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Abstract: Based on the pharmacophoric features of EGFR inhibitors, a new semisynthetic theobromine-
derived compound was designed to interact with the catalytic pocket of EGFR. Molecular docking
against wild (EGFRWT; PDB: 4HJO) and mutant (EGFRT790M; PDB: 3W2O) types of EGFR-TK in-
dicated that the designed theobromine derivative had the potential to bind to that pocket as an
antiangiogenic inhibitor. The MD and MM-GBSA experiments identified the exact binding with
optimum energy and dynamics. Additionally, the DFT calculations studied electrostatic potential,
stability, and total electron density of the designed theobromine derivative. Both in silico ADMET
and toxicity analyses demonstrated its general likeness and safety. We synthesized the designed
theobromine derivative (compound XI) which showed an IC50 value of 17.23 nM for EGFR inhibition
besides IC50 values of 21.99 and 22.02 µM for its cytotoxicity against A549 and HCT-116 cell lines,
respectively. Interestingly, compound XI expressed a weak cytotoxic potential against the healthy
W138 cell line (IC50 = 49.44 µM, 1.6 times safer than erlotinib), exhibiting the high selectivity index
of 2.2. Compound XI arrested the growth of A549 at the G2/M stage and increased the incidence
of apoptosis.

Keywords: anticancer; theobromine derivative; semi-synthesis; EGFR; Molecular docking; MD
simulations; DFT

1. Introduction

World Health Organization, WHO, statistics indicate that cancer will become the major
cause of death within a few years [1]. In response, developing safe and effective cancer
therapies that bind with a specific molecular target and destroy cancer cells represents
a challenging problem for scientists [2]. Angiogenesis contributes to tumor growth and
reproduction. Hence, stopping angiogenesis is considered one of the possible strategies
to treat cancer [3]. Angiogenesis and cancer cell growth depend greatly on the epidermal
growth factor receptor (EGFR) [4]. Overexpression of EGFR promotes cellular proliferation,
differentiation, and survival through downstream signaling pathways. The EGFR gene
promotes the growth of various solid tumors and is elevated in multiple types of cancer [5].
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Increased EGFR expression was proven to be associated with a reduced survival rate, and
acted as a strong prognostic indicator [6]. EGFR receptors are overexpressed in cancer more
than in normal cells, allowing researchers to target them as a cancer-fighting strategy [7].

Natural products have historically been the cornerstone of drug development [8,9].
Recently, natural products accounted for almost one-third of newly approved FDA drugs
in the period 1981–2014 [10]. Xanthines, as well as xanthine derivatives, are an extremely
interesting category of compounds in the field of anticancer drug discovery as they ex-
pressed various antimutagenic activities against different cancer types such as ovarian [11],
prostate [12], leukemia [13], and breast [13] cancers. First discovered in 1841 [14], theo-
bromine is a xanthine alkaloid (3,7-dimethylxanthine) found primarily in Theobroma cacao,
“chocolate”, as well as in a variety of foods such as tea leaves [15]. It was first synthesized
in 1882 [16]. Interestingly, theobromine expressed promising activities against colon can-
cer through in vitro [17] as well as in vivo [18] examinations. Additionally, theobromine
showed anti-carcinogenic activity by inhibiting the DNA synthesis in cancer cells [19].
Further, theobromine inhibited the growth of glioblastoma multiforme in vitro [20]. Re-
markably, theobromine could prevent angiogenesis in lung cancer in an in vivo study [21]
as well as it exhibits promising anti-angiogenic activity via the inhibition of the vascular
endothelial growth factor (VEGF), in vivo and in vitro, in ovarian cancer [22].

The semi-synthesis of natural products can aid in discovering more potent drugs and
repurposing, as well as improving drug-likeness, pharmacokinetics, and pharmacodynam-
ics [23].

Computational (computer-based, computer-aided) chemistry is used to explore the
interactions of potential drugs with biomolecules using theoretical ideas and computer
techniques [24]. Our team applied in molecular docking [25,26], molecular design [27],
toxicity [28,29], ADMET [30,31], DFT [32,33], structural similarity [34], MD [35], and phar-
macophore [36] evaluation.

The clinically approved EGFR tyrosine kinase-inhibitors (EGFR TKIs) (Figure 1) have
some problems. The anticancer effect of the 1st-generation EGFR-TKI as erlotinib I [37]
was decreased due to the drug resistance acquired by a certain mutation (EGFRT790M) [38].
In addition, erlotinib was reported to exert life-threatening lung disease [39]. Although
overcoming the drug resistance induced by EGFRT790M, the 2nd-generation EGFR-TKIs (as
neratinib II [40]) showed poor clinical patient outcomes due to a low maximal-tolerated-
dose [41,42]. Olmutinib III, the 3rd-generation EGFR-TKIs, showed improved activities
towards EGFRT790M. Unfortunately, two cases of toxic epidermal necrolysis (one of them
was a fatal case) and a case of Stevens–Johnson Syndrome were recorded by Olmutinib [43].
Compound IV was generated by Traxler et al. [44] and showed excellent efficacy in inhibit-
ing EGFR TK. Compound V is also an example of 1H-pyrazolo[3,4-d]pyrimidines with
anti-EGFR TK activity, have a low IC50 value against the BT474C cell line [45] (Figure 1). In
2018, our research group synthesized a series of 1H-pyrazolo[3,4-d]pyrimidine analogues
as inhibitors of EGFRWT and EGFRT790M. Compound VI showed good inhibitory effects
against the two types of EGFR besides a good apoptotic effect [46].
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Rationale

The ATP-binding active pocket of the EGFR comprises five essential regions including
the adenine and ribose binding pockets, in addition to the phosphate binding region,
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hydrophobic regions I and II. The ribose binding pocket and phosphate binding region are
not essential for EGFR-TKIs intrinsic activity [47–50].

EGFR-TKIs have four common pharmacophoric features [51]: (i) A flat hetero aromatic
system, terminal hydrophobic head, NH spacer, and hydrophobic tail. These moieties
occupy and interact with the adenine binding pocket [52], the hydrophobic region I [51],
linker region [53], and hydrophobic region II [47,54], respectively.

As shown in Figure 1, different moieties can occupy the adenine binding pocket as
quinazoline (erlotinib I), quinoline (neratinib II), thieno[3,2-d]pyrimidine (olmutinib III),
1H-pyrazolo[3,4-d]pyrimidine (compounds IV, V, VI).

In continuation of our efforts in the discovery of EGFR-2 inhibitors [46,55–57], we
designed and synthesized a new theobromine derivative as a potential compound that may
exert a marked EGFR inhibitory activity and consequently inhibit the growth of tumor cells.
The designed compound is a modified analog of 1H-pyrazolo[3,4-d]pyrimidine derivatives.

From a drug design point of view, the theobromine moiety was utilized in the current
work to engage the adenine binding pocket. This moiety has six hydrogen acceptor atoms
that can bind efficiently with the essential amino acid at the adenine binding pocket. In
addition, the acetamide moiety was used as a linker. Furthermore, the hydrophobic head
is to be inserted in the hydrophobic region I. Lastly, one of the two methyl groups at the
3- and 7-positions of theobromine moiety was used proposed to occupy the hydrophobic
region II (Figure 1). The binding mode of the synthesized compound confirmed the design
as each feature occupied its target pocket in the ATP binding site.

2. Results and Discussion
2.1. In Silico Studies
2.1.1. Molecular Docking against Wild and Mutant EGFR

The molecular modeling tool allowed medicinal chemists to envisage interactions
between compounds and their biological target [58–60]. The designed theobromine deriva-
tive’s binding mode against wild (EGFRWT; PDB: 4HJO) and mutant (EGFRT790M; PDB:
3W2O) types of EGFR-TK, [61,62]. The co-crystallized ligands, erlotinib, and TAK-285, of
wild and mutant types, respectively, were utilized as references.

The re-docking validation step of the co-crystallized ligands (erlotinib and TAK-
285) showed acceptable root–mean–square deviation, RMSD, values of (1.40 and 1.10 Å,
respectively), as presented in Figures 2 and 3.
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Figure 3. Validation step of TAK-285.

Erlotinib’s binding interactions with EGFRWT revealed that it occupied the major
pockets (affinity value of −20.35 kcal/mol). A key hydrogen bond (H-B) with Met769,
besides four hydrophobic interactions (H-I) with Leu694, Ala719, and Leu820, was observed
in the adenine pocket. This was achieved via the quinazoline moiety. Moreover, the
hydrophobic pocket I was occupied by the ethynylphenyl moiety through a network of
H-Is with Ala719 and Val702, and Lys721 (Figure 4).
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Figure 4. 3D and 2D binding mode of erlotinib into the active site of EGFRWT.

The designed theobromine derivative gave a comparable affinity value to erlotinib
(−20.11 kcal/mol). In addition, it took the same orientation and interacted with EGFRWT

active site similar to erlotinib. The 7-methyl-2,6-dioxo-2,3,6,7-tetrahydro-1H-purine of the
designed compound was oriented into the adenine pocket of the EGFRWT with a H-B
against the essential amino acid, Met769, and seven H-Is with Cys733, Leu820, Leu694,
Leu786, Ala719, and Val 702. The NH group of the acetamide moiety was incorporated
in an electrostatic attraction with Thr830. On the other side, the benzyl moiety occupied
the hydrophobic pocket I via two H-Is with Leu764 and Lys721. The methyl group at the
4-position of xanthine moiety was oriented into the hydrophobic pocket II with two H-Is
against Leu694 and Val 702 (Figure 5).
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of EGFRWT.

The docking outputs of the mutant EGFR (EGFRT790M) were investigated to support
the docking results of the wild type (EGFRWT). Figure 6 explains the binding of TAK-285,
the co-crystallized ligand, (TAK-285) to the EGFRT790M active site. The obtained findings
and the reported data were identical [55].
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Figure 6. TAK-285 docked into EGFRT790M active site.

As displayed in Figure 7, the designed theobromine derivative was bound to the
catalytic site of the EGFRT790M in similar to TAK-285. The 7-methyl-2,6-dioxo-2,3,6,7-
tetrahydro-1H-purine moiety was successfully buried in the adenine pocket to form one H-
B with Met793 and four p-p bonds with Leu844, Leu718, Ala743, and Met793. Moreover, the
terminal benzyl moiety interacted with the hydrophobic pocket I, forming an electrostatic
interaction with Lys745. The methyl group at the 4-position of xanthine moiety was oriented
into the hydrophobic pocket II, forming three H-Is with Leu844, Ala743, and Met793.
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2.1.2. MD Simulations

The MD analyses carried out on the production run showed that, overall, the designed
theobromine derivative-EGFR system was stable. The RMSD plot (Figure 8A) showed
a stable average after the first 8 ns at 1.93 Å for the EGFR, blue curve, and the obtained
complex, green curve. Furthermore, the RMSD of the designed theobromine derivative,
red curve, showed a variation in values ranging from 0.5 Å to, approximately, 3.0 Å. The
RMSD of the designed theobromine derivative can be divided into three parts. During the
first 20 ns, it shows a large variation (from 0.5 to 2.72 Å) with an average of 1.41 Å, while
the next 40 ns shows a small variation of approximately 1 Å (from 1.02 to 2.24 Å) with
approximately the same average value of 1.41 Å. The last 40 ns show a similar variation
in the values ranging from 1.05 to 3.19 Å with an average value of 1.96 Å. The radius
of gyration, RoG, (Figure 8B), solvent accessible surface area, SASA, (Figure 8C), and H-
bonds (Figure 8D) showed a stable protein (EGFR) fluctuation expressing an average of
19.58 Å, 15288 Å2, and 60 bonds, respectively. The fluctuated amino acids depicted in the
root–mean–square fluctuation, RMSF, plot (Figure 8E) showed low fluctuation (less than
2 Å), with an exception of the free N-terminal reaching 6 Å and the loop region E841:V852.
During the 100 ns, the designed theobromine derivative remained almost in the same place
relating the EGFR center of mass (Figure 8F), with a 10.26 Å average.
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2.1.3. MM-GBSA

The binding exact free energy investigation through molecular mechanics with gen-
eralized born and surface area, MM-GBSA, (Figure 9) indicates the different energy com-
ponents that contribute to the process of binding. The designed theobromine derivative
showed a total binding energy with the average value of −30.72 kcal/mol. The most
favorable calculated contribution in the energy was for the Van Der Waals interaction
(average value = −44.45 kcal/mol). Coming next, the electrostatic interactions (average of
−25.26 kcal/mol). Furthermore, a decomposition analysis (Figure 10) was performed to
disclose which amino acid residues within 1 nm of the designed theobromine derivative
have more contribution to the binding. Leu694 (−1.1), Val702 (1.51), Ala719 (−1.02), Leu753
(−1.0), Thr766 (−1.13), Leu820 (−1.45), and Thr830 (−1.6) are the key amino acid residues
that have a significant contribution of a value that is less than −1 kcal/mol.
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Figure 9. Different energetic components of MM-GBSA and their average values. Bars represent the
standard deviation.
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Figure 10. Binding-free energy decomposition of the EGFR, the designed theobromine
derivative complex.

2.1.4. Protein–Ligand Interaction Profiler (PLIP) Studies

Next, the trajectories of the computed MD were clustered, providing several represen-
tative frames that represent every obtained cluster. For every cluster, the PLIP webserver
was employed to identify the number as well as the types of the interactions that occur
between the designed theobromine derivative and EGFR. Table 1 denotes both number as
well as types of interactions that produced from the PLIP webserver. In the first cluster
representative, the predominated interaction is a H-B with three bonds. On the other
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hand, the two remaining cluster representatives had H-Is greater than the H-Bs. Besides
obtaining types and numbers of interactions, the PLIP also generated a.pse file to see the
3D conformation of the designed theobromine derivative and its interaction with EGFR
(Figure 11).

Table 1. Interactions (number and types) detected from the PLIP webserver. Bold amino acids are
common in all clusters.

Cluster Number H-Is Amino Acids in EGFR H-Bs Amino Acids in EGFR

C1 1 F832 3 Lys721-Thr830-Asp831

C2 4 Leu764-Thr766-Phe832-
Leu834 2 Lys721-Asp831

C3 3 Leu764-Phe832-Leu834 2 Lys721-Thr830
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2.1.5. DFT
Geometry Optimization

All calculations were performed at the B3LYP/6-311G + +(d,p) level of theory. The
full optimization of the compound was run without any constraints and presented in
Figure 12. The bonding between the intermediate and the reactant through the C14-N2
bond is highlighted with the two angles on either side of the bond as shown in Figure 12.
The polarity of any system is determined by the dipole moment (µ), which measures the
interaction inside the molecule. The µ value of the title compound is 5.8158 Debye (D), and
the calculated ground total energy (TE) is −30469.8 eV (Table 2).
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Table 2. The calculated global reactivity indices and energetic parameters for the selected compound.

IP EA µ (eV) χ (eV) η (eV) σ (eV) ω (eV) µ (D) TE (eV) ∆Nmax ∆E (eV)

−1.512 −6.607 −4.059 4.059 −2.548 −0.393 −20.987 5.816 −30469.8 −1.593 20.987

Frontier Molecular Orbital (FMO) Analysis

From the FMO analysis, the calculated energy gap (Egap) between the HOMO (highest
occupied molecular orbital) and LUMO (lowest unoccupied molecular orbital) for the
ligand is −5.095 eV and the schematic diagram is presented in Figure 13. The Egap value
is relatively small and reflects a narrow frontier orbital HOMO-LUMO gap. Based on the
Dm and Egap values, the molecule is highly polarizable and chemically reactive [63]. The
calculated energy of HOMO (EHOMO), LUMO (ELUMO), and Egap was listed in Table 2.
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Global Reactive Indices and Total Density of State (TDOS)

The quantum calculations can be used effectively to obtain the global reactivity indices,
which provides details about the chemical reactivity or inhibition ability of a molecule.
Global reactive indices such as global chemical hardness (η) and softness (σ) describe the
inhibitory ability of the molecule to be stable or reactive. A molecule is thought to be a
good inhibitor when its hardness value (η) is small and softness value (σ) is high. All
electronic parameters and reactivity indices of the molecule, such as ionization potential
(IP), electrophilicity (ω), maximal charge acceptance (∆Nmax), chemical potential (µ), energy
change (∆E), global chemical softness (σ), global chemical hardness (η), electronegativity
(χ), and electron affinity (EA), were estimated according to Koopmans’ theory (more
information in the supporting data).

Based on the calculated values of global reactive indices (Table 2), the molecule
under investigation is chemically reactive and can be a good inhibitor against the EGFR
protein [64].

At the border area, LUMO and HOMO may not provide a meaningful description of
FMO due to the potential of quasi-degenerate levels. At equilibrium state, the product of
the density of states of a chemical system and its probability distribution function gives the
number of occupied states forunit volume. Such a number is utilized to study the physical
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properties of chemical systems. In this study, the TDOS analysis has been performed and
the relative results confirmed that the compound under study had a significant small energy
gap, and the highest intensity was reported for orbitals over LUMO orbital (Figure 14).
Such results emphasized the promising inhibitor’s efficiency.
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at B3LYP/6-311 + +G(d,p) level of the designed compound.

Surface Potential Mapping

The potential (electron + nuclei) mapping displays the distribution, molecular shape,
size, and dipole moments of the electrostatic potential of the molecule [65]. Graphically,
molecular electrostatic potential is shown in Figure 15, where the color-coded red, yellow,
blue, and green regions denote the electron-rich, slightly electron-rich, electron-deficient,
and neutral zones, respectively. The areas around the carbonyl groups represent the
most negative potential zones and the slightly electron-rich regions with yellow colors are
localized over terminal phenyl and N9 of purine moiety. The electron-deficient areas of
blue color are localized on the purine substituted methyl (C13) and C8H25 of purine.
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2.1.6. Absorption, Distribution, Metabolism, Excretion, and Toxicity (ADMET)
Profiling Study

Compounds are approved for use as drugs based on their pharmacokinetic evaluation
along with their biological activity, so the pharmacokinetic evaluation of any new com-
pound should be carried out at an early stage of its creation to help prevent the withdrawal
of a drug after its approval. ADMET identifies absorption, distribution, metabolism, excre-
tion, and toxicity, but despite the fact that in vitro studies can illustrate these properties, in
silico analyses are more advantageous because of the limitations of cost, time, and effort, as
well as the strict regulations regarding animal lives [66]. Computed ADMET parameters
for the designed theobromine derivative against erlotinib as a reference molecule were
determined using Discovery studio 4.0. According to ADMET results, the designed theo-
bromine derivative and erlotinib exhibited similar good levels of solubility and intestinal
absorption. Additionally, affinity to pass the blood–brain barrier, BBB, and to inhibit the
cytochrome P450 (CYP2D6) was predicted as low and non-inhibitors, respectively. The two
compounds (the designed theobromine derivative and erlotinib) showed a difference in
the ability to bind with plasma protein as it was predicted to be less and more than 90%,
respectively (Figure 16).
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2.1.7. In Silico Toxicity Studies

In silico approaches to toxicity prediction have played an indispensable role in drug
development, as it avoids ethical regulation, resource availability, and time-wasting in
traditional in vitro and in vivo studies [67]. This approach has played an indispensable
role in the discovery of new drugs and treatments [68]. In silico toxicity prediction uses
structure–activity relationships (SARs) to predict toxicities, and in detail, the computer
compares the chemical structural properties of the molecules to thousands of compounds
that have been reported to be safe or toxic [69]. A toxicity model built in Discovery studio
software was used to estimate eight toxicity parameters. Table 3 shows that the designed
theobromine derivative demonstrated high levels of safety in the computed models.
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Table 3. In silico toxicity studies of the designed theobromine derivative and erlotinib.

Comp.
FDA Rodent

Carcinogenicity
(Mouse-Male)

Carcinogenic
Potency TD50

(Mouse) a

Ames Muta-
genicity

Rat Maximum
Tolerated

Dose
(Feed) b

Rat Oral
LD50

b
Rat Chronic

LOAEL b
Skin

Irritancy
Ocular

Irritancy

The
designed

compound
Non-Carcinogen 70.942 Non-

Mutagen
0.024 1.575 0.039 Non-

Irritant Mild

Erlotinib 39.771 0.083 0.662 0.036

a Unit: mg/kg/day. b Unit: g/kg.

2.2. Chemistry

Because the designed theobromine derivative demonstrated high affinity to bind with
EGFR enzyme through different computational studies and it showed a good range of drug-
likeness, it was semi-synthesized by the modification of theobromine. In the present work,
potassium salt formation was achieved on the imidic nitrogen of theobromine VII [70]
by treating it with alcoholic KOH while continuously stirring. The formed salt VIII was
then reacted with N-benzyl-2-chloroacetamide X, which was formed via the reaction of
phenylmethanamine IX with chloroacetylchloride in DMF, to produce the corresponding
target product XI (Scheme 1).
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The IR spectrum of compound XI was characterized by the appearance of carbonyl
absorption bands at 1711 and 1656 cm−1. Moreover, the 1H NMR revealed the presence of
amidic proton at 8.61 ppm. Moreover, a characteristic singlet signal appeared at 4.52 ppm
corresponding to the CH2 group. The 13C NMR spectrum, which displayed distinct peaks
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at approximately 43.44, 42.52, 33.67, and 29.91 ppm corresponding to the two CH3 and two
CH2 groups, respectively, further confirmed the validity of the proposed structure.

The chemical structure of compound XI (Figure 17) was confirmed through spectro-
scopic analysis. In detail, the NH proton resonated clearly at δ 8.61 as a triplet signal
(J = 5.9 Hz) with the integration of one due to the presence of neighboring CH2. Two CH2
groups were detected at δ 4.30 (d, J = 5.9 Hz, 2H), which is adjacent to the NH, and at 4.52
(s, 2H) which is adjacent to the carbonyl. The proton of C-8, the only proton of the theo-
bromine rings, resonated at δ 8.07 (s, 1H). The two methyls of the theobromine moiety (3, 7)
resonated as two singlet peaks at δ 3.44, and 3.90, respectively. Furthermore, a pattern of
monosubstituted benzene ring was discovered at δ 7.37–7.31 (2H) and 7.26 (3H). Similarly,
the 13C NMR showed three carbonyls at δ 167.50, for the acetamide moiety, in addition to
the two up-field carbonyls of the theobromine moiety because of the high anisotropic effects
at δ 154.73 and 151.39. Additionally, C-4, C-5, and C-8 of the theobromine moiety resonated
at 148.97, 107.18, and 143.53, respectively. The monosubstituted benzene ring shoed its
characteristic signals at 139.72, 128.75 (2C), 127.57 (2C), and 127.25. Two methylene and
two methyl groups were detected at 43.44, 42.52, 33.67, and 29.91, respectively.
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2.3. Biological Evaluation
2.3.1. EGFR Inhibition

To examine the design and the computational results that indicated the strong binding
affinity of compound XI to the EGFR enzyme, compound XI was tested in vitro against
the EGFR enzyme in comparison with erlotinib. As shown in Figure 18, compound XI
strongly inhibited the EGFR enzyme with 17.2 nM that was bordering erlotinib’s value.
The obtained results were consistent with the acquired in silico results and confirmed the
strong suppressing potential of compound XI.
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Figure 18. In vitro EGFR inhibition of compound XI (A) and erlotinib (B).

2.3.2. Cytotoxicity and Safety

An in vitro cytotoxicity assay to evaluate compound XI’s EGFR inhibition against
cancer was conducted using the A549 and HCT-116 malignant cell lines against erlotinib as
a reference. Compound XI demonstrated IC50 values of 21.99 and 22.02 µM, respectively
(Table 4). The anticancer potentials of compound XI were very close to those of erlotinib
(6.73 and 16.35 µM, respectively).

Table 4. In vitro anti-proliferative activities of the compound XI and erlotinib against EGFR, A549
HCT-116, and WI-38 cell lines.

Comp.
In Vitro Cytotoxicity IC50 (µM) a

A549
(SI) HCT-116 (SI) EGFR, IC50 (nM)

A549 HCT-116 WI-38

Compound XI 21.99 22.02 49.44 2.2 2.2 17.23
Erlotinib 6.73 16.35 31.17 4.6 1.9 5.91

a Data are presented as the mean of the IC50 values from three different experiments.

The cytotoxic potential of compound XI against the W138 normal human cell line was
evaluated to confirm its in silico safety results and determine its selectivity against cancer
cell lines. Compound XI displayed excellent safety results, expressing a high IC50 value of
49.44 µM (safer than erlotinib) and very high selectivity indexes (SI) against both examined
cell lines of 2.2 (Figure 19).
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2.3.3. Cell Cycle Analysis and Apoptosis Assay

Initially, flow cytometric analysis of cell cycle phases was carried out [71,72]. Com-
pound XI was treated with A549 cells for 72 h at a concentration of 21.99 µM. Then, the
different stages of the cell cycle were examined. Compound XI decreased the growth of
cells in the Sub-G1 and G1 phases from 0.87% to 0.80% and from 43.47% to 16%, respec-
tively. Conversely, the f A549 population percentage was significantly increased from 12.10
for control cells to 19.84 for XI-treated cells in the G2/M phase (Table 5 and Figure 20).
To confirm the apoptotic effects of XI, A549 cells were stained with Annexin V and PI
double stains after treatment of with 21.99 µM of XI for 72 h [73,74]. Comparing the con-
trol, compound XI induced a higher number of apoptotic cells. Compound XI caused a
significant increase in the apoptotic cells percentage in both early apoptosis (from 0.05% to
24.02%) and late apoptosis (from 0.49% to 41.70%). A noticeable change in the total apop-
tosis percentage by 65.72 was observed, compared to 0.54% in the control cells (Figure 20
and Table 6). In conclusion, compound XI primarily arrested the cancer cell cycle at the
G2/M stage caused cytotoxic activities that may be due to programmed apoptosis. (See
Supplementary Materials).

Table 5. Cell cycle analysis of compound XI and control untreated A549 cell line.

Sample
Cell Cycle Distribution (%) a

% Sub-G1 % G1 % S % G2/M

A549 0.87 ± 0.35 43.47 ± 3.99 43.56 ± 2.31 12.10 ± 2.04
Compound XI/A549 0.80 ± 0.17 16.01 ± 5.00 63.35 ± 2.50 * 19.84 ± 2.69

a All values are calculated as the mean of triplicates. * p < 0.1.
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Table 6. Effect of compound XI on A549 cells’ stages of death.

Sample
Viable a

(Left Bottom)

Apoptosis a

Necrosis a

(Left Top)Early
(Right Bottom)

Late
(Right Top)

A549 99.44 ± 0.46 0.05 ± 0.02 0.49 ± 0.46 0.02 ± 0.01
Compound

XI/A549 32.55 ± 2.98 24.02 ± 1.52 ** 41.70 ± 1.76 ** 1.73 ± 0.30

a All values are calculated as the mean of at least three different experiments. ** p < 0.01.

3. Experimental
3.1. In Silico Studies
3.1.1. Docking Studies

The molecular docking was carried out by MOE2014 software [75]. Supplementary data
give a detailed explanation.
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3.1.2. MD Simulations

CHARMM-GUI web server and GROMACS 2021 were utilized as an MD engine [76,77].
Supplementary data give a detailed explanation.

3.1.3. MM-GBSA

The Gmx_MMPBSA package was utilized [78]. Supplementary data give a
detailed explanation.

3.1.4. DFT

Gaussian 09 and GaussSum3.0 programs [79] were utilized [80]. Supplementary data
give a detailed explanation.

3.1.5. ADMET Studies

ADMET profile was carried out by Discovery Studio 4.0 [81]. Supplementary data
give a detailed explanation.

3.1.6. Toxicity Studies

The toxicity profile was carried out by Discovery Studio 4.0. Supplementary data give
a detailed explanation.

3.2. Chemistry
Synthesis of Compound XI

To a solution of the potassium salt of theobromine VIII (0.001 mol, 0.25 g) in dry DMF
(10 mL), N-benzyl-2-chloroacetamide X (0.001 mol, 0.21 g) was added and the mixture was
heated for 5 h. The mixture was then cooled and the produced precipitate was filtered,
washed with water, and crystallized from ethanol to attain the final target compound XI
(Scheme 2).

Molecules 2022, 27, x FOR PEER REVIEW 24 of 28 
 

 

3.1.4. DFT 
Gaussian 09 and GaussSum3.0 programs [79] were utilized [80]. Supplementary data 

give a detailed explanation. 

3.1.5. ADMET Studies 
ADMET profile was carried out by Discovery Studio 4.0 [81]. Supplementary data 

give a detailed explanation. 3.1.6. Toxicity Studies 
The toxicity profile was carried out by Discovery Studio 4.0. Supplementary data give 

a detailed explanation. 

3.2. Chemistry 
Synthesis of Compound XI 

To a solution of the potassium salt of theobromine VIII (0.001 mol, 0.25 g) in dry 
DMF (10 mL), N-benzyl-2-chloroacetamide X (0.001 mol, 0.21 g) was added and the mix-
ture was heated for 5 h. The mixture was then cooled and the produced precipitate was 
filtered, washed with water, and crystallized from ethanol to attain the final target com-
pound XI (Scheme 2). 

 
Scheme 2. N-Benzyl-2-(3,7-dimethyl-2,6-dioxo-2,3,6,7-tetrahydro-1H-purin-1-yl)acetamide (XI). 

Off-white crystal (yield, 84 %); m. p. = 257–259 °C; IR (KBr) ν cm−1: 3282, 3108 (NH), 
2929 (CH aliphatic), 1711, 1656 (C = O); 1H NMR (400 MHz, DMSO-d6) δ 8.61 (t, J = 5.9 Hz, 
1H), 8.07 (s, 1H), 7.37–7.31 (m, 2H), 7.26 (d, J = 7.5 Hz, 3H), 4.52 (s, 2H), 4.30 (d, J = 5.9 Hz, 
2H), 3.90 (s, 3H), 3.44 (s, 3H); 13C NMR (101 MHz, DMSO-d6) δ 167.50, 154.73, 151.39, 
148.97, 143.53, 139.72, 128.75 (2C), 127.57 (2C), 127.25, 107.18, 43.44, 42.52, 33.67, 29.91. For 
C16H17N5O3 (327.34). 

3.3. Biological Studies 
3.3.1. In Vitro Egfr Inhibition 

This was performed using the Human EGFR ELISA kit. The supplementary data pro-
vide a thorough explanation. 

3.3.2. In Vitro Antiproliferative Activity 
MTT procedure was utilized. The supplementary data provide a detailed explana-

tion. 

3.3.3. Safety Assay 
The normal cell lines, W138, were utilized. The supplementary data provide a de-

tailed explanation. 

3.3.4. Cell Cycle Analysis and Apoptosis 
The effect of compound XI on cell cycle distribution and apoptosis was performed 

using flowcytometry analysis technique. The supplementary data provide a detailed ex-
planation. 

Scheme 2. N-Benzyl-2-(3,7-dimethyl-2,6-dioxo-2,3,6,7-tetrahydro-1H-purin-1-yl)acetamide (XI).

Off-white crystal (yield, 84%); m. p. = 257–259 ◦C; IR (KBr) ν cm−1: 3282, 3108 (NH),
2929 (CH aliphatic), 1711, 1656 (C = O); 1H NMR (400 MHz, DMSO-d6) δ 8.61 (t, J = 5.9 Hz,
1H), 8.07 (s, 1H), 7.37–7.31 (m, 2H), 7.26 (d, J = 7.5 Hz, 3H), 4.52 (s, 2H), 4.30 (d, J = 5.9 Hz,
2H), 3.90 (s, 3H), 3.44 (s, 3H); 13C NMR (101 MHz, DMSO-d6) δ 167.50, 154.73, 151.39,
148.97, 143.53, 139.72, 128.75 (2C), 127.57 (2C), 127.25, 107.18, 43.44, 42.52, 33.67, 29.91. For
C16H17N5O3 (327.34).

3.3. Biological Studies
3.3.1. In Vitro Egfr Inhibition

This was performed using the Human EGFR ELISA kit. The supplementary data
provide a thorough explanation.

3.3.2. In Vitro Antiproliferative Activity

MTT procedure was utilized. The supplementary data provide a detailed explanation.
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3.3.3. Safety Assay

The normal cell lines, W138, were utilized. The supplementary data provide a
detailed explanation.

3.3.4. Cell Cycle Analysis and Apoptosis

The effect of compound XI on cell cycle distribution and apoptosis was performed us-
ing flowcytometry analysis technique. The supplementary data provide a
detailed explanation.

4. Conclusions

Based on the essential structural properties of EGFR inhibitors, a new theobromine
derivative was designed as an inhibitor. The potentiality of the designed theobromine
derivative against EGFR was demonstrated by molecular docking against both wild and
mutant types. The binding was confirmed by six MD (over 100 ns), two MM-GBSA, PLP,
and four DFT experiments. In addition, an ADMET analysis confirmed the general likeness
and safety. In vitro results were consistent with the in silico results, displaying EGFR
inhibition with an IC50 value of 17.23 nM and cytotoxic properties against A549 and HCT-
116 cell lines with IC50 values of 21.99 and 22.02 µM, respectively. Compound XI was much
safer against the healthy W138 cell line (IC50 = 49.44 µM) than erlotinib (IC50 = 31.17 µM),
showing a selectivity index of 2.2. Compound XI arrested the A549 cell cycle at the G2/M
stage and induced apoptosis. According to these results, compound XI could be a new lead
compound in the discovery of anti-EGFR candidates through further modifications and
more examinations.

The results show that compound XI (the theobromine derivative) is a lead compound
that could be employed for further modifications or in vivo and preclinical studies.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/molecules27185859/s1. Detailed toxicity report, the detailed methods, spectral data, and
toxicity report.
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