
albicans (Figure 4) was influenced by light fluence and photosensitizer concentration, with
increased photoinactivation at high concentrations and fluences.

Evaluating the photoinactivation of S. aureus (Figure 3), we observed that at 1 µM
and 15 Jcm−2, the methyl pheophorbide derivatives 2–4 did not present relevant inacti-
vation, whereas the purpurin-18 derivatives 6–8 allowed significant inactivation, with a
reduction of 3 log using PS 8, 3.5 log with PS 7, and 4 log with PS 6. Maintaining the
same concentration of photosensitizer and increasing the dose of light from 15 Jcm−2 to
30 Jcm−2 resulted in the inactivation of microorganisms by derivatives 2–4; however, the
photoinactivation promoted by PS 8 was approximately 4 log, and that by derivatives 6
and 7 was approximately 5 log.

It is possible to observe in Figure 3 that at 10 µM, both light doses (15 Jcm−2 and
30 Jcm−2) were not very effective in the photoinactivation of S. aureus with photosensitizers
2–4. In contrast, purpurin-18 derivatives 6–8 completely inhibited the growth of these
microorganisms, proving that these derivatives are much more effective than those derived
from methyl pheophorbide 2–4.
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Figure 4. Candida albicans counts (log CFU/mL) for 1 µM and 10 µM of photosensitizers 2–4 and 6–8
with the light doses of 0 Jcm−2 (control), 15 Jcm−2 and 30 Jcm−2. Results are presented as mean ± SE.
All the experiments were statistically evaluated (Tukey’s test) and are in agreement with significance
level of at least p < 0.05. Experiments pointed out with (*) represent p < 0.05 when compared to
the control.

These results suggest that the purpurin-18 derivatives 6–8, due to the presence of a
carboxylic acid group in the molecules may facilitate their microorganism uptake, whereas
the derivatives of methyl pheophorbide 2–4 have an ester group with lower uptake.

The results presented in Figure 4 for C. albicans were similar to those obtained for S.
aureus, with purpurin-18 derivatives 6–8 presenting better results in terms of photoactiva-
tion than methyl pheophorbide a derivatives 2–4. However, PS 2 with the ester and butyl
group also showed promising inactivation of C. albicans.

Overall, the results were similar to those for S. aureus and the higher the carbon chain
present in the photosensitizers, the more hydrophobic the PS is used, and lower microor-
ganism uptake was observed. As a consequence, we observed lower photoinactivation.

Photosensitizers 2–4 and 6–8 were also tested against E. coli, (Gram-negative bacteria),
at 500 µM and light dose of 45 Jcm−2. No photoinactivation by the photosensitizers 2–4 and
6–8 was observed, even using high doses of light, which was completely expected as Gram-
negative microorganisms are preferentially inactivated by cationic photosensitizers [58,59].
Compared with our previous results using chlorin e6 (chl-e6) [44], we observed that S.
aureus was completely inactivated at chl-e6 concentrations of 1.6 µM and 16 µM when using
a light dose of 30 Jcm−2, which is very similar to the results obtained with derivatives 6 and
7. However, considering C. albicans when compared with chl-e6, we found total inactivation
at concentrations equivalent to 33 µM (20 µg mL−1) and 50 µM (30 µg mL−1) using a
light dose of 30 Jcm−2. We obtained the best results with derivative 6, which completely
inactivated C. albicans at a concentration of 10 µM (15 Jcm−2) and at concentrations of 1 µM
and 10 µM with 30 Jcm−2. Chlorin e6 and 2, 3, 4, 6, 7, and 8 did not show efficacy against
E. coli [44].

Comparing among photosensitizers, when methylene blue was evaluated against the
microorganism S. aureus at a concentration of 50 µM and a light dose of 9 J at 660 nm [60], a
reduction of approximately 1.5 log CFU was obtained, whereas the photosensitizers 6, 7, and
8 used in this study completely inactivated the S. aureus microorganism at a concentration
of 10 µM and a light dose of 15 Jcm−2, demonstrating it was more effective using these



Molecules 2022, 27, 5769 7 of 14

semisynthetic PS. When using 50 µM and a light dose of 9 J to perform photodynamic
inactivation with methylene blue for C. albicans, a reduction of approximately 1 log CFU was
obtained, whereas in this study, PS 7 at a concentration of 10 µM and a light dose of 15 Jcm−2

allowed a reduction of approximately 2 log CFU. Using the PS 3, we obtained a reduction
of approximately 1 log CFU, and PS 2 and 6 completely inactivated the microorganism.

Indocyanine green (ICG) [61], was also used as a photosensitizer for the photoin-
activation of S. aureus. At a concentration of 25 µg mL−1 (32 µM) ICG and exposure to
411 Jcm−2 with near-infrared (NIR) light (808 nm laser), a significant reduction in the viable
count was achieved (5.56 log10); complete inactivation of the microorganism occurred at a
concentration of 200 µg mL−1 (258 µM) and 411 Jcm−2. In another study using ICG [62],
PDI against S. aureus with an ICG concentration of 8 µg mL−1 (10 µM) at an energy dose of
84 Jcm−2 resulted in 100% inactivation of this microorganism. In the current study, PS 6,
7, and 8 also showed complete inactivation of S. aureus at a concentration of 10 µM using
15 Jcm−2 and 30 Jcm−2 (660 nm).

In an in vitro study, the inactivation of C. albicans was evaluated with ICG at 1 µg mL−1

using a light dose of 228 J/cm−2 (810 nm); a satisfactory result showing a reduction of
1.2 log was obtained, similar to the results with nystatin. Compared to the control, the
elimination of C. albicans increased by 92% when treated with ICG (1 mg/mL) with infrared
(IR) laser irradiation (810 nm, 55 J/cm−2).

3. Materials and Methods

Nuclear magnetic resonance (NMR) analyses were performed on a Bruker Avance 400
spectrometer at 400.15 MHz (1H) and 100.13 MHz (13C). Tetramethylsilane was used as an
internal reference.

High-resolution mass spectrometry (HRMS) was performed using ESI-TOF (Waters
Xevo G2-S Qtof). Ultraviolet-visible spectrophotometry analyses were performed using a
Lambda 25 spectrometer (PerkinElmer, Waltham, MA, USA).

Spirulina maxima powder was purchased from Pharma Nostra (Rio de Janeiro, Brazil),
and other reagents were purchased from Sigma-Aldrich (St. Louis, MO, USA).

3.1. Semisynthesis of Photosensitizers

Isolation of methyl pheophorbide a (1) from Spirulina maxima (Mepheo a): 300 g of the
Spirulina maxima was treated with a 1.5 L of the 5% methanolic solution of H2SO4 for 24 h at
room temperature. This mixture was filtered and washed with methanol (900 mL) and ethyl
acetate (900 mL), and the organic phases were evaporated under reduced pressure. After
that, 150 g of crushed ice was added to the crude residue. The residue was neutralized with
solid NaHCO3 and placed on a silica gel plug. The chlorophyll derivatives were retained
on the plug, and the residual proteins and peptides (pale yellow in color) were eluted
with water. The chlorophyll derivatives were then eluted with ethyl acetate (900 mL) and
washed with water (3 × 400 mL). The organic phase was separated, dried over Na2SO4, and
the solvent evaporated under reduced pressure. The methyl pheophorbide a was purified
by silica gel flash chromatography using as eluent toluene:ethyl acetate (9:1), yielding
the methyl pheophorbide a (1) (2.4 g, 3.9 mmol, 0.8% yield from natural dried Spirulina
maxima) [44,63,64].

UV-vis (CH2Cl2): λmax (nm): 666, 609, 534, 505, 409 [65].
1H-NMR (CDCl3, 400 MHz) δ: 9.51 (s, 1H, H-10); 9.37 (s, 1H, H-5); 8.56 (s, 1H, H-20); 7.97
(dd, 1H, J = 11.6, J = 17.8 Hz, H-31); 6.25 (s, 1H, H-132); 6.24 (dd, 1H, J = 1.5 and J = 17.8
Hz, H-32B); 6.16 (dd, 1H, J = 1.5 and J = 17.8 Hz, H-32a); 4.48–4.43 (m, 1H, H-181); 4.21–4.19
(m, 1H, H-17); 3.88 (s, 3H, H-134); 3.68 (s, 3H, H-121); 3.60 (q, 2H, J = 7.7 Hz, H-81); 3.57 (s,
3H, H-174); 3.40 (s, 3H, H-21); 3.22 (s, 3H, H-71); 2.68–2.48 (m, 2H, H-171); 2.36–2.20 (m, 2H,
H-172); 1.81 (d, 3H, J = 7.3 Hz, H-182); 1.69 (t, 3H, J = 7.6 Hz, H-82); 0.54 (br. s, 1H, H-21);
−1.63 (br. s, 1H, H-23).
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13C-NMR (CDCl3, 100 MHz) δ: 192.1, 174.7, 172.5, 169.4, 162.9, 155.9, 151.1, 150.1, 145.3,
142.3, 137.9, 136.8, 136.4, 136.3, 132.0, 129.1, 129.0, 127.9, 122.9, 104.6, 104.5, 97.5, 93.4, 65.9,
65.1, 63.3, 52.2, 51.1, 50.3, 30.8, 30.0, 23.2, 19.4, 17.4, 12.1, 11.3
13-(Butylcarbamoyl)-chlorin e6 15,17-dimethyl ester (2). To a solution of 30 mg (0.049 mmol) of
1 in 3 mL of dry tetrahydrofuran, 0.5 mL of butylamine was added and the reaction was
stirred for 20 min at room temperature. After that, the solvent was evaporated, the mixture
was diluted with dichloromethane and washed with HCl solution (1%). The resulting
solution was dried over anhydrous sodium sulfate, and the solvent evaporated under
reduced pressure. Compound 2 was isolated by chromatography over silica gel using
toluene:ethyl acetate (9:1) as eluent (22 mg, 72% yield) [50,51].

UV-vis (CH2Cl2) λmax (nm): 662, 607, 528, 498, 399 [66].
1H-NMR (CDCl3, 400 MHz) δ: 9.69 (s, 1H); 9.64 (s, 1H); 8.80 (s, 1H); 8.08 (dd, 1H, J = 17.8
and 11.6 Hz); 6.36–6.40 (m, 1H, CONH); 6.33 (dd, 1H, J = 16.7, 1.4 Hz); 6.15 (dd, 1H, J =
11.6, 1.4 Hz); 5.54 and 5.26 (d, 1H each, J = 18.9 Hz); 4.46 (q, 1H, J = 7.2 Hz); 4.35 (d, 1H, J =
9.5 Hz); 3.91–3.76 (m, 4H); 3.81 (s, 3H); 3.60 (s, 3H); 3.56 (s, 3H); 3.49 (s, 3H); 3.32 (s, 3H);
2.56–2.09 (m, 4H); 1.82–1.69 (m, 10H); 1.06 (t, 3H, J = 7.3 Hz); −1.61 (br.s, NH); −1.83 (br.s,
NH).
HRMS (ESI): m/z calculated [M + H]+ for C40H50O5N5

+ = 680.38065; found 680.38379.
13-(Hexylcarbamoyl)chlorin e6 15,17-dimethyl ester (3). To a solution of 40 mg (0.066 mmol) of
1 in 3 mL of dry tetrahydrofuran, 0.5 mL of hexylamine was added and the reaction was
stirred for 20 min at room temperature. After that, the solvent was evaporated, the mixture
was diluted with dichloromethane and washed with HCl solution (1%). The resulting
solution was dried over anhydrous sodium sulfate, and the solvent evaporated under
reduced pressure. Compound 3 was isolated by chromatography over silica gel using
toluene:ethyl acetate (9:1) as eluent (45 mg, 95% yield) [50,51].

UV-vis (CH2Cl2): λmax (nm): 663, 605, 527, 497, 398 [66].
1H-NMR (CDCl3, 400 MHz) δ: 9.70 (s, 1H), 9.64 (s, 1H), 8.80 (s, 1H), 8.10 (dd,1H, J = 11.5
and 17.8 Hz), 6.36–6.39 (m, CONH), 6.35 (dd, 1H, J = 1.4 and 17.8 Hz), 6.13 (dd, 1H, J = 1.4
and 11.5 Hz), 5.52 (d, 1H, J = 18.9 Hz), 5.25 (d, 1H, J = 19.0 Hz), 4.46 (q, 1H, J = 7.3 Hz),
4.35 (d, 1H, J = 11.2 Hz), 3.90–3.68 (m, 4H), 3.80 (s, 3H), 3.60 (s, 3H), 3.57 (s, 3H), 3.49 (s,
3H), 3.32 (s, 3H), 2.56–2.07 (m, 4H), 1.83–1.37 (m, 16H), 0.94 (t, 1H, J = 7.2 Hz), −1.63 (NH),
−1.83 (NH).
HRMS (ESI): m/z calculated [M + H]+ for C42H54O5N5

+ = 708.41195; found 708.41516.
13-(Octylcarbamoyl)chlorin e6 15,17-dimethyl ester (4). To a solution of 30 mg (0.049 mmol) of
1 in 3 mL of dry tetrahydrofuran, 0.5 mL of octylamine was added and the reaction was
stirred for 20 min at room temperature. After that, the solvent was evaporated, the mixture
was diluted with dichloromethane and washed with HCl solution (1%). The resulting
solution was dried over anhydrous sodium sulfate, and the solvent evaporated under
reduced pressure. Compound 4 was isolated by chromatography over silica gel using
toluene:ethyl acetate (9:1) as eluent (28 mg, 78% yield) [51].

UV-vis (CH2Cl2): λmax (nm): 663, 609, 527, 497, 399 [66].
1H-NMR (CDCl3, 400 MHz) δ: 9.70 (s, 1H); 9.64 (s, 1H); 8.80 (s, 1H); 8.09 (dd, 1H, J = 17.8,
11.5 Hz); 6.36–6.39 (m, 1H, CONH); 6.36 (dd, 1H, J = 18.2, 1.4 Hz); 6.14 (dd, 1H, J = 11.5,
1.4 Hz), 5.54 and 2.25 (d, 1H each, J = 18.9 Hz); 4.47 (q, 1H, J = 7.1 Hz); 4.36 (d. 1H,
J = 7.6 Hz); 3.90–3.77 (m, 4H); 3.80 (s, 3H); 3.60 (s, 3H); 3.57 (s, 3H); 3.49 (s, 3H); 3.32 (s, 3H);
2.52–2.09 (m, 4H); 1.83–1.69 (m, 10 H); 1.46–1.33 (m, 8H); 0.90 (t, 3H, J = 7.1 Hz); −1.62 (br,
s, NH); −1.83 (br, s, NH).
HRMS (ESI): m/z calculated [M + H]+ for C44H58O5N5

+ = 736.44325; found 736.44147.
Purpurin-18 Methyl Ester (5) Method 1: Methyl pheophorbide a 1 (151 mg, 0.25 mmol) was
dissolved in 500 mL of diethyl ether and 5 mL of pyridine. After, a potassium hydroxide
solution in 1-propanol (2 g of KOH was dissolved in 10 mL of 1-propanol) was added
into the first solution and oxygen was bubbled into the resulting reaction mixture for 1 h.
The reaction mixture was extracted with water (500 mL). The aqueous layer was collected
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and the pH adjusted to 2–4 using cold H2SO4 solution (25%). The aqueous layer was
extracted with CH2Cl2 and the solvent evaporated to give a purple residue. The product
was purified by chromatography over silica gel using hexane:ethyl acetate 3:1 as eluent.
After that, the carboxylic acid precursor was obtained in 55% yield (0.078 g, 0.119 mmol).
This product was further reacted with a diazomethane solution in dichloromethane to
produce purpurin-18 methyl ester (5) for 10 min at 0 ºC. The residue was crystallized
with dichloromethane/hexane, thus obtaining 5 in 60% yield (63.0 mg, 0.109 mmol) as
purple red crystals [51]. Method 2: Pigments were extracted twice from S. maxima dried
powder (10 g) with acetone (4 × 100 mL) under magnetic stirring at 60 ◦C (4 × 30 min).
The dark green extract was filtered off and the filtrate (ca. 400 mL) was reduced to 200
mL by partial evaporation under reduced pressure. NaOH (40 mL, 6 M) was added
to the previous extract (200 mL); the mixture was vigorously stirred and oxygen was
bubbled during 3 h. The solution was then acidified with concentrated HCl. The oxidized
extract was evaporated to dryness. Carotenoids and part of xanthophylls were removed by
extraction with petroleum ether (2 × 100 mL). The resulting residue was purified by flash
chromatography (eluent CH2Cl2:MeOH 8:2) obtaining 40.0 mg (0.070 mmol, 0.4% yield) of
the purpurin-18 carboxylic acid. The product was esterified with diazomethane obtaining
32.0 mg (0.055 mmol, 78% yield) of the 5 [53,67].

UV-vis (CH2Cl2): λmax (nm): 699, 642, 546, 508, 478, 410.
1-H NMR (400 MHz, CDCl3, ppm): 9.57 (s, 1H, H-10); 9.36 (s, 1H, H-5); 8.56 (s, 1H, H-20);
7.89 (dd, 1H, J = 17.8, 11.6 Hz, H-31); 6.27 (dd, 1H, J = 17.8 and J = 9.4, 2.5 Hz, H-32B); 6.20
(dd, 1H, J = 11.6 and J = 9.4, 2.5 Hz, H-32a); 4.39 (q, 1H, J = 7.3 Hz, H-181); 3.77 (s, 3H,
H-121); 3.64 (q, 2H, J = 7.9 Hz, H-81); 3.60 (s, 3H, H-174); 3.35 (s, 3H, H-21); 3.15 (s, 3H,
H-71); 2.78–2.70 (m, 2H H-171); 2.49–2.43 (m, 2H, H-172); 1.74 (d, 3H, J = 7.3 Hz, H-182);
1.65 (t, 3H, J = 7.6 Hz, H-82); 0.21 (br s, 1H, H-21); −0.08 (br s, 1H, H-23).
13C-NMR (CDCl3, 100 MHz) δ: 178.6, 173.5, 169.8, 165.4, 163.4, 158.4, 154.2, 146.9, 145.1,
141.9, 140.0, 137.9, 135.5, 133.5, 132.8, 132.8, 131.4, 128.0, 125.6, 107.4, 102.5, 97.9, 94.5, 55.5,
51.7, 49.6, 32.4, 31.4, 20.4, 19.6, 16.9, 12.9, 12.1, 11.2
Chlorin-p, 6-N-Butylamide-7-methyl Ester (6). To a solution of 5 (40.0 mg, 0.069 mmol) in
dichloromethane (5 mL), butylamine (0.5 mL) was added and the reaction mixture was
stirred at room temperature in the dark under nitrogen for 2 h. After that, the UV-vis
analysis and TLC showed the absence of starting material. The product was purified by
crystallization with dichloromethane-hexane to give the product 6 (48.0 mg, 0.070 mmol,
90% yield) [54–56].

UV-vis (CH2Cl2): λmax (nm): 662, 606, 526, 498, 398.
1H-NMR (CDCl3, 400 MHz) δ: 9.67(s, 1H), 9.62 (s, 1H), 8.74 (s, 1H), 8.12 (dd, J = 18, 11 Hz
1H), 6.96–7.05 (m, NH), 6.37 (d, J = 18 Hz, 1H), 6.15 (d, J = 11 Hz, 1H), 5.06 (d, J = 7.7 Hz,1H),
4.33–4.37 (m, 1H) 3.74–3.78 (m, 4H), 3.57 (s, 3H), 3.46 (s, 3H), 3.31 (s, 3H), 3.23 (s, 3H),
2.49–2.27 (m, 2H), 1.70 (d, 3H, J = 7.2Hz), 1.68 (t, 3H, J = 7.5Hz), 0.79–1.10 (m, 4H), 0.95 (t,
3H, J = 7.2Hz), 0.63(t, 3H, J = 7.2Hz),−1.66 (s, NH) and −1.94 (s, NH).
HRMS (ESI): m/z calculated [M + H]+ for C38H46O5N5

+ = 652.34935; found 652.35046.
Chlorin-p, 6-N-hexylamide-7-methyl Ester (7). To a solution of 5 (40 mg, 0.069 mmol) in
dichloromethane (0.3 mL), hexylamine (0.2 mL) was added and the reaction mixture
was stirred at room temperature in the dark under nitrogen for 2 h. After that, UV-vis
analysis and TLC showed the absence of starting material. The product was purified by
crystallization with dichloromethane-hexane to give the product 7 (42.0 mg, 0.062 mmol,
86% yield) [54–56].

UV-vis (CH2Cl2): λmax (nm): 666, 608, 528, 497, 398.
1H-NMR (CDCl3, 400 MHz) δ: 9.66 (s, 1H), 9.55 (s, 1H), 8.70 (s, 1H), 7.98 (dd, 1H, J = 11.5
and 17.6 Hz), 6.33–6.37 (m, NH), 6.28 (d, 1H, J = 16.8Hz), 6.10 (d, 1H, J = 12.8Hz), 4.93 (d,
1H, J = 7.7Hz), 4.40 (q, 1H, J = 7.0Hz), 4.13 (s, 3H), 3.82–3.60 (m, 4H), 3.56 (s, 3H), 3.40 (s,
3H), 3.22 (s, 3H), 2.70–2.12 (m, 4H), 1.77 (d, 3H, J = 7.2Hz), 1.64 (t, 3H, J = 7.5Hz), 0.92–0.77
(m, 9H), 0.67 (t, 3H, J = 7.2Hz), −1.32 (s, NH), −1.54 (s, NH).
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HRMS (ESI): m/z calculated [M + H]+ for C40H50O5N5
+ = 680.38065; found 680.38251.

Chlorin-p, 6-N-octylamide-7-methyl Ester (8). To a solution of 5 (22.0 mg, 0.038 mmol) in
dichloromethane (1.0 mL), octylamine (0.2 mL) was added. The reaction mixture was stirred
at room temperature in the dark under nitrogen for 2 h. After that, UV-vis analysis and TLC
showed the absence of starting material. The product was purified by crystallization with
dichloromethane-hexane to give the product 8 (21.0 mg, 0.030 mmol, 80% yield) [54–56].

UV-vis (CH2Cl2): λmax (nm): 663, 605, 528, 499, 399.
1H-NMR (CD3)2CO, 400 MHz) δ: 9.71 (s, 1H), 9.41 (s, 1H), 9.04 (s, 1H), 8.17 (dd, 1H),
7.78–7.82 (m, NH), 6.37 (d, 1H), 6.15 (d, 1H), 5.16 (d, 1H), 4.54 (q, 1H), 3.67 (s, 3H), 3.60–3.64
(m, 4H), 3.48 (s, 3H), 3.40 (s, 3H), 3.25 (s, 3H), 2.70–2.12 (m, 6H), 1.78 (d, 3H), 1.63 (t, 3H, J =
7.5Hz), 0.92–0.77 (m, 9H), 0.85 (t, 3H, J = 7.2Hz), −1.46 (s, NH), −1.82 (s, NH).
HRMS (ESI): m/z calculated [M + H]+ for C42H54O5N5

+ = 708.41195; found 708.41364.

3.2. Photodynamic Inactivation

Staphylococcus aureus (American Type Culture Collection, ATCC 25923) and Escherichia
coli (ATCC 25922) were grown in brain and heart infusion media. Candida albicans (ATCC
10231) was grown in Sabouraud dextrose broth. For experimental purposes, the microor-
ganism concentration was adjusted to 107–108 cells/mL in sterile distilled water, and 500
µL of each microorganism culture was added to 24-well plates with photosensitizers 2–4
and 6–8. Solutions were prepared by diluting the photosensitizer powder (1 mg for S.
aureus and C. albicans and 2 mg for E. coli) in 100 µL of dimethyl sulfoxide (DMSO) (to
dissolve the PS) and 900 µL of sterile water; the initial concentration of DMSO in the stock
solutions was 10%. After dilution of these stock solutions to final concentrations of 1 µM
and 10 µM for S. aureus and C. albicans, respectively, and of 500 µM for E. coli, the final
concentration of DMSO was less than 2% in all the solutions. After preparing the solutions,
they were protected from light. The 24-well plates were kept in the dark at 37 ◦C for 20 min.

A homemade LED-based device with emission centered at 660 nm was used to irradi-
ate the culture plates. The 24-well plates were irradiated at 30 mWcm−2 using this device
for 8, 16, and 25 min, resulting in fluences of 15, 30, and 45 Jcm−2, respectively, which
were used in the PDI against microorganisms. The fluence levels used were 15 Jcm−2 and
30 Jcm−2 for S. aureus and C. albicans, and 45 Jcm−2 for E. coli. After irradiation, 10-fold
serial dilutions were performed and cells were cultured in agar plates. The colony-forming
units (CFUs) were determined 24 h after initiation of the experimental procedure. All
experiments were performed in triplicate.

In the control group (no treatment), 24-well plates were maintained at room tempera-
ture for 32 min. Using the same incubation time, the dark toxicity of the photosensitizers
was evaluated in 24-well plates covered with aluminum foil to avoid light exposure. Pho-
totoxicity was determined by irradiation at 30 Jcm−2 for S. aureus and C. albicans, and
45 Jcm−2 for E. coli.

Survival fractions (SFs) were expressed as ratios of CFUs of treated groups to the
control group. The SF at 0 J/cm2 provides a measure of the dark toxicity of chlorins.

3.3. Statistical Analysis

All the results reported in Figures 3 and 4 were statistically analyzed using the RStudio
software (R version 4.1.1 (10 August 2021), R Core Team (2021), R: A language and environ-
ment for statistical computing; R Foundation for Statistical Computing, Vienna, Austria
(https://www.R-project.org, accessed on 10 August 2021)) using a significance level of
at least p < 0.05 and a confidence level of approximately 95%. The data were analyzed
and approved by the normality test. Comparisons between the experimental groups were
verified by Tukey’s test.

4. Conclusions

The photosensitizers 2–4 and 6–7 derived from chlorophyll a were successfully semisyn-
thesized. The characterization of the compounds is in accordance with data described in

https://www.R-project.org
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the literature and the main photophysical data are compiled and organized in Table S1 (SI).
Overall, methyl pheophorbide a or purpurin-18 derivatives with different side chains (from
the butyl to octyl groups) were prepared and studied. Subsequently, we investigated the
photoinactivation of S. aureus and observed that the methyl pheophorbide derivatives 2–4
did not show great inactivation, whereas the purpurin-18 derivatives 6–8 allowed signif-
icant PDT inactivation. For C. albicans, the purpurin-18 derivative with the butyl group
showed relevant inactivation, and the methyl pheophorbide with the butyl group also
exhibited PDI. Photosensitizers 2–4 and 6–8 were also tested against the Gram-negative
bacterium E. coli; however, no significant photoinactivation was observed. In general,
the higher the carbon chain present in the photosensitizers, the more hydrophobic the
compounds, with consequently lower photoinactivation efficacy. These results suggest that
the use of chlorin derivatives with lower hydrophobic properties can be more effective for
the photoinactivation of such microorganisms as S. aureus and C. albicans.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules27185769/s1, Figure S1: 1H-NMR (CDCl3) spectrum
of methyl pheophorbide a (1); Figure S2: 13C-NMR (CDCl3) spectrum of methyl pheophorbide a
(1); Figure S3: 1H-NMR (CDCl3) spectrum of 13-(Butylcarbamoyl)chlorin e6 15,17-dimethyl ester
(2); Figure S4: HRMS (ESI) of 13-(Butylcarbamoyl)chlorin e6 15,17-dimethyl ester (2); Figure S5:
1H-NMR (CDCl3) spectrum of 13-(Hexylcarbamoyl)chlorin e6 15,17-dimethyl ester (3); Figure S6:
HRMS (ESI) of 13-(Hexylcarbamoyl)chlorin e6 15,17-dimethyl ester (3); Figure S7: 1H-NMR (CDCl3)
spectrum of 13-(Octylcarbamoyl)chlorin e6 15,17-dimethyl ester (4); Figure S8: HRMS (ESI) of
13-(Octylcarbamoyl)chlorin e6 15,17-dimethyl ester (4); Figure S9: 1H-NMR (CDCl3) spectrum of
Purpurin-18 Methyl Ester (5); Figure S10: 13C-NMR (CDCl3) spectrum of Purpurin-18 Methyl Ester
(5); Figure S11: 1H-NMR (CDCl3) spectrum of Chlorin-p, 6-N-Butylamide-7-methyl Ester (6); Figure
S12: HRMS (ESI) of Chlorin-p, 6-N-Butylamide-7-methyl Ester (6); Figure S13: 1H-NMR (CDCl3)
spectrum of Chlorin-p, 6-N-hexylamide-7-methyl Ester (7); Figure S14: HRMS (ESI) of Chlorin-p, 6-N-
hexylamide-7-methyl Ester (7); Figure S15: 1H-NMR (CDCl3) spectrum of Chlorin-p, 6-N-octylamide-
7-methyl Ester (8); Figure S16: HRMS (ESI) of Chlorin-p, 6-N-octylamide-7-methyl Ester (8); Figure
S17: Homemade engineered Biotable model for PDI studies (660 nm). Figure S18: Photodegradation
experiment at 660 nm at 63.7 mWcm-2 using ethyl acetate as solvent. Table S1: Wavelengths data and
Quantum yield of Singlet Oxygen 1O2 data of the literature for some of the compounds.
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