
Citation: Yang, A.; Liao, Y.; An, M.;

Cao, Y.; Yang, Z.; Ren, H.; Su, H.; Zou,

Q.; Chen, L. Effect of Ultrasonic

Pretreatment on Flocculation

Filtration of Low-Rank Coal Slurry.

Molecules 2022, 27, 6460. https://

doi.org/10.3390/molecules27196460

Academic Editor:

Juan Carlos Colmenares

Received: 1 August 2022

Accepted: 27 September 2022

Published: 30 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

molecules

Article

Effect of Ultrasonic Pretreatment on Flocculation Filtration of
Low-Rank Coal Slurry
Aosheng Yang 1,2,†, Yinfei Liao 1,*,†, Maoyan An 3,4, Yijun Cao 1, Zhe Yang 1,2, Hourui Ren 1,2, Hailong Su 1,2,
Qiqi Zou 1,2 and Luojian Chen 1,2

1 National Engineering Research Center of Coal Preparation and Purification,
China University of Mining and Technology, Xuzhou 221116, China

2 School of Chemical Engineering and Technology, China University of Mining and Technology,
Xuzhou 221116, China

3 School of Transportation Engineering, Jiangsu Vocational Institute of Architectural Technology,
Xuzhou 221116, China

4 Jiangsu Engn Lab Biomass Resources Comprehens Uti, Jiangsu Vocational Institute of Architectural Technology,
Xuzhou 221116, China

* Correspondence: liaoyinfei@cumt.edu.cn
† These authors contributed equally to this work.

Abstract: The efficient filtration of low-rank coal (LRC) slurry was significantly beneficial to the
production process of wet coal beneficiation. However, relatively few studies have been reported on
novel pretreatment methods for the efficient filtration of LRC slurry. In this paper, the mechanism of
ultrasonic pretreatment to promote flocculation and filtration of slurry was studied. The hydrophobic
variation of the slurry surface was measured by contact angle and XPS. The flocculation properties
of slurry were characterized using zeta potential and FBRM. The effects of filter cake porosity and
ultrasonic pretreatment on slurry filtration resistance were calculated by L-F NMR and Darcy’s
theory. The results showed that the ultrasonic pretreatment promoted the flocculation and filtration
performance of LRC slurry, increased the filtration rate, and decreased the cake moisture content.
Meanwhile, the contact angle of LRC increased significantly from 50.1◦ to 67.8◦ after ultrasonic
pretreatment, and the surface tension of the filtrate decreased from 69.5 to 53.31 mN/m. Ultrasonic
pretreatment reduced the absolute value of the zeta potential of coal slurry from 24.8 to 21.0 mV, and
the average chord length of flocs increased from 5–10 µm to 25–30 µm, thus weakening the electrostatic
repulsion between coals to promote floc formation. In addition, the pore tests and filtration theory
calculations showed that the ultrasonic pretreatment significantly improved the permeability of
the filter cake to water and reduced the resistance to slurry during filtration. In particular, the
mesopore porosity increased by 9.18%, and the permeability increased by 2.937 × 108 m2. Therefore,
this contributed to the reduction of slurry filtration resistance. This research provides an efficient
method for promoting the efficient filtration of slurry.

Keywords: ultrasonic pretreatment; low-rank coal; flocculation filtration; L-F NMR; filter cake porosity

1. Introduction

Low-rank coal (LRC) has abundant reserves worldwide and is relatively inexpensive
to extract, which makes LRC an important part of energy production [1,2]. With the
deterioration of the geological conditions of coal seams and the continuous development
of mechanized large-scale mining techniques, the fine LRC accounts for approximately
20 wt.% of the raw coal [3,4]. At present, wet coal beneficiation technology is widely used.
The filtration and dewatering process is an important part of wet coal beneficiation. The
effective filtration of LRC slurry not only improved the product quality, but also facilitated
the water recycling and protected the environment of the mine area [5].
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However, it has been found that fine coal is difficult to filter and dewater during
the production of coal processing plants. It was found that fine particle coals tend to
form filter cakes with a fine pore structure during filtration, whereas fine pores have
strong capillary forces that adversely affect the filtration process [6,7]. Meanwhile, the clay
minerals contained in LRC slurry tend to form thick hydration films in water, which not only
increases the filtration resistance but also decreases the filtration rate. In addition, particle
size, surface wettability, and ash content have an effect on the filtration of slurry [5,8].

To enhance the filtration performance of LRC slurry, scholars conducted extensive
research. The filter aids were widely concerned because the source was widespread, the
production process was simple, and the filtration effect was good. Quaternary ammonium
surfactants could enhance particle surface hydrophobicity and reduce coal surface charge,
thus facilitating the slurry filtration [9]. Stearyl trimethyl ammonium chloride is a cationic
surfactant, and its nitrogen atoms adsorb on the particles, orienting their alkyl chains
towards water, thus weakening the particle–water interaction [10]. The ionic flocculant in
slurry has strong affinity for the surface of coal particles and high adsorption density, and it
could reduce the surface potential of the particles [11]. Meanwhile, flocculants can promote
floc formation and remove free water from the larger pores of the filter cake [12,13]. In
addition, a new microbial flocculant has been discovered, and it could improve floc size
and promote sludge filtration [14]. In conclusion, current research has focused on the effect
of reagents on particle performance or the development of new filter aids. However, there
are relatively few studies on the use of novel treatment methods in LRC slurry filtration.

In recent years, ultrasonic treatment has been used in mineral processing, sludge
filtration, and the chemical industry [15–17]. The literate indicates that the dispersion of
reagents in the suspension is enhanced using ultrasonic treatment, reduces the electro-
static repulsion between particles, and promotes the increase of floc size [18]. Meanwhile,
the adsorption tests proved that ultrasonic treatment could enhance the adsorption of
reagents [19,20]. In addition, ultrasonic treatment was found to improve the looseness of
the cake and promote the formation of cake macropores in municipal sludge, thus facil-
itating sludge filtration [21]. Although ultrasonic treatment has been widely applied to
mineral processing, sludge treatment, and the chemical industry, it has rarely been applied
to LRC slurry filtration.

In this paper, the effect of ultrasonic pretreatment on the flocculation filtration per-
formance of LRC slurry was investigated. Contact angle, XPS, and FBRM were used to
measure the property changes of coal slurry after ultrasonic pretreatment. Meanwhile,
the changes of ultrasonic pretreatment on the electrostatic repulsion between LRC slurry
particles and the rheological properties of the filtrate were analyzed. In addition, the effect
of ultrasonic pretreatment on the porosity of the filter cake was determined. The slurry
filtration resistance variation and filter cake permeability change were calculated using
Darcy’s filtration theory. The results can provide a new pretreatment method to explore the
efficient flocculation and filtration of LRC slurry.

2. Experiment and Methods
2.1. Materials

The coal samples of fine grain were taken from Yulin, Shaanxi Province, China. Prior
to the test, the coal samples were washed with tap water. The raw coal was placed in a
stirred tank, and after stirring and standing, the supernatant was removed. This process
was repeated three times. The final product was then filtered, dried, and stored in sealed
plastic sample bags as test samples. The industrial analysis was conducted by an industrial
analyzer (5E-MAG6700, Kaiyuan Technology Development Co., Ltd., Changsha, China), as
listed in Table 1.
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Table 1. The industrial analysis of the LRC sample.

Item Mad (%) Aad (%) Vdaf (%) FCdaf (%)

Value 7.35 16.74 38.34 54.67

The results showed that the ash content (Aad) and the moisture content (Mad) of the
sample were 16.74% and 7.35%. The air-drying volatile matter (Vad) and the fixed carbon
(FC) content were 38.34% and 54.67%. In order to investigate the types of minerals in the
LRC slurry, X-ray diffraction analysis was performed. The result is shown in Figure 1.
Quartz and kaolinite were the mineral impurities in the sample. A laser diffractometer
(Malvern Mastersizer 2000, Malvern Panalytical, London, UK) was used to measure the
particle size distribution of the sample particles, and the results of the particle size test was
shown in Figure 2. The d50, d80, and d90 values of the coal samples were 8.617, 15.576, and
18.975 µm, which indicated that the coal samples were microfine samples.
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Figure 1. LRC sample of X-ray diffraction (XRD) analysis. Figure 1. LRC sample of X-ray diffraction (XRD) analysis.
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Figure 2. Particle size analysis of LRC sample.

Thoroughly mixed 40 g of dry coal samples with 160 mL of deionized water under a
stirring speed of 500 r/min was used to prepare the slurry for the experiments. The salinity
value of the coal slurry sample was about 1000 mg/L. The volume of the prepared coal
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slurry sample was about 200 mL. The coal slurry and deionized water were used in all
performance analyses.

Analytical-grade anionic polyacrylamide (APAM) was used with a weight of 12 million
daltons, a hydrolysis degree of 10–35%, and a molecular formula of (C3H5NO)n. APAM
was taken from Aladdin Chemicals Ltd., China.

2.2. Methods
2.2.1. Ultrasonic Pretreatment

The schematic diagram of the ultrasonic pretreatment system is shown in Figure 3.
The ultrasound action system consisted of an ultrasound generator (SL-650SD, Nanjing
Hanzhou Technology Co., Ltd., Nanjing, China) and several ultrasound transducers. The
frequencies of the selected transducers were 10, 20, 30, 40, and 50 KHz. The maximum
output power of the ultrasonic generator was 1100 W, and the maximum output power
of several ultrasonic probes was 100 W. The ultrasound amplitude ranged from about
80 to 100 µm. The bath was rectangular in cross section, with a length of 200 mm, a width
of 150 mm, and a height of 130 mm. During the ultrasonic pretreatment, the temperature
change in the bath was about 2 ◦C. In the ultrasonic pretreatment, first, APAM was added
into the slurry suspension and stirred for 5 min, and then the slurry was placed in the
ultrasonic system for the corresponding time.
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Figure 3. Schematic of the ultrasound equipment.

2.2.2. Flocculation and Filtration Tests

The LRC slurry filtration equipment is illustrated in Figure 4. The pressure of the
filtration equipment was set at 0.2 MPa, and the slurry was quickly poured into the filtration
equipment at the beginning of the filtration experiment. The cake and filtrate were then
collected, and the filtration time was recorded. The filtrate was collected as the filtration
experiment proceeded. After filtration, the aqueous filter cake was collected and weighed.
Afterwards, the filter cake was dried at 60 ◦C, and the weight of the dried filter cake was
recorded. The method of filter cake moisture content calculation is given by Equation (1):

Mw =
Mc − Md

Mc
× 100% (1)

where Mw is the moisture of the filter cake, Mc is the weight of the aqueous filter cake, and
Md is the weight of the dried filter cake.
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2.2.3. Measurement of Coal Slurry Properties

The variation of the reagent on the functional group content of the LRC surface was
measured and analyzed using XPS (ESCALAB 250Xi, Thermo Scientific, New York, NY, USA).
The monochromatic X-ray source used for XPS was Al Kα radiation (hv = 1486.6 eV). For the
XPS analysis, the take-off angle of the photoelectrons was 90◦, and the spot size was 900 µm.
The measured scanned spectra were recorded with a pass energy of 100 eV and an energy
step of 1.00 eV. The high-resolution spectra were recorded with a pass energy of 20 eV
and an energy step of 0.05 eV. This data processing (peak fitting) was performed using
the Gasa XPS software. The binding energy was corrected by setting the C1s hydrocarbon
(-CH2-CH2-bond) peak to 284.6 eV.

The contact angle size of the LRC slurry was measured by a DSA 100 (Kruse, Berlin,
Germany). The coal sample was pressed by a press with a pressure of 50 t into a circular
slurry body of about 2 mm thickness. Afterwards, the pressed coal piece was placed under
a contact angle measuring instrument for measurement. The contact angle of the coal
sample was obtained by computer analysis of the shape of the droplets on the coal piece.

The viscosity (η) of each sample was measured at a shear rate of 900 s−1. Approxi-
mately 5 mL of filtrate was collected using a viscometer (Haake, Berlin, Germany). Each
sample was tested five times, and the average value was the viscosity of the filtrate.

The pH of the slurry was adjusted using NaOH and HCl solutions. The slurry was
collected in a 50 mL centrifuge tube and then centrifuged at 800 r/min for 5 min to transfer
the supernatant to a platinum electrode and measure the zeta potential at an ambient
temperature of 20 ◦C. The test was repeated five times, and the average value was taken as
the result.

The focused beam reflectance measurement (FBRM, G400, Mettler Toledo, Columbus,
OH, USA) system is shown in Figure 5. FBRM was a probe-based measurement method
that inserted the instrument directly into the solution to study the change of particle size
and counts over time, and allowed the measurement of the highly turbid sample [22,23].
In this study, FBRM was adopted to monitor the evolution of the floc size, amount, and
micromorphology of the flocs online. The chord length of the square-weighted average
diameter was used to characterize the size of the floc. A 200 mL beaker was filled with
0.5 g of mucilage and stirred at 500 r/min for 5 min. During this time, the counts and chord
lengths of flocs were collected with the FBRM probe. The ICFBRM4.3 software was used to
analyze the counts, chord lengths, and micromorphology of the flocs.
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The surface tension was measured by K100 (Kruss, Berlin, Germany). The filtrate after
slurry filtration was collected. The platinum plate was treated by burning with an alcohol
lamp and then cooling to 20 ◦C. The value of the surface tension was the average of five
measurements.

2.2.4. Pore Measurements

The pore size distribution of the filter cake was measured by the L-F NMR instrument
(NMRC12-010V, Neway Analytical Instrument Co., Ltd., Niumag, China). L-F NMR was
a nondestructive and rapid technique for measuring the pore size distribution of solid.
Nuclear magnetic resonance occurred when the hydrogen protons were activated by a
static magnetic field and exposed to a second oscillating magnetic field. The pore size
and pore throat distribution of the filter cake were indicated by assessing the intensity of
hydrogen protons in water [24,25]. An amount of 1 g of sample taken from the center of
the filter cake was put into the L-F NMR tube and sealed to prevent water loss during the
pore testing. The resonance frequency of the equipment was 12.5 MHz. The temperature of
the magnets of L-F NMR was kept constant at 32 ◦C [26].

2.2.5. Darcy’s Filtration Theory Calculation

The total resistance during filter cake formation was the sum of the medium resistance
(Rm) and the filter cake resistance (α), which can be determined by the Darcy law and the
Carman–Kozeny equation, as shown in Equation (2) [27]. The filter cake resistance and
medium resistance were generated by the filter cake and the filter media in the filtration
process, respectively. The filter cake resistance was mainly influenced by the properties of
the filter cake. However, the medium resistance was mainly related to the properties of the
filter media whose pores may be blocked by microfine slurry particles. Media resistance
can be estimated in the early stages of coal slurry filtration when the filter media were
not easily deformed by squeezing, after which they remained essentially constant with
increasing filtration time [25,27]:

t
V

=
αµc

2A2∆P
V +

Rmµ

A2∆P
(2)

where t is the filtration time in s, and V is the volume of the filtrate at time t in m3. The
parameters c, µ, A, and ∆P represent the slurry concentration, absolute viscosity of water,
cake area, and differential pressure, respectively. The values of the parameters required
for Equation (2) are given in Table 2. The filter medium resistance (Rm) and the filter
cake resistance (α) in equation (2) showed that t/V was the dependent variable and V was
the independent variable. Thus, a graph of t/V versus V permitted the calculation of the
gradient and intercept, which can be used to calculate α and Rm. The permeability of the
filter cake (K) can be calculated using Equation (3):

K =
1

α(1 − ε)ρs
(3)
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where ε is the cake porosity, ρs is the density of particles, and K0 is the Kozeny constant,
which is approximately equal to 5 for fixed or slowly moving beds [25].

Table 2. The parameters used in Equation (2).

c (kg/m3) µ (Ns/m2) A (m2) ∆P × 106 (N/m2)

200 0.001 0.0095 0.2

3. Results and Discussion
3.1. The LRC Slurry Flocculation Filtration Results

The flocculant dosage is critical to achieve efficient flocculation and filtration of slurry.
Figure 6 illustrates the variation of the slurry filtration time with the increase in APAM
dosage. The results indicated that the filtration time of coal slurry was gradually reduced
with increased APAM dosage. When the APAM dosage was increased from 0 to 50 g/t, the
slurry filtration time was decreased from 185.2 to 69.6 s. When the APAM dosage exceeded
50 g/t, the change of slurry filtration time tended to be stable.
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Figure 6. Filtration time with APAM dosage.

Figure 7a,b illustrates the effect of ultrasonic time and ultrasonic frequency on slurry
filtration time. The slurry filtration time was 69.6 s without ultrasound pretreatment. When
the slurry was pretreated by ultrasound for 3 min, the filtration time was decreased sharply
to 52.3 s. On the other hand, when the ultrasonic frequency was increased to 30 KHz, the
filtration time was decreased significantly to 51.1 s. The optimum amount of APAM was
50 g/t, and the best ultrasonic condition was an ultrasonic frequency of 30 KHz and an
ultrasonic time of 3 min.
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The trend of filtrate volume change with increasing filtration time is shown in Figure 8a.
The variation of the slurry filtration rate could be reflected by the slope of the curve, and
the larger the slope, it indicated that the filtration rate of the slurry was faster. Clearly, the
filtration rate of the slurry was significantly increased after the ultrasonic pretreatment.
Figure 8b shows the moisture content of the filter cake under different conditions. The
APAM led to a filter cake moisture content of 30.2%, whereas the moisture content of the
filter cake decreased to 27.1% after ultrasonic pretreatment. This indicates that ultrasonic
pretreatment could reduce the filter cake moisture content.
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3.2. The LRC Slurry Hydrophobicity Analysis
3.2.1. The Contact Angle Measurement Results

The hydrophilic groups on the surface of LRC was an important factor affecting the
contact angle and hydrophobicity of the particles [28,29]. Figure 9 shows the LRC slurry
contact angle under different conditions. The coal contact angle was 50.1◦, which was
increased to 53.9◦ after the addition of APAM. However, after ultrasonic pretreatment, the
contact angle of LRC increased significantly to 67.8◦. Since the surface of LRC is abundant
in oxygen-containing functional groups—thus, its surface is more hydrophilic—and it is not
conducive to the reduction of filter cake moisture [5]. Meanwhile, ultrasonic pretreatment
could enhance the dispersion of APAM in the solution environment [30]. This presumed
that the ultrasonic pretreatment enhances the interaction between reagents and particles to
increase the contact angle and hydrophobicity of the coal surface, thus improving water
mobility and promoting filtration.
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3.2.2. Viscosity Analysis

Figure 10 shows the changes of filtrate viscosity before and after ultrasonic pretreat-
ment. The results show that the filtrate viscosity decreased from 4.37 to 3.74 mPa·s after
ultrasonic pretreatment. It is speculated that the reason for the above phenomenon is that
the ultrasonic pretreatment affected the displacement of APAM molecules and the adsorp-
tion of APAM molecules on the particle surface in the coal sludge water system [31]. The
decrease in filtrate viscosity leads to an increase in its local Reynolds number, which results
in a decrease in drag coefficient and resistance. Therefore, ultrasonic pretreatment helps
to reduce the filtrate viscosity and thus improves the coal slurry filtration performance.
In addition, it is noteworthy that the viscosity with APAM addition is higher than the
filtrate viscosity without APAM addition. This is mainly because APAM is a high-viscosity
polymeric organic compound, and its addition increases the viscosity of the filtrate.
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3.2.3. XPS Analysis

It was shown that the surface hydrophobicity of coal depends mainly on the relative
content of hydrophilic and hydrophobic groups on its surface [32,33]. Figure 11 shows
the C ls peaks of LRC slurry under different conditions. The groups C-C/C-H, C-O, and
O=C-O correspond to peaks at 284.6, 285.6, and 289.1 eV, respectively [34]. Table 3 shows
the contents of these three functional groups. The C-C/C-H content of the slurry surface
was 68.02% after APAM addition, while the ultrasonic pretreatment increased the C-C/C-H
content to 69.22%. Meanwhile, ultrasonic pretreatment reduced the C-O content on the
surface of LRC slurry to 21.79% and the O=C-O content to 8.99%. It is assumed that this
could be due to the ultrasonic pretreatment enhancing the adsorption capacity of APAM,
which resulted in an increase in the hydrophobic strength of the coal surface. This is
similar to the conclusion reached by A. Ozkan et al. [35], in which the ultrasonic treatment
improved the adsorption of reagents on the colemanite surface and improved the filtration
performance. Meanwhile, it is consistent with the contact angle test results.

Table 3. Content of groups on the slurry surface under different conditions.

Conditions
The Content of Different Types of Groups (%)

C-C/C-H C-O O=C-O

Coal 66.73 22.68 10.59
APAM + Coal 68.02 21.49 10.49

30 KHz + 3 min 69.22 21.79 8.99
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Figure 11. C 1s XPS spectra of LRC slurry under different conditions.

3.2.4. Surface Tension Analysis

The surface tension of the filtrate affects the rheology and filtration resistance of the
filtrate, thus affecting the coal slurry filtration [27,36]. Figure 12 illustrates the changes of
the filtrate surface tension under different conditions. The results showed that ultrasonic
pretreatment reduced the filtrate surface tension. The filtrate of pure LRC slurry showed a
surface tension of 69.5 mN/m. The surface tension of the filtrate was reduced by APAM to
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59.9 mN/m. Meanwhile, the surface tension of the filtrate decreased to 53.31 mN/m after
ultrasonic pretreatment. The filter cake pore structure could be seen as many aggregations
of capillaries with different pore sizes [37]. Meanwhile, the decrease in surface tension of
the filtrate can improve the rheology of the filtrate and reduce the filtration resistance of
coal slurry, which facilitates the removal of water from the filter cake [5].
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3.3. The Analysis of Electrostatic Repulsion between LRC Slurry Particles
3.3.1. The Zeta Potential Test Analysis

In slurry flocculation filtration, electrostatic repulsion between coal particles was the
major force that inhibited particle flocculation [38]. The variation of the zeta potential was
analyzed in Figure 13 under the different pH values. The results showed that ultrasonic
pretreatment significantly reduced repulsive force between particles. When the filtrate
pH = 7, the zeta potential of pure LRC slurry was −24.8 mV. APAM decreased the zeta
potential of the slurry to −23.2 mV. After ultrasonic pretreatment, the zeta potential of the
slurry was reduced to −21.0 mV. Generally, the farther the zeta potential value was from 0,
the more stable was the suspension system. Meanwhile, the closer the zeta potential value
was to 0, the weaker was the electrostatic repulsion between the particles, indicating that
the suspension was more prone to flocculation [39,40]. This indicated that the ultrasonic
pretreatment enhanced the interaction between APAM and particles, while reducing the
particle surface potential and the repulsion between particles, thus contributing to the
slurry flocculation.
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3.3.2. The Change of Floc Structure Properties

Flocculation characteristics, such as floc structure strength and floc size, has a signif-
icant impact on the cake structure and affects coal slurry filtration [25]. Generally, when
the chord length value increases, it indicates an increase in flocculation occurrence and
floc size. Conversely, when the chord length decreases, it indicates that the particles in the
suspension are uniformly dispersed and no flocculation is occurring [26]. The chord length
distribution of the slurry under different pretreatment conditions is shown in Figure 14.
Both APAM and ultrasonic pretreatment increase the floc size. The chord length of pure
LRC flocs was about 5–10 µm, and APAM increased the chord length to about 15–20 µm.
However, the chord length of ultrasonic pretreatment flocs increased to about 25–30 µm.
Since APAM is a polymer, it has more branched structures. When it is added to LRC slurry,
under the bridging flocculation effect, the particles aggregate with each other to form larger
flocs [25]. Meanwhile, the ultrasonic treatment can enable APAM to be uniformly dispersed
in LRC slurry. This enables APAM to better agglomerate slurry particles. In addition, zeta
potential test results show that the electrostatic repulsive force between slurry particles is
reduced, which further promotes the formation of flocs, resulting in the increase in filter
cake porosity.
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3.4. The Filter Cake Properties Analysis
3.4.1. The L-F NMR Test Analysis

The filter cake porosity is one of the most important factors affecting the filtration
rate of coal slurry [24]. The pores of the filter cake, according to the pore size, could be
classified as micropores (0–10 nm), transition pores (10–100 nm), mesopores (100–1000 nm),
and macropores (>1000 nm) [41]. Figures 15 and 16 show the variation of pore distribution
and porosity for different types of pores under different conditions, respectively. The
results showed that micropores, transitional pores, and mesopores were the main types of
pores contained in the filter cake, while no macropores were found in the cake. The slurry
without reagent treatment had a cake porosity of 42.11%, while the addition of APAM
increased the cake porosity to 48.61%. However, the filter cake porosity after ultrasonic
pretreatment increased significantly to 53.34%, and this increased the filter cake porosity by
11.23%. From Figure 16, it could be seen that the ultrasonic pretreatment has little effect on
the micropores and transition pores, but has a great effect on the porosity of the mesopores,
which increased by 9.18%. According to the particle size test of the sample, the d90 value
of the coal sample was 18.975 µm, which indicated that the sample size was fine; thus,
the pore types of the filter cake included micropores, transitional pores, and mesopores.
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APAM promoted the increase in floc size by reducing the repulsion between coals and
by bridging flocculation [25,42]. Meanwhile, ultrasonic pretreatment greatly reduced the
surface potential of the particles and the electrostatic repulsion between the particles, which
increased the floc size and promoted the increase in the filter cake porosity.
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3.4.2. Analysis of Filter Cake Characteristics

Figure 17 illustrates the curve fitted according to Equation (2). To calculate the media
resistance (Rm) and filter cake resistance (α), the slope and intercept of the curves were used,
respectively. Table 4 indicates the filter cake permeability (K) calculated by Equation (3).
The results showed that ultrasonic pretreatment significantly reduced Rm and α. The
values of Rm and α for pure LRC slurry were 5.621 × 10−4 m−1 and 3.249 × 10−12 m/kg,
respectively. However, after ultrasonic pretreatment, the values of Rm and α decreased
to 3.451 × 10−4 m−1 and 2.708 × 10−12 m/kg, respectively. Meanwhile, the ultrasonic
pretreatment contributed to the increase in K value. The K value was 4.090 × 108 m2 without
ultrasonic pretreatment, while the K value increased to 7.027 × 108 m2 after ultrasonic
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pretreatment. This demonstrated that ultrasonic pretreatment can facilitate the filtration of
LRC slurry by decreasing the resistance that the slurry experiences during filtration and
increasing the cake permeability.
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Table 4. Results of Darcy’s theorem calculations under different conditions.

Project α × 10−12 (m/kg) Rm × 10−4 (m−1) K × 108 (m2)

Coal 3.249 5.621 4.090
APAM 2.708 3.451 5.528

30 KHz + 3 min 2.347 2.402 7.027

According to previous tests, ultrasonic pretreatment increased the surface hydropho-
bicity of the particles, such as increasing the contact angle of coal and decreasing the surface
tension. At the same time, ultrasonic pretreatment increased the repulsion between the
coals and promoted the flocculation of the particles, thus reducing the electrostatic repul-
sion between the particles and promoting flocculation, which increased the cake porosity
to 53.34%. Among them, ultrasonic pretreatment had the greatest effect on the mesopore
porosity, which increased the mesopore porosity by 9.18%. This not only improved the
permeability of the cake but also reduced the resistance of the cake. In addition, because
the sample contained many fine particles, these particles blocked the probability of the
filter media’s pore channel, thus increasing the media resistance. However, ultrasonic
pretreatment increased the floc size, which was larger than the pores of the filter media,
and the probability of blocking pores was smaller, thus contributing to the reduction of
media resistance.

4. Conclusions

We investigated the effect of ultrasonic pretreatment on LRC slurry flocculation and
filtration. The enhancement of LRC slurry flocculation and filtration performance by
ultrasonic pretreatment was investigated from the variations of hydrophobicity, filtrate
characteristics, pore structure of the filter cake, and filtration resistance. The following
main conclusions were reached.

(1) The ultrasonic pretreatment significantly improved the filtration performance of
the LRC slurry; for example, it increased the filtration rate of the slurry and reduced the
moisture content of the filter cake. Meanwhile, the ultrasonic pretreatment improved the
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hydrophobicity of the LRC surface, and it increased the contact angle of the LRC to 67.8◦

and reduced the filtrate tension to 53.3 mN/m.
(2) Under ultrasonic pretreatment, the zeta potential value of LRC slurry changed

from −24.8 to −21.0 mV. In addition, the floc size increased to 25–30 µm. This indicated
that ultrasonic pretreatment weakened the electrostatic repulsion between coal particles,
thus enhancing the flocculation between particles to form larger size flocs and enhancing
slurry filtration performance.

(3) The porosity of the filter cake increased significantly to 53.34% after the ultrasonic
pretreatment. The ultrasonic treatment minimally affected the micropores, transition pores,
and macropores. However, the effect on the porosity of mesopores significantly increased
the mesopore porosity by 9.18%.

(4) The calculations from Darcy’s filtration theory concluded that ultrasonic pretreat-
ment could significantly reduce the slurry flocculation filtration resistance and improve
the permeability. This was mainly because the ultrasonic pretreatment reduced the particle
surface potential, thus reducing the repulsive force between the particles and promoting
particle flocculation. The increase in coal slurry floc size promotes the formation of a
filter cake porous structure and increased porosity, thus decreasing the cake resistance. In
addition, the larger floc size was found to have lower probability of blocking the pores of
the filter media, thus contributing to the reduction of media resistance.
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